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Abstract5

In recent times, there has been an increased interest in theories of lan-6

guage evolution that have an applicability to the study of dialect forma-7

tion, linguistic change, creolization, the origin of language, and animal and8

robot communication systems in general. One particular question that9

has attracted some interest has the following general form: how might a10

group of linguistic agents arrive at a shared communication system purely11

through local patterns of interaction and without any global agency enforc-12

ing uniformity? In this paper, we consider a natural model of language13

(or more precisely, word) evolution on a social network, prove several14

theoretical properties, and establish connections to related phenomena in15

biology, social sciences, and physics.16

keywords: Cognitive Science, Neuroscience, Learning Theory17

1 Introduction18

In recent times, there has been an increased interest in theories of language19

evolution that have an applicability to the study of dialect formation, linguistic20

change, creolization, the origin of language, and animal and robot communica-21

tion systems in general (see [11, 14, 7] and references therein). One particular22

question that has attracted some interest has the following general form: how23

might a group of linguistic agents arrive at a shared communication system24

purely through local patterns of interaction and without any global agency en-25

forcing uniformity? The linguistic agents in question might be humans, animals,26

or machines in a multi-agent society. For an example of interesting simulations27

that suggest how a shared vocabulary might emerge in a population , see Liber-28

man (2005) (other simulations are also provided by [18, 5, 1, 2, 19] among29

others). In this paper, we consider a generalization of Liberman’s model, prove30

several theoretical properties, and establish connections to related phenomena31

in biology, social sciences, and physics.32
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Our model is as follows. For simplicity, we consider how a common word33

for a particular concept might emerge through local interactions even though34

the agents had different initial beliefs about the word for this concept. For35

example agents might use the phonological forms “dog”,“kukur”, “farama” etc.36

to describe the concept of a canine animal. Thus we imagine a situation where37

every time an event in the world occurs that requires the agents to use a word to38

describe this event, they may start out by using different words based on their39

initial belief about the word for this event or object. By observing the linguistic40

behavior of their neighbors agents might update their beliefs. The question is -41

will they eventually arrive at a common word and if so how fast.42

1.1 Model43

1. Let W be a set of words (phonological forms, codes, signals, etc.) that44

may be used to denote a certain concept (meaning or message).45

2. Let each agent hold a belief that is a probability measure on W. At time46

t, we denote the belief of agent i to be b
(t)
i .47

3. Agents are on a communication network which we model as a weighted48

directed graph where vertices correspond to agents. We further assume49

that the weight of each directed edge is positive and that there exists a50

directed path from any node to any other. An agent (say i) can only51

observe the linguistic actions of its out-neighbors, i. e.nodes to which a52

directed edge points from i. We denote weight of the edge from i to j by53

Aij .54

4. The update protocol for the b
(t)
i as a function of time is as follows:55

(a) At each time t, each agent i chooses a word w = w
(t)
i ∈ W (randomly56

from to its current belief b
(t)
i ) and produces it. Let X

(t)
i , denote the57

probability measure concentrated at w
(t)
i . Since w

(t)
i is a random58

word X
(t)
i is correspondingly a random measure.59

(b) At every point in time, each agent can observe the words that their60

neighbors produce but they have no access to the private beliefs of61

these same neighbors.62

(c) Let P be the matrix whose ijth entry satisfies

Pij =
Aij∑n
k=1 Aik

.

At every time step, every agent updates its belief by a weighted
combination of its current belief and the words it has just heard, i.e.,

b
(t+1)
i = (1− α)b

(t)
i + α

n∑
j=1

PijX
(t)
j ,
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where α is a fixed real number in the interval (0, 1). We assume63

Aii = 0 for each i.64

At a time t, let the beliefs of the agents be represented by a vector

b(t) := (b
(t)
1 , . . . ,b(t)

n )T .

Similarly, let the point measures on words X
(t)
i be organized into a vector

X(t) := (X
(t)
1 , . . . , X(t)

n )T .

Then the reassignment of beliefs can be expressed succinctly in matrix form65

where the entries in the vectors involved are measures rather than numbers as66

b(t+1) = (1− α)b(t) + αPX(t). (1)

1.2 Remarks:67

1. If beliefs were directly observable and agents updated based on a weighted68

combination of their beliefs and that of their neighbors,69

b(t+1) = (1− α)b(t) + αPb(t), (2)

the system has a simple linear dynamics, where all beliefs converge to a70

weighted average of the initial beliefs. Thus eventually, everyone has the71

same belief (see [3] for pioneering work and [6] for a recent elaboration in72

an economic context.)73

2. Our focus in this paper is on the situation where the beliefs are not ob-74

servable but only the linguistic actions X
(t)
i are (and only to the immedi-75

ate neighbors). Therefore, the corresponding dynamics follows a Markov76

chain. The state space of this chain (defined by Equation 1) is the set of77

all n-tuples of belief vectors. Since this is continuous, the standard mixing78

results with finite state spaces do not apply directly.79

1.3 Results:80

Our main results are summarized below.81

1. With probability 1 (w.p.1), as time tends to infinity, the belief of each82

agent converges in total variation distance to one supported on a single83

word, common to all agents.84

2. w.p.1, there is a finite time T such that for all times t > T , all agents85

produce the same fixed word.86

3. The rate at which beliefs converge depends upon the mixing properties of87

the Markov chain whose transition matrix is P .88
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4. The rate of convergence is independent of the size of W. One might think89

that a population where every agent has one of two words for the concept90

would arrive at a shared word faster than one in which every agent had a91

different word for the concept. This intuition turns out to be incorrect.92

5. The proof of these results exposes a natural connection with coalescent93

processes and has a parallel in population genetics.94

6. Our analysis brings out two different interpretations of the behavior of a95

linguistic agent. In the most direct interpretation, the agent’s linguistic96

knowledge of the word is internally encoded in terms of a belief vector.97

This belief vector is updated with experience. In a second interpreta-98

tion an agent’s representation of its linguistic knowledge is in terms of a99

memory stack in which it literally stores every single word it has heard100

weighted by how long ago it heard it and the importance of the person101

it heard it from. Such an interpretation is consistent with exemplar the-102

ory An external observer looking at this agent’s linguistic actions will not103

be able to distinguish between these two different internal representations104

that the agent may have.105

2 Convergence to a Shared Belief: Quantitative106

results107

We will define an auxiliary markov Chain to model the exemplar based view of108

the evolution of the memory stack. We require the original n states S corre-109

sponding to agents and an additional n states Ŝ to model whether a word was110

uttered at time t, or was embedded in the memory of some agent at that time.111

Let P̃ be the transition matrix on the state space S̃ = S ∪ Ŝ, where for
i, j ∈ S := {1, . . . , n} and Ŝ = {1̂, . . . , n̂}.

P̃ (i → j) = P̃ (̂i → j) = αPij ,

P̃ (i → î) = P̃ (̂i → î) = 1− α.

Definition 1. Let Tmix(ϵ) denote the mixing time of P̃ , defined as the smallest
t for which, for each specific choice of v, w ∈ S̃,∑

u∈S̃

|P̃ (t)(v → u)− P̃ (t)(w → u)| < ϵ.

Here P̃ (t)(b → c) denotes the probability that a Markov Chain governed by P̃112

starting in b lands in c at the tth time step.113

The following is the main result of this paper.114

115
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Theorem 1. 1. The probability that all agents produce the same word at116

times T, T + 1, . . . tends to 1 as T tends to ∞. More precisely, if117

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,

then118

P[∀t≥T
u∈S

Xt
u = XT

1 ] > 1− MnTe−
T
τ

1− e−
T
τ

. (3)

2. As time t → ∞ all produced words converge (almost surely) to a word
whose probability distribution is

n∑
i=1

πib
(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the Markov chain whose119

transition matrix is P .120

2.1 A Model of Memory121

Let B(t) denote the vector of belief measures corresponding to agents 1 to n122

at time t. The evolution of the B(t) is a Markov chain. It can be seen that123

its only absorbing states are of the form (b
(t)
1 , . . . ,b

(t)
n )T , where ∀i,b(t)

i = δw,124

and δw is the point measure concentrated on some word w ∈ X. Formally, δw125

is the measure on W, which assigns to a measurable set A the measure δw(A)126

according to the following rule.127

δw(A) = 1 If w ∈ A

= 0 otherwise.

Therefore, if the Markov Chain were finite, a simple argument would suffice.128

In our case however, we have a Markov Chain whose state space is (possibly)129

uncountably infinite. Thus in principle, its dynamics could be hard to analyze.130

Our proof is based on coalescent processes, which have also been extensively131

used to study biological evolution [8, 10]. In analyzing the evolution of beliefs,132

we trace the origin of words backwards in time and find that all surviving words,133

are copies of a single word produced at some point in time sufficiently far in the134

past. Observe that if the process had begun at time 0, the beliefs at time t+ 1135

would be given by the formula below, which is obtained iteratively.136

Observation 1.

B(t+1) =

t∑
i=0

α(1− α)iPX(t−i) + (1− α)t+1B(0). (4)
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X(t) = (X
(t)
1 , . . . , X

(t)
n )T is a random vector whose entries are point mea-137

sures, where X
(t)
i = δ(w

(t)
i ) and w

(t)
i is chosen from the measure b

(t)
i on X,138

independent of the choice of other coordinates of the vector X(t). This observa-139

tion, motivates a model of memory that we define in the following paragraph.140

Let each agent’s memory be modeled as a stack. At the top level of the stack141

of agent i are all the words heard at time t. Below this are all words heard at142

time t− 1 and so on tracing backwards in time until the first words heard at an143

initial time 1. At the lowest level, corresponding to time 0, is the initial belief144

b
(0)
i which is a probability distribution on the set of words. We may imagine145

this to be a form of vestigial memory.146

Let agent j be adjacent to agent i. We shall describe the process by which

agent j produces wordXj(t). Let Sj be the stack held by agent j, and S
(t)
j , . . . , S

(0)
j

be the levels in its stack from top to bottom. After j produces Xj(t), i places
Xj(t), and all other Xj′(t) produced by neighbors of i at time step t on the top
of its stack. In order to describe the mechanism by which Xj(t) is generated,
let us introduce a binomial random variable Y where

P[Y = i] = α(1− α)i.

If Y ≤ t − 1, Xj(t) is chosen to be the word produced by j′ at time t − 1 − Y147

(which is stored in St−1−Y ) with probability Pjj′ . If Y ≥ t, Xj(t) is chosen from148

the distribution in b
(0)
j . This process has been illustrated in Figure 2.1. Note149

that in this model words are formal objects. While any two words present in the150

stack positions S
(t)
j for t = 1, 2, . . . are considered distinct, there is a natural151

“parent-child” structure existing on the set of words. Under this scheme, let152

the probability distribution of X
(t)
i be denoted b̃

(t)
i . Denoting by B̃(t) the vector153

(b̃
(t)
1 , b̃

(t)
2 , . . . , b̃

(t)
n ).154

Observation 2. A direct computation shows that in the model just described155

B̃(t+1) =
t∑

i=0

α(1− α)iPX(t−i) + (1− α)t+1B̃(0). (5)

This along with the fact that the randomness used in the generation of X
(t)
j156

is independent of the randomness in the generation of all other words, tells us157

that the model of memory just described results in a system with the same158

dynamics as that introduced earlier. This particular model of memory may be159

viewed as an implementation of the ideas implicit in exemplar based accounts160

of linguistic behavior.161

3 Proofs162

By observations 1 and 2, in order to obtain an upper bound on P[X(t1)
i ̸= X

(t2)
j ],163

it is sufficient to trace the ancestry of both words backwards in time and show164

that the probability that they do not have a common ancestor is small. Our165
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1 2 3 4

X
(t+2)
2X

(t+2)
1

X
(t+1)
1

X
(t+2)
3

X
(t+2)
4

X
(t+1)
3 X

(t+1)
4X

(t+1)
2

t + 1

t + 2

t
a, b, c α, β, γ d, e, f δ, ǫ, ρ

a, b, c α, β, γ d, e, f δ, ǫ, ρ

a, b, c α, β, γ d, e, f δ, ǫ, ρ

α

α

b, f ρ, α f

b, f ρ, α f

f α, α f, f α

Figure 1: A coalescent process obtained by tracing the origin of words backwards
in time, and the associated memory stacks of agents 1 to 4 for time steps t to
t+ 2. Each agent produces α at time t+ 2 due to coalescence to a single word
α produced by agent 2 at time t.

results are best stated in terms of the coalescence time of a set of random166

walks. In Figure 2, we illustrate how the path tracing the origin of a word167

backwards in time can be encoded as a Markov chain on a state space S ∪ Ŝ =168

{1, . . . , n, 1̂, . . . , n̂}. We use the states 1̂, . . . , n̂ as additional “memory” states.169

Observation 3. Since the random variable Y introduced in section 2.1 can be170

interpreted as the length of a run of heads in a biased coin (whose probability of171

coming heads is 1− α), we can account Y using additional memory states.172

We define a variant of the meeting time between two Markov Chains as173

follows. Let u, v ∈ S ∪ Ŝ.174

Definition 2. For t ≥ 0, let Yt and Zt be two independent random walks175

on S ∪ Ŝ each of which has P̃ as its transition matrix and have initial states176

Y0 = u,Z0 = v. For ∆ > 0, let Muv(∆) be the smallest time t > 0 for which177

Yt+∆ = Zt ∈ S.178

Theorem 1. 1. The probability that all agents produce the same word at179

times T, T + 1, . . . tends to 1 as T tends to ∞. More precisely, if180

τ = (4n/α2)Tmix(
α

4
) ln(4n/α2)

M = e,

then181

P[∀t≥T
u∈S

Xt
u = XT

1 ] > 1− MnTe−
T
τ

1− e−
T
τ

. (6)
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1 2 3 4

1̂ 2̂ 3̂ 4̂

1 2 3 4

1̂

1

1̂

1

2̂

2

2

2̂ 3̂

3

4̂

4

3

4̂

4

3̂

X
(t+3)
2

X
(t+2)
3

t

t + 1

t + 2

t + 3

X
(t)
2

Figure 2: The ancestry of X
(t+3)
2 has been traced backwards in time to X

(t)
2 .

On the right,is an encoding of this path in terms of the transitions in a Markov
Chain with “auxiliary states” 1̂, . . . , n̂. 3̂ is occupied at time step t+ 1 because
the agent 3 produced a word at a time t+ 2 from past memory.

2. As time t → ∞, all produced words converge (almost surely) to a random
word chosen from the probability distribution

n∑
i=1

πib
(0)
i ,

where (π1, . . . , πn) is the stationary distribution of the Markov chain whose182

transition matrix is P .183

Proof. To prove the first part, we observe that

P
[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]

≤
∞∑
j=1

(
P[XjT

1 ̸= X
(j+1)T
1 ] +

T−1∑
k=0

n∑
u=1

P[XjT+k
u ̸= XjT

1 ]

)
by the union bound. The following application of Lemmas 1 and 2 completes184

the proof.185

P
[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]

≤
∞∑
j=1

(
P[XjT

1 ̸= X
(j+1)T
1 ] +

T−1∑
k=0

n∑
u=1

P[XjT+k
u ̸= XjT

1 ]

)
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≤
∞∑
j=1

(
P[M11(T ) ≥ jT ] +

T−1∑
k=0

n∑
u=1

P[Mu1(k) ≥ jT ]

)

≤ MnTe−
T
τ

1− e−
T
τ

,

where M and τ are the constants that appear in Lemma 2.186

To prove the second part, we use the linearity of expectation to show that187

the expected value of the beliefs follows a simple rule. Namely188

Eb(t+1) = (1− α)Eb(t) + αPEX(t)

= ((1− α)I + αP )Eb(t)

= . . .

= ((1− α)I + αP )t+1Eb(0).

By well known results on Markov chains,

lim
t→∞

((1− α)I + αP )t = (1, . . . , 1)T (π1, . . . , πn),

where πi is the stationary probability of the state i under the chain P . Therefore,
for each j,

lim
t→∞

Eb(t)
j =

n∑
i=1

πib
(0)
i ,

By the first part of this theorem, as t → ∞, b(t) converges almost surely to
a measure that is concentrated on a single common word w. Given a signed
measure µ, let

|µ| = sup
∥f∥∞≤1

∫
fdµ.

Then,189

∣∣E[δw]− E[XT
i ]
∣∣ ≤ P

[
¬
(
∀t≥T
u∈S

Xt
u = XT

1

)]
≤ MnTe−

T
τ

1− e−
T
τ

,

It follows that this common word w must have the distribution
∑n

i=1 πib
(0)
i .190

191

Lemma 1. The probability that the word produced by agent u at time step t1
is different from that produced by agent v at time step t2 greater than t1 can be
bounded from above as follows.

P[X(t1)
u ̸= X(t2)

v ] ≤ P[Muv(t2 − t1) ≥ t1].
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Proof. In the model of memory introduced in section 2.1 we described a parent-192

child relationship between words, where a child word is identical to a parent193

word. The evolution of the Markov chain defined in this section corresponds194

to the genealogy of a word. The event that the words X
(t1)
u and X

(t2)
v have a195

common ancestor produced at some time ≥ 0 is the event that Muv(t2−t1) ≤ t1.196

The lemma follows from the fact that two words that have a common ancestor197

are the same.198

Lemma 2. The random variable Muv(∆) has an exponential tail bound uniform
over u, v and ∆. More precisely, there exist constants M, τ > 0 independent of
u, v and ∆ such that

P[Muv(∆) ≥ T ] < Me−
T
τ .

(In fact, this is satisfied for τ = 4n
α2Tmix(

α
4 ) ln

(
4n
α2

)
and M = e.)199

Proof. The stationary measure µ̃ satisfies for each i, the identity αµ̃(̂i) = (1 −200

α)µ̃(i).201

Let τ1 = Tmix(
α
4 ) ln(

4n
α2 ). Let us denote by qu(i) the probability P[Zτ =202

i
∣∣Z0 = u]. Then,203

sup
u,v

P[¬(Yτ+∆ = Zτ ∈ S)
∣∣Y∆ = u,Z0 = v]

= 1− inf
u,v

∑
i∈S

qu(i)qv(i)

≤ 1− inf
u,v

∑
i∈S

min(qu(i), qv(i))
2

≤ 1− inf
u,v

(
∑

i∈S min(qu(i), qv(i)))
2

n

≤ 1− α2

4n
.

Now, using the Markov property and conditioning repeatedly, we see that

P[Muv(∆) ≥ T ] ≤ P[¬(Y∆ = Z0 ∈ S)]×

⌊ T
τ1

⌋∏
i=1

sup
u,v

P[¬(Y∆+iτ1 = Ziτ1 ∈ S)
∣∣

(Y∆+(i−1)τ1 , Z(i−1)τ1) = (u, v)]

≤ P[¬(Y∆ = Z0 ∈ S)]

⌊ T
τ1

⌋∏
i=1

(1− α2

4n
)

≤
(
1− α2

4n

) T
τ1

−1

≤ e1−
T
τ .
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where

τ =
4n

α2
Tmix(

α

4
) ln

(
4n

α2

)
,

which proves the Lemma.204

3.1 Concluding Remarks205

The general theme of predicting the macroscopic behavior of a system from the206

local behavior of its microscopic components arises in many different areas of207

physics, biology, and the social sciences. It is also a fundamental issue in the208

analysis of distributed systems in computer science.209

In Spin systems, which originated as models for Ferromagnets, atoms are210

pictured to be in a 2-Dimensional square array, each possessing a spin “up” or211

“down.” The effect that an atom has on the spin of a neighbor is a function212

of temperature. Typically, coherence is observed at low temperatures, while213

at high temperatures atoms tend not to align, which is in agreement with the214

demagnetization that ferromagnets undergo at high temperatures. The model215

we consider, involving the convergence in beliefs has many high level similarities216

though we do not address the question of what might be the analog of tempera-217

ture in our model, how to take the thermodynamic limit, and if and how phase218

transitions may arise.219

Another closely related model is the voter model studied in probability the-220

ory with its origins in the social sciences. Each agent lives on the vertex of221

the graph, has a belief which is a discrete variable, and is observable to its222

neighbors. Each agent changes its belief with a certain probability based on223

the observed beliefs of its neighbors. Another kind of belief propagation model224

is that described by Jackson (2007). In both cases, the beliefs are observable225

in contrast to our setting. Our communication graphs model the pattern of226

local interaction among agents and may arise through modes of social network227

formation studied in the field of social network theory [12].228

Linear update rules are often used in distributed systems, to achieve coher-229

ence among different agents or to share knowledge gathered individually. In230

a model that has been intensively studied, a number of sensors form a net-231

work, each of which measures a quantity such as temperature [3]. Neighbors232

communicate during each time step and make linear updates in a synchronous233

or asynchronous manner. The rate at which consensus is attained is studied.234

There is also a related body of work on Coordination and Distributed Control.235

A model of flocking has been considered in [4], where a group of birds, have236

a certain initial velocity, and the evolution of their velocities is governed by a237

differential equation wherein each bird modifies its velocity to bring it closer to238

that of its neighbors. The update rule involves a graph Laplacian. Some results239

are derived concerning the initial conditions that result in flocking behavior.240

There are two connections to evolutionary theory that are worth mention-241

ing. First, our proof of convergence exposes a natural coalescent process over242

words. Coalescent processes are, of course, widely used in modeling and making243

inferences about genetic evolution [8, 10]. Second, researchers have considered244
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game-theoretic models of evolution [9] and more recent research in this tradition245

has addressed evolutionary games on graphs [16, 13, 17]. The question of how246

agents may learn an appropriate strategy for a coordination game on a graph247

has many high level similarities to the problem studied in this paper.248

Finally, there have been a large number of models on achieving coherence249

in a linguistic population. Many of these rely on simulations. Among mathe-250

matical studies, two strands are worth noting. The model of language evolution251

proposed in has many similarities with languages of agents evolving on a graph.252

But it is worth noting that in that model, if at each time step, the number of lin-253

guistic examples (observations) collected by each agent is bounded from above254

by a constant (independent of time), the community fails to achieve a consen-255

sus language. A second strand is the collection of results obtained in [15, 11].256

While there are many synergies with that body of work, there is nothing that257

is directly comparable.258
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