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Abstract

We draw on the observation that the amount of heat diffusing outside of a heated body
in a short period of time is proportional to its surface area, to design a simple algorithm for
approximating the surface area of a convex body given by a membership oracle. Our method
has a complexity of O*(n*), where n is the dimension, compared to O*(n®) for the previous best
algorithm. We show that our complexity cannot be improved given the current state-of-the-art
in volume estimation.

1 Introduction

An important class of algorithmic questions centers around estimating geometric invariants of
convex bodies. Arguably, the most basic invariant is the volume. It can be shown (see [6], [1])
that any deterministic algorithm that approximates the volume of a convex body within a constant
factor in R"™, needs time exponential in the dimension n. Remarkably, randomized algorithms turn
out to be more powerful. In their pathbreaking paper [4] Dyer, Frieze and Kannan gave the first
randomized polynomial time algorithm to approximate the volume of a convex body to arbitrary
accuracy. Since then a considerable body of work has been devoted to improving the complexity of
volume computation culminating with the recent best of O*(n*) due to Lovdsz and Vempala [15].

Another fundamental geometric invariant associated with a convex body is surface area. Esti-
mating the surface area was mentioned as an open problem by Groétschel, Lovéasz, and Schrijver in
1988 [13]. Dyer, Gritzmann and Hufnagel [5] showed in 1998 that it could be solved in random-
ized polynomial time. The primary focus of their paper was to establish that the computation of
surface area and certain other mixed volumes was possible in randomized polynomial time, and
they assumed access to oracles for §-neighborhoods of the convex body. They did not discuss the
complexity of their algorithm given only a membership oracle for the convex body. Below, we
indicate an O*(n®) analysis of their algorithm in terms of the more restricted queries.

In this paper we develop a new technique for estimating volumes of boundaries based on ideas
from heat propagation. The underlying intuition is that the amount of heat escaping from a hot
object in a small interval of time is proportional to the surface area. This idea can also be used
to estimate the volume of a hypersurface possessing a tubular neighborhood of a given thickness.
This corresponds to the hypersurface having a given "reach”, where the reach of the hypersurface
is defined as the largest number ¢ such that any point at a distance atmost ¢ from the hypersurface
has a unique nearest point on the hypersurface. Details of this procedure may be found in [19].

*This is a journal version of a conference paper [2] which appeared in FOCS 2006
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It turns out that this intuition lends itself to an efficient randomized algorithm for computing
surface areas of convex bodies, given by a membership oracle. In this paper we describe the
algorithm and the analysis of the algorithm, proving a complexity bound of O*(n*). The O*(-)
notation hides the polynomial dependence on the relative error €, and poly-logarithmic factors in
the parameters of the problem. Since, as will be shown below, surface area estimation is at least as
hard as volume approximation, this bound is the best possible, given the current state-of-the-art
in volume estimation.

We note that this bound cannot be obtained using methods previously proposed in [5] due to a
bottleneck in their approach. The method in [5] exploited the fact that vol(K + Bd) is a polynomial
in §, where B¢ is a ball of radius  and the Minkowski sum K + B corresponds to the set of points
within a distance 0 of K. The surface area is the coefficient of the linear term, which their method
estimated by interpolation. However, in a natural setting, we only have access to a membership
oracle for K, but not for K 4+ Bd. Therefore a membership oracle for K 4+ B¢ has to be constructed,
which as far as we can see, requires solving a quadratic programming problem on a convex set.
Given access only to a membership oracle, the best algorithm to handle this task is due to Lovéasz
and Vempala, and makes O*(n®) oracle calls [16], which gives a bound on the complexity of the
algorithm in [5] that is O*(n®).

Even with a stronger separation oracle the complexity of the method in [5] for computing
mixed volumes (and hence, in particular, surface area) is O*(n®), since the associated quadratic
programming problem for computing the surface area requires O*(n) operations (see [22], [3].) On
the other hand, the complexity of our method is O*(n*) using only a membership oracle, matching
the complexity of the volume computation of Lovész and Vempala [15].

1.1 Preliminaries

Throughout this paper, B will denote the unit n-dimensional ball, K will denote an n-dimensional
convex body such that rB C K C RB. S = vol(0K) will denote the surface area of K and
V = vol(K), its volume. We will denote the points in R" by x,y, etc, and n—dimensional volume
elements in integrals by dvol;, dvol,, etc.

Definition 1.1. We denote the set of points within a distance 6 of a convex body K (including
K itself) by Ks. This is called the outer parallel body of K and is convexr. The set of points at a
distance > ¢ to R™\ K shall be denoted K_5. This is called the inner parallel body of K and is

convex. For any body K, we denote by 0K, its boundary.

Given z € K, let H, be a closest half-space to « not intersecting K \ K. For y ¢ K define H,
to be the half-space farthest from y containing K.

Definition 1.2. Let
e~ llz—yll*/4t

(4mt)"™/?

F = \/?/ / Gy(z, y)dvolydvol,.
t Jr Jro\K

Observation 1.1. If x € 0K _5 then the distance between x and H, is §. If y € 0Ky then the
distance between y and Hy is 0.

Gt(x, y) =

and

Definition 1.3. Let

1—Eﬁ<§%>

e(t,0) = 5



Figure 1: Points z and y and corresponding half-spaces H, and H,

where Erf is the usual Gauss error function, defined by

2 # 2
Erf(z) := / e " dx.
VT Jo
Observation 1.2. Let x € 0K 5, and y € 0Ks. Then,

/ Gi(z,y)dvol, = e(t, )
Hy

and

Gi(z,x)dvol, = e(t, )
Hy

The volume of Ky is a polynomial in §, given by the Steiner formula (see page 197, [21].)
vol(Ks) =ag+ -+ + (n) aid" + - 4 apd".
i

The coefficients a; satisfy the Alezandrov-Fenchel inequalities (see page 334, [21],) which state that
the coefficients a; are log-concave; i. e. a? > aj—qai41 for 1 <i<n—1.

Definition 1.4. The surface area vol(OK) of an arbitrary convex body K is defined as
. volKg5 — volK
lim ——.
6—0 1)

It follows from the Steiner formula that this limit exists and is finite. It is a consequence of
Lemma 5.2 that the so defined surface area for an inner parallel body vol(0K _s) is a continuous
function of 4. For an outer parallel body, the Steiner formula implies that vol(0Kj) is a polynomial
in 4.

2 Hardness of estimating Surface Area

The problem of estimating the surface area of a convex body is at least as hard as that of estimating
the volume.

Proposition 2.1. If the surface area of any n-dimensional convex body K can be approrimated in
O(nﬁpoly/og(%)poly(%)) time, the volume can also be approzimated in O(nﬁpoly/og(%—f)poly(%))
time, where § is the probability that the relative error exceeds €.

The proof of this proposition will require the following lemma due to Wills (Lemma 1, [24])

Lemma 2.1. Let K contain a ball of radius r;,. Then,

rin V.
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Figure 2: volume of the base and surface area of the cylinder.

Proof of Proposition 2.1. Given a convex body K, rB C K C RB let C(K,h) := K x [0, h].
It is true for any h > 0 that

vol K — vol OC(K,h) — hvol 8K'

By Lemma 2.1, it follows that for h = <",

vol(K)

VoK) 1
hvol(0K) ~ €

Therefore,

vol 8C(K, h)

vol K < < (14 ¢€)vol K.

Therefore algorithm that could approximate the surface area of C'(K,h) can also be used to ap-
proximate the volume of K, with the same polylogarithmic dependence on the relevant parameters.
This completes the proof. ]

Thus an efficient algorithm for surface area estimation would also lead to an almost equally
efficient algorithm for estimating the volume.

3 Overview of the algorithm

Our approach provides an estimate for the isoperimetric ratio % Using the fastest existing al-

gorithm for volume approximation, we obtain a separate estimate for V. Multiplying these two
estimates yields the surface area S.

The underlying intuition of our algorithm is that the heat diffuses from a hot body through its
boundary, and the amount of heat escaping in a short period of time ought to be proportional to

the surface area of the object. Recalling that a point source of heat diffuses at time ¢ according to
[T

the Gaussian distribution WefT leads to the following informal description of the algorithm
T

(see details in Section 4):

Step 1. Take x1,...,x N to be samples from the uniform distribution on K, where N will be chosen
to be O(n).

Step 2. For each x;, let y; = x; + v;, where v; is sampled from the Gaussian distribution with

ll||? : . . .
4~ for some appropriate value of t. Thus y; is obtained from z; by taking a

density W e~

random Gaussian step.

Step 3. Let N be the number of y’s, which land outside of K. Note that %\/? is an estimate for
S

7.
Step 4. Using an existing algorithm, produce an estimate V' for the volume. Estimate the surface

r N T
area as Vﬁ\/;



We will show that that each of the Steps 1,3,4 can be done using at most O*(n*) calls to the
membership oracle'. Step 2, of course, does not require any calls to the oracle at all.
The main technical result of this paper is to show how to choose values of ¢ and NV, such that

(1—6) (5 fr) <%<(1+e) <f/ i)

It is not known how to efficiently obtain independent random samples from the uniform dis-
tribution on K. We show how to relax this condition and use almost independent samples from a
nearly uniform distribution instead, to derive these estimates.

We then apply certain results from [14] and [15], to generate O (%) such samples making at

most O* (’Z—j) oracle calls.

Putting these and some additional observations together, we obtain the following theorem which
is the main result of this paper:

Theorem 3.1 (Main Theorem). The surface area of a convex body K, given by a membership
oracle, and parameters r, R such that rB C K C RB can be approximated to within a relative error
of € with probability 1 — § using at most

1/1 n R 1 n
4 9 8 7
O(n logg <62 log ;—l—log nlog?—ke—glog (e>>>
i.e. O*(n*), oracle calls.

The number of arithmetic operations is O*(n%), on numbers having polylogarithmic (in n)
number of digits. This is the same as that for volume computation in [15].

4 Algorithm to compute the surface area

4.1 Notation and Preliminaries

Definition 4.1. A body K is said to be in t-isotropic position if, for every unit vector u,
1
e / (7 (z — 7))2dvol, < 1,
t K

where T is the center of mass of K.

Let p be the uniform measure on convex body K. We call a random point x (which in our case
is produced by a random walk based algorithm) e-uniform if

sup |P(z € A) — p(A)| <

measurable ACK

N ™

Two random variables will be called p-independent if for any two Borel sets A and B in their
ranges,
|IP(X € A Y € B)— P(X € A)P(Y € B)| < pu.

We define the £2 norm of a distribution 7 with respect to the uniform distribution (denoted p) on

K to be
dn 2
Nl = /(—1) dp.
Il \/ (5

Tt is customary to count the number of oracle calls rather than the number of arithmetic steps in the volume
literature, while measuring the complexity.




A consequence of the results on page 4 of [15], and Theorem 7.2 of [23] is the following. Suppose
we are given a starting point that is sampled from an e-uniform distribution possessing £2 norm
bounded above by an absolute constant. Then, there is a random walk based algorithm that uses
o(n? In” %) oracle calls per point for generating N points x1,...,zy that are e-uniform with the
further property that each pair is p-independent from a convex body that is 2-isotropic. This fact
plays a crucial role in allowing the surface area algorithm to have a complexity bounded by O*(n*).

In the remainder of the paper, we frequently need to integrate by parts expressions of a certain
kind. Therefore we collect some pertinent formulae below. Let f(x) be any continuous function
having no more than exponential growth, i.e.

s ) @
Then, o
froscas- (f o[ (o) (fees)s
Let
elt,6) = N(t,9), 3)
N(t,8) = e (4)

Vart
Thus from (2), we have the following.

/f tédd—[(/fd’d(S) té)} +/ </f dé) N(t, 5)d6. (5)

The first term disappears, since e(t,d) tends to 0 super-exponentially as § — co. Therefore

/D T F(0)elt, 0)do = /0 h ( /0 ' f(é’)dé’) N(t, 8)ds. (6)

We present an algorithm below that outputs an e-approximation to the surface area of a convex
body K with probability > 3/4. Running it [36 In (%)1 times and taking the median of the outputs
gives the result with a confidence > 1 — §.

4.2 Algorithm

Input: Convex body K, given by a membership oracle, and parameters r, R such that rB C
K C RB and an error parameter € < 1.
Output: An estimate S , that with probability > 3/4 has a relative error of less than e with respect
to S.

Set € 8’ Hi= 21;227 N := [22/3;,”-‘

Step 1. Run the a volume algorithm to obtain an estimate V of V that has a relative error ¢
with probability > 13
Step 2 Generate a linear transformation 7' given by a symmetric positive-definite matrix such that
TK is 2-isotropic with probability > %




71

Step 3 Compute a lower bound r’ to the smallest eigenvalue rop: of 73

that satisfies %ropt <1 < Topt. Set 1y, = max(r, 7).

Step 4 Set V1t := %.

Step 5 Generate N random points xa, ...,z N from K, such that with probability 15/16, they are
&%—uniform and each pair {z;,z;} for 1 <i < j < N is p-independent.

Step 6 Generate N independent random samples vy, ...,vy from the spherically symmetric mul-
tivariate Gaussian distribution with mean 0 and variance 2nt.

Step 7 Let N := |{i|lz; + v; ¢ K}| be the number of times z; 4+ v; lands outside of K.

Step 8 Output %\/?V

4.3 Analysis of the Run-time
Step 1 takes at most

4 R
O <n2 log? n +n*log®nlog >
€ € r

oracle calls, using the volume algorithm of Lovdsz and Vempala [15]. The number of steps in the
computation is O*(n%).

Step 2 Such a transformation is obtained during the execution of the volume algorithm from [15]
for no additional cost.

Step 3 takes O(n?) steps of computation [20].

Step 4 takes O(1) steps.
4
2 o0’ (2
© <e3 log (e )>

Step 5 takes

steps of computation (including oracle calls) once a point x; is obtained that is %—umiform, and
has a distribution whose £2 norm is bounded above by a constant. Such a point can be obtained
from the algorithm in step 1, for no additional cost up to constants. The cost mentioned in this
step is incurred because we are required to generate O(Z) random points given the initial random
point z; and the time per point is O(n? In” ). This last fact follows from the complexity per point
mentioned on page 4 [15], and theorems 7.1 and 7.2 of [23].

Step 6 and Step 7 take O (Z—ggpolylog%> steps each, assuming that a sample from univariate

Gaussian distribution can be obtained upto O(polylog(%)) digits in O(polylog(Z5)) steps.
Step 8 takes O(1) steps. Finally, to obtain the approximation with a confidence > 1 — §, this
algorithm must be run O (log (%)) times. Therefore the overall cost in terms of oracle calls is

1 /1 1
0O <n4 log — <2 log” n +log® nlog R += log” (n)))
6 \ € € T € €

i.e. O*(n%) oracle calls. The number of arithmetic operations is O*(n®), on numbers with a
polylogarithmic number of digits. This is the same as that for volume computation in [15]. That
the estimate S of the surface area S output by the algorithm in Step 8 lies in [(1 — €)S, (1 + €)S]
with probability at least 1 — ¢ is the content of Theorem 3.1.

5 Proof of the main theorem

In order to prove our main theorem, we require two propositions. The first, Proposition 5.1, states
that F} is a good approximation for the surface area S. The second, Proposition 5.2, states that



the empirical quantity S (an estimate of S) computed by the surface area algorithm is likely to be
an e-approximation of F} with probability > 3/4.

As in the surface area algorithm, let T be a linear transformation such that TK is 2-isotropic.
Let 7’ be a lower bound to the smallest eigenvalue rp of L \f , that satisfies fropt <1 < ropt. Set

Tin := max(r,r’).

Proposition 5.1 (Relating surface area S to normalized heat flow F}). Let v/ = < S and € < 1/2.
Then,
1-€)S<F < (1+¢€)S.

Proof of Proposition 5.1. We begin by lower bounding vol(0K_5) and upper bounding vol(Kj).
These objectives are achieved in Lemma 5.2 and Lemma 5.3. Lemma 5.4 bounds F; above by a
function of the vol(0Kjy) and below by a function of vol(0K _g5). Lemma 5.5 puts Lemmas 5.2, 5.3
and 5.4 together into one upper and one lower bound on F; that involve more convenient quantities.
In Lemma 5.6, we prove a bound on % in terms of r;,. This together with Lemma 5.5 yields the
desired proposition. The following fact is known (page 284, [21]) and will be useful in the proof of

Lemma 5.2.

Lemma 5.1. The surface area of a convex body is less than or equal to the surface area of any
convex body that contains it.

Lemma 5.2. 5
vol(OK _g5) > (1 - n) vol(0K)
Tin

Proof. Let O be the center of the sphere of radius r;, contained inside K. We shall first prove that
K_; contains (1 — —)K where this scaling is done from the origin O. Let A be a point on 0K and
let I’ be the image of A under this scaling. It suffices to prove that F € K_s.

We construct the smallest cone from A containing the sphere. Let B be a point where the cone
touches the sphere. We have OB = r;,. Now consider the inscribed sphere centered at F. By
similarity of triangles, we have

CP _ AF
OB A0’
Noticing that AF = rf
AF
CF =0B 10 = =4.

We thus see that the radius of the inscribed ball is § and hence the d-ball centered in F' is contained
in K. Therefore, F € K_5. Therefore by Lemma 5.1,

0
vol(OK _s5) > vol ((1 -—) 8K> . (7)
Tin
Since the volumes of n — 1-dimensional objects scale as n — 1** powers and observing that for z < 1,

max{0, (1 — )" '} > 1 — nx, we see that

vol ((1 - i) 8K> =(1- i)”_1 vol(0K) > (1 — n—(s)vol((?K)

Tin Tin Tin



Figure 3: K_;s contains (1 -0 ) K

Tin

Lemma 5.3. The following bounds on the volume and surface area of the outer parallel bodies K
hold.

vol(Ks5) <V exp (55) .

vol(0Ks) < S exp (55) .

Proof. The volume and surface area of Kj are polynomials in d, given by the Steiner formula (see
page 197, [21].)

vol(Ks) = Z} <"Z> a;o", (8)

and

vol(9K;) = zn: i (’Z) ;oL 9)

=1

From the Alexandrov-Fenchel inequalities (see Subsection 1.1) the coefficients a; are log-concave;
i.e.

As a result

Note that ag is V, the volume of K while na; is the surface area S of K. We thus have

vol(Ks) < ag (f: <7z> (2)5)) < VeV, (10)

1=0

vol(8Ks) < ay Cl Z(:L) <aaf>_l> < Se¥V. (11)

2

and



Lemma 5.4.

\ﬂ /6 . vol(OK _s)e(t,6)dd < F; < \ft /5 . vol(0Ks)e(t, 8)dd. (12)

Proof. We will denote the points in R" by x, y, etc, and n—dimensional volume elements in integrals

by dvol,, dvol,, etc. We have
T
\/>/ / G(z,y)dvolydvol, (13)
t Jx Jro\K

ﬁ /K e(t, dist(x, OK))dvol,, (14)

/ Gy(x,y)dvol, > / Gi(z,y)dvol, = e(t,6).
R\ K H,

because for a fixed z € 0K _g,

The coarea formula [7] states the following.
Let Q be a domain in R”. Let g € L' and u be a real-valued Lipschitz function on €. Then,

— > T n—1 T
| s@v @i, = [ ( [, s )) . (15)

Here H,,_1 is the n — 1 dimensional Hausdorff measure.

In particular, if g is constant on u~!(#) and (abusing notation) takes value g(u~!(t)), this
simplifies to

[ s@Iv@)@avol, = [ g () H w7 () (16)
Q —00

Let © be the interior of K and wu(z) = dist(z,0K), and g(x) = e(t,dist(x,0K)). Then u is
1—Lipshitz because of the triangle inequality applied to Hausdorff distance: for any z,y € R,
|u(z) —u(y)| = |dist(z, 0K ) —dist(y, 0K)| < |z —y|. Therefore u is differentiable almost everywhere
by Rademacher’s Theorem. Suppose that u is differentiable at a point « € €2. Then, because u has
a gradient at x, there is a unique point z in 0K nearest to . However for y in a small neighborhood
of x, u(y) < |y —z|, and u(x) = |x — z|. Since the gradient of f,(y) := |y — z| for y = z is the vector
(x — z)/|x — z|, which has norm 1, this proves that

[V (u)(2)] = 1,
which together with the 1—Lipschitz condition implies that
V(u)(z)| = 1. (17)

By (16) and (17), we have

\/>/ (t,dist(x,0K))dvol, \/>/ vol(OK _s)e(t, d)dd. (18)

By the same token for a fixed y € 0K

/ Gi(x,y)dvol, < Gi(x,y)dvol, = e(t,0)
K H,

10



The following equality is obtained from the coarea formula in a similar manner. This time ) =

R™\ K and u(x) = dist(z,0K), and g(z) = e(t, dist(z,0K)).

7r/ e(t, dist(z, 0K))dvol, \/>/ vol(0K5)e(t, d)dod.
t Rn\K

Proceeding as before, we have the upper bound

F; < \/?/ vol(0K)e(t, 6)do.
t Js>0

In order to provide some intuition for Lemma 5.5 we first show the following.

Claim 5.1. limy_,o F; equals the surface area S of K.
Proof. By Lemma 5.1, Lemma 5.2 and Lemma 5.3, we see that
max(|vol(Ks) — S|, [vol(K_5) — S|) < exp(Ckd) — 1

for some constant C'x that depends only on K but not §. By Lemma 5.4 and (20),

\f/ (exp(Cd) — 1))e(t, §)ds < F, < \f (S + (exp(C8) — 1))e(t, 5)do.
>O >0

Thus
T T
F — \/> Se(t,é)d(s‘ < \/>/ (exp(Ckd) — 1)e(t,d)do.
t Js>o0 t J5>0

By (6) and (22), we see that

Ft—s\ﬁ 5>05N(t,5)d5‘ < \f/ ( (exp CKé)—l)d6’>N(t,5)d(5
= / </ exp(Cd’) — )d(s')N(l,a/\/%)da

= \f/ Ot exp(Cgd) — 6 — O ) N(1,6/V/t)db

Since [55,0N(t,0) = \/%, and as t — 0, for any fixed € > 0

52
e 4t

Viar

tends to 0 uniformly for 6 € [¢,00) and is uniformly bounded for § € [0, 00), we obtain

(Cx' exp(Cké) — 0 — Cx') N(1,6/Vt) = (Cx exp(Ckd) — 6 — Cx')
lim |F; — S| = 0.
t—0

t We then have

S
V
( o ) <F <8 <\/Zexp(§)_1 + exp(a)) .

11

Lemma 5.5. Let o =

(19)

(20)

(21)

(22)

(23)
(24)

(25)



Proof. Applying (5) when f(0) = vol(0Kj), we see that

\/2/620 vol(0Ks)e(t,d)dd = \/;/520(V01(K5) — vol(K))N(t,d)dd. (28)
ﬁ 50 N{E, 6)dd = \/4?# (29)

An application of Lemma 5.3 gives

F < ﬁ /5 N <exp (55) _ 1) N{(t, 5)d6. (30)

By (29) and (30), we have

Ft+V\/4?t< \/?/bOVexp(if)N(t,é)dé _ \/7/>0Vexp< f) N(t,8)ds, (31)
_ \[/m (exp 5{; >)d5. (32)

Note that

We split (32) into two parts, equating it to

5—2/at 2 §—2/at 2
VﬁT () V /QVM emj<_( 2¢t:)> d5+l/x> exp<__< 2 ) ) do| . (33)
t expla 5=0 VAt s=2/at \Art )

By (32) and (33), we see that

Fy+ v\f \f exp (a [ s N(t,8)ds + /0 h N(t,&)dé} . (34)

For § € (—o0,0] and any fixed ¢, N(¢,0) monotonically increases. Therefore,

0
/ N(t,8)d6 < N(1,0)(2v/al) = \/E (35)
§=—2vat ™
We also know that
/ N(t,6)d6 = +. (36)
0 2
Note that
V=5l
«

By (34) and (35), we now see that

Fo< Sea+\/:V(ea—1) (37)
_ s<ea+ (eagl)), (38)

12
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which proves the upper bound in the statement of the lemma.
Next, observe that Lemmas 5.2 and 5.4 imply that

F > \/?/ S <1 - n5> e(t, 6)dsé.
t Js>0 Tin

We transform this integral by parts using (6) and obtain

T 52 n\/mt
F — o — N(t,0)dd = 1-— .
‘=z \/;/5205 ( nzrin) (£:9) S< 2rin >

Applying a change of variables u := 62, it is easy to verify that
t
ON(t,d)do = \/7
§>0 T

/ 62N (t,8)ds = t,
6>0

since this is half of the the variance. Next, observe that Lemmas 5.2 and 5.4 imply that

F > \/?/ S <1 - n5> e(t,0)do.
t Js>0 Tin

We transform this integral by parts using (6) and obtain the desired lower bound on Fj,
52 Vit
Ft>\ﬁ/ S(é—n )N(t,é)d5:S<1—n ”).
t §5>0 27"in 27"in

For proving Lemma 5.6 we will need the following claim.

-1
Claim 5.2. For any unit vector u that minimizes HT\/;”, if x is chosen uniformly at random from

K, var(u-x) < 512,

Also,

Proof. Since TK is 2—isotropic, if x is chosen uniformly at random from 7K, var(u-x) < 2. By
definition 7,y is the smallest eigenvalue of T~1/1/2. Therefore, if x is chosen uniformly at random
from TK,

T '(u)-x 2

var <\/§ S 2T0pt‘

Consequently, if x is chosen uniformly at random from K, then
var(u-x) < 4r(2)pt.

Since 7, > 2%’5, we have 5ri2n > 4r§pt. The preceding two sentences imply that

2

var(u - x) < bri,

and the claim follows.
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Figure 4: Projecting along a unit vector v minimizing |7~ ul|

Lemma 5.6.

<:

.
W S <A
Proof. 1t follows from Lemma 3.4 in [15] that a ball of radius % around the center of mass of TK

is entirely contained in T'K. Therefore
Observation 5.1. K contains a ball of radius r;,.

We are now in a position to present the proof of Lemma 5.6. The first inequality "= < % is
the statement of Lemma 2.1. The only condition on r;, there, is that r;, B C K, a property that
is satisfied by r;, by Observation 5.1.

Fix a unit vector u such that for x chosen uniformly at random from K, var(u-x) < 5r2 . By
Claim 5.2, such a vector exists.

Let m be an orthogonal projection of K onto a hyperplane perpendicular to u. Further, for a
point y € m(K), let £, be the length of the preimage 7! (y).

The variance of u - x under the condition 7 (z) =y, is given by 65 /12, since this is the variance
of a random variable that takes a value from an interval of length ¢, uniformly at random.

fﬂ(K) var(u - x|m(x) = y)lydvoly

var(u-x) = v (39)
B fﬂ(K) 3 dvol,, (40)

B 12V
(41)

fﬂ(K) 3 dvol,, N I (K)€ dvol, 3
vol(m(K)) — \ wvol(r vol vol(r(K)) )

since for any non-negative random variable X, E[X3] > E . Therefore,

|10 Gadvoly V2
2 > x) =Y .
Brin 2 Var(u-x) 12V 12vol(n(K))2

14



Further, vol(m(K)) < S/2. Hence,

and so % < V157 < 4driy.
]

The lower bound on F; is immediate for v/t = 2 using the lower bound in Lemma 5.5. To

n

Since € < 0.5, < 1. Therefore e® < 1 + 2a. It follows that

2 !/
prove the upper bound, we observe that a = ( ) t < (T ) t from Lemma 5.4, which equals %

S<\/ze)(p((;)_l+exp(a)> < S(WVra+1+2a))

< S(1+4va)
< (1+¢)S,

thus proving Proposition 5.1. O

Proposition 5.2 states that the empirical quantity S computed by the surface area algorithm
is likely to be an e-approximation of F; with probability > 3/4. Let z1,z2,...,zy from K, be
¢-uniform and each pair {z;,z;} for 1 <1i < j < N be p-independent with probability > 15/16.
Let v1,...,vny be N independent random samples from the spherically symmetric multivariate
Gaussian distribution whose mean is 0 and variance is 2nt. Let N := |{i|z; + v; ¢ K}|. Then,

Proposition 5.2. Let v/t = ¢ Sinoand € < 1/2. Then, with probability greater than 3 1

(1—¢)(1—2¢ Ft<\[V< 1+ €)(1+2)F,.

Proof. The proposition follows from the following lemmas.
The following lemma is a consequence of (Lemma 7.1, [23]) and summarizes some properties of
p-independence that we shall need.

Lemma 5.7. 1. Let X andY be pu-independent, and let f, g be two measurable functions. Then
f(X) and g(Y) are also p-independent.

2. Let X,Y be p-independent random variables such that 0 < X <a and 0 <Y <b. Then,

[B(XY) - E(X)E(Y)| < pab,

3. Let x1,...,zN be a Markov chain and assume that Vi > 0, x;41 is p-independent from x;.
Then, Vi # j,x; and x; are p-independent.

Lemma 5.8. Let \/t := 5/4’%, where € < 1/2. Then, with probability greater than 7/8,

N
(1 — El)Ft < F Nﬁv < (1 + EI)Ft,

and (1 -V <V < (1+€)V.

15



Proof. Let X; denote the indicator random Varlable for the event x; + v; ¢ K. Suppose that z; is
sampled from the probability dlstrlbutlon p. x; is gg-uniform, therefore it has a distribution p for

which [} [p(z) —1/V|dvol, < 64 . Therefore

|\\/[$_E[X"” = | / /KGt(fUa?/)(P(SU)—é)dvolxdvolﬂ

R\ K
1
= ’/(P(l’)—) / G(z,y)dvolydvol,|
K Vv
R"\K
< /! - = |dv01
64n

In the above calculations, the inequality is a consequence of the fact that

/ Gy(z,y)dvol, < 1.
R\ K

The calculations above hold for each i, and the lemma now follows from the linearity of expec-
tation. O]

Lemma 5.9. With probability greater than 15/16,

N [x 2 F?
—4/ =V L.
var ( ~\/ 3 ) < 16
Proof. Let X; denote the indicator random variable for the event z; + v; ¢ K as in the proof of
Lemma 5.8. Then, Let

=v\x
and ¢’ = €q.
21 varX; + 3, cov(X;, X; )
N2

Ziin)
N

Since we are dealing with 0,1 variables,

var(

12

var(X;) < E[X;] < g+ ~

14+€).
64n<(1( +€)

The last statement follows from Lemma 5.8, and the fact that & < q, which we show below.

Ft SvVi SVt
2fV 4V
\%

as a consequence of Proposition 5.1. Using the values of v/¢ and the inequality 5

< 4r;, from
. . 6/
Lemma 5.6, this is > 7.

Continuing the proof, from Lemma 5.7 we have that,

Zi#j COV(XZ‘, Xj)
E < p.
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SN E )+ N -1
N2

<

5./t "

LA A
N TNTHSNTH

We just showed that ¢ = %’/’ > 62—/”. We are required to show that

2q 6/2q2
— <
T

The ratio of the left hand side to the right,

32 16 2Mn  216,p2
+ < +
N6’2 q 6/2 q2 N 6/3 6/4

—1/2<1.

Using Chebycheft’s inequality and Lemma 5.9,

N [«
iV -E
e

This statement, together with Lemma 5.8 completes the proof of Proposition 5.2. O

N
N [T,

P 'F,
vV 7 >e b <

E .

We now proceed to prove our main theorem, Theorem 3.1, which we recall below.

Theorem 3.1. The surface area of a conver body K, given by a membership oracle, and
parameters r, R such that rB C K C RB can be approrimated to within a relative error of € with
probability 1 — § using at most

1/1 n R 1 n
4 9 8 7
O(n 10g6<62 log ;+10g nlog?—i—e—glog (e)))
i.e. O*(n*) oracle calls.

Proof of Theorem 3.1. Propositions 5.1 and 5.2 together imply that with probability > 3/4, the

output
. N .
S=./=V
it

(1-6)S <8< (1+6)S.

satisfies

Running the algorithm (whose confidence is 3/4) [361n (2)] times and taking the median of the
outputs gives the result with a confidence > 1 — §. Let m independent trials be made of an event
whose probability of success is p and m be the number of resulting successes. Then, it follows from
Hoeffding’s inequality (Theorem 1 in [10]) that

—Nomp ) . (42)

P [\Z—p\ > Ap} < 2exp<

We will consider repeated trials of the algorithm, and declare the event to be a success if the
output S of the algorithm lies in [(1 —€)S, (1 +€)S]. In order for the median of all the trials to lie

17



in [(1—€)S, (14¢€)S], it suffices for at least half of the outputs to lie here. Setting m = [361n ()],

[(1—¢)
p> % and A = 1/3, gives us
2
2exp< )\3mp> <4,

which translates into a probability of overall success that exceeds 1 — 5;
The bounds on the run-time (involving the computation of N and V'), follow from the analysis
in Subsection 4.3. This completes the proof of Theorem 3.1. O

6 Concluding Remarks

We obtained a randomized algorithm for estimating the surface area of a convex body given by
a membership oracle, with better complexity guarantees than the previous algorithm of [5]. The
algorithm can be interpreted as a simulation of heat flow over a small time out of a hot body. These
results can be partially extended to a setting involving hypersurfaces. The role of convexity is then
played by bounded “reach”, where the reach of the hypersurface is defined as the largest number ¢
such that any point at a distance atmost ¢ from the hypersurface has a unique nearest point on the
hypersurface. Details may be found in [19] and [17]. Connections to graph cuts have been explored
in [18] and [17], wherein the amount of heat diffusing across a surface has been related to the size
of a graph cut.

Acknowledgments

The authors thank Laszlé Babai for helpful discussions and encouragement. We are grateful to
Eric Vigoda for pointing out the Dyer-Gritzmann-Hufnagel paper [5] to us and thank Ravi Kannan
and Santosh Vempala for references. It is a pleasure to thank the anonymous referees for a careful
reading and several helpful remarks.

References

[1] I. Bardny and Z. Furedi, “Computing the Volume is Difficult.” Discrete and Computational
Geometry 2, 1987, 319-326.

[2] M. Belkin, H. Narayanan and P. Niyogi, “Heat Flow and a Faster Algorithm to Compute
the Surface Area of a Convex Body”, Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, 2006

[3] D. Bertsimas and S. Vempala, “Solving convex programs by random walks” Journal of the
ACM (JACM) 51(4), 540-556, 2004. Proc. of the 34th ACM Symposium on the Theory of
Computing (STOC ’02), Montreal, 2002.

[4] M. Dyer, A. Frieze and R. Kannan, “A random polynomial time algorithm for approximating
the volume of convex sets” (1991) in Journal of the Association for Computing Machinery,
38:1-17,

[5] M. Dyer, P. Gritzmann and A. Hufnagel (1998) “On the complexity of computing Mixed
Volumes.” Siam Journal of Computing., Vol. 27, No. 2, pp. 356-400, April 1998

[6] G. Elekes, “A Geometric Inequality and the Complexity of Computing Volume.” Discrete and
Computational Geometry 1, 1986, 289-292.

18



[7]

8]

H. Federer, “Curvature Measures,” Transactions of the American Mathematical Society, Vol.
93, No. 3, 418-491.

L. Gurvits, “A Polynomial-Time Algorithm to Approximate the Mixed Volume within a Simply
Exponential Factor.” Discrete and Computational Geometry, Volume 41, Number 4 (2009),
533-555,

L. Gurvits and A. Samorodnitsky, “A Deterministic Algorithm for Approximating the Mixed
Discriminant and Mixed Volume, and a Combinatorial Corollary.” Discrete and Computational
Geometry, 27(4): 531-550

W. Hoeftding, “Probability Inequalities for Sums of Bounded Random Variables,” Journal of
the American Statistical Association, Vol. 58, No. 301 (Mar., 1963), pp. 13-30

M. R. Jerrum, L. G. Valiant and V. V. Vazirani (1986), “Random generation of Combinatorial
structures from a uniform distribution.” Theoretical Computer Science, 43, 169-188

R. M. Karp and M. Luby, (1983). “Monte-Carlo algorithms for enumeration and reliablility
problems.” Proc. of the 24th IEEE Foundations of Computer Science (FOCS ’83),56-64

M. Grétschel, L. Lovész, and A. Schrijver, Geometric algorithms and combinatorial optimiza-
tion, Springer-Verlag, Berlin, 1988.

L. Lovész and S. Vempala (2004), “Hit-and-run from a corner” Proc. of the 36th ACM Sym-
posium on the Theory of Computing, Chicago

L. Lovdsz and S. Vempala, “Simulated annealing in convex bodies and an O*(n*) volume
algorithm” Proc. of the 44th IEEE Foundations of Computer Science (FOCS ’03), Boston,
2003.

L. Lovasz and S. Vempala, “Fast Algorithms for Logconcave Functions: Sampling, Round-
ing, Integration and Optimization”, Proc. of the 47th IEEE Symposium on Foundations of
Computer Science (FOCS ’06), 2006.

H. Narayanan, “Diffusion in Computer Science and Statistics,” Ph.D thesis, University of
Chicago, August 2009

H. Narayanan, M. Belkin, P. Niyogi, “On the relation between Low Density Separation, Spec-
tral Clustering and Graph Cuts,” Proceedings of Neural Information Processing Systems, 2006

H. Narayanan, and P. Niyogi, “Sampling hypersurfaces through diffusion,” Proceedings of the
12th international workshop, on Approximation, Randomization and Combinatorial Optimiza-
tion: Algorithms and Techniques, RANDOM’08, 2008

V. Y. Pan, Z. Chen and A. Zheng, “The Complexity of the Algebraic Eigenproblem”, MSRI
Preprint 1998-71, Mathematical Sciences Research Institute, Berkeley, California (1998).

R. Schneider, “Convex bodies: The Brunn-Minkowski Theory,” Encyclopedia of Mathematics
and its Applications, Cambridge University Press 1993.

P. M. Vaidya, “A new algorithm for minimising convex functions over convex sets.” Mathe-
matical Programming, 73, 291-341, 1996.

S. Vempala, “Geometric Random Walks: A Survey,” Combinatorial and Computational Ge-
ometry, MSRI Publications, Volume 52, 2005.

19



[24] J. M. Wills, “Zum Verhaltnis von Volumen zur Oberflache bei konvexen Kérpern, Arch. Math.
, 21, (1970), 557-560

20



