Math 307D First Final Exam

March 20, 2013

Instructions: There are ten problems, with the value of each problem indicated, for a total of 160 points. You are allowed the use of one page of handwritten notes, front and back, on standard sized paper. You are also allowed use of a scientific calculator (but graphing calculators and other calculational devices are not allowed)
The next page of the exam contains a table of Laplace transforms, which you may use in your solutions.

- Work the problems in the space provided. If you need more space, use the back of the page, and clearly indicate that you are doing so.
- Neatness counts! A well-organized solution, even with mistakes, will get more partial credit than a haphazard collection of unrelated calculations.
- Put the answer you want considered in the BOX provided.
- You MUST show all your work and reasoning to receive credit. If in doubt, ask for clarification.
- Turn off all cell phones and pagers.

Problem 1	15 points	
Problem 2	15 points	
Problem 3	15 points	
Problem 4	15 points	
Problem 5	15 points	
Problem 6	20 points	
Problem 7	15 points	
Problem 8	15 points	
Problem 9	15 points	
Problem 10	20 points	
Total	160 points	

1. (15 points). Solve the initial value problem

$$
y^{\prime}=\frac{x+1}{x^{2}(2 y+1)}, \quad y(1)=0
$$

2. (15 points) Solve the initial value problems

$$
\left(t^{2}+1\right) y^{\prime}+(2 t) y=t e^{t}, \quad y(0)=2 .
$$

3. (15 points) A population of bacteria increases at a rate proportional to the square root of the current population. At time $t=0$ days the population is 100 , and at time $t=4$ the population is 900 .
(a) Find a formula for the population $P(t)$ at time t days.
(b) At what time does the population reach 3600 ?

4. (15 points) Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, \quad y(0)=2, y^{\prime}(0)=4 .
$$

5. (15 points) Find the general solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=e^{t}+\sin t .
$$

6. (20 points) A 10 lb weight stretches a spring 2 ft . Suppose the Weight is pulled down an additional foot and given a downward velocity of $2 \mathrm{ft} / \mathrm{sec}$. There is no damping, nor are there external forces. Determine the amplitude of the subsequent motion.

Answer:

7. (15 points) Let $f(t)$ be a function whose Laplace transform is $F(s)$. Define a new function

$$
g(t)=e^{-2 t} f(3 t)
$$

Determine the Laplace transform $G(s)$ of $g(t)$ in terms of $F(s)$.

8. (15 points) Find the inverse Laplace transform of

$$
F(s)=\frac{2 s-3}{s^{2}+2 s+10}
$$

9. (15 points). Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}-y^{\prime}-6 y=0, \quad y(0)=1, y^{\prime}(0)=-1 .
$$

You can check your answer!

10. (20 points) Let $f(t)$ be the forcing function defined by $f(t)=1$ if $0 \leq t \leq 1$, and $f(t)=0$ if $t>1$. Solve the initial value problem

$$
y^{\prime \prime}+y=f(t), \quad y(0)=0, y^{\prime}(0)=0 .
$$

