Math 307D First Midterm Exam

February 1, 2013

Instructions: There are five problems, each worth 20 points, for a total of 100 points. You are allowed the use of a scientific calculator (but graphing calculators and other calculational devices are **NOT ALLOWED**). You are also allowed the use of one page of handwritten notes, front and back, standard sized paper.

- Work the problems in the space provided. If you need more space, use the back of the page, and clearly indicate that you are doing so.
- Neatness counts! A well—organized solution, even with mistakes, will get more partial credit than a haphazard collection of unrelated calculations.
- Put the answer you want considered in the BOX provided.
- You **MUST** show all your work and reasoning to receive credit. If in doubt, ask for clarification.
- Turn off all cell phones and pagers.

Problem 1	20
Problem 2	20
Problem 3	20
Problem 4	20
Problem 5	20
Total	100

$\frac{dy}{dx} = \frac{4x}{(2+x)}$	s). Find the solution to the initial value problem $\frac{3}{4}y, y(0) = -1.$
Make sur	e you write your solution for y as an $explicit$ function of x .
Answer:	

2.	(20 points). Solve the initial value problem $ty' + 2y = e^{3t}$, $y(1) = 0$.			
	Make sur	e you write your solution for y as an $explicit$ function of x		
	Answer:			

3.	(20 point	s). Water is pouring into a tank at a rate proportional to the square root of
	the amou	ant of water present in the tank at that instant. At time $t=0$ min there is 1
	gallon of	water in the tank, and at time $t = 1$ min there are 4 gallons of water in the
	tank. Ho	w many gallons of water are in the tank at time $t = 4$ min?
	Answer:	

4.	(20	points).	Consider	the	autonomous	${\it differential}$	equation
----	-----	----------	----------	-----	------------	----------------------	----------

$$y' = y^3 - 2y.$$

(a) Find all equilibrium solutions to the equation.

Answer:

- (b) In the space below, sketch the direction field for the equation so the all equilibrium solutions appear in your sketch. Be sure to label your axes.
- (c) For each equilibrium solution in part (a) say whether it is stable, unstable, or semistable, briefly justifying each answer.

Answer:	

5. Consider the initial value problem

$$\frac{dy}{dx} = t, \ y(0) = 1.$$

(a) Use Euler's method, with step size h = 0.1 and starting at $t_0 = 0$, to approximate the value of the solution at t = 0.4.

Answer:

(b) As a check, solve the equation to get the exact value of the solution at t = 0.4. In the box below put both the solution y(t) and the exact value y(0.4).

Answer: