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Let K be a polytope in Rn defined by m linear inequalities. We give a new Markov Chain algorithm to draw a

nearly uniform sample from K. The underlying Markov Chain is the first to have a mixing time that is strongly

polynomial when started from a “central” point x0. If s is the supremum over all chords pq passing through

x0 of |p−x0|
|q−x0| and ε is an upper bound on the desired total variation distance from the uniform, it is sufficient

to take O
(
mn

(
n log(sm) + log 1

ε

))
steps of the random walk. We use this result to design an affine interior

point algorithm that does a single random walk to solve linear programs approximately. More precisely, suppose

Q = {z
∣∣Bz ≤ 1} contains a point z such that cT z ≥ d and r := supz∈Q ‖Bz‖ + 1, where B is an m × n matrix.

Then, after τ = O
(
mn

(
n ln

(
mr
ε

)
+ ln 1

δ

))
steps, the random walk is at a point xτ for which cTxτ ≥ d(1− ε) with

probability greater than 1− δ. The fact that this algorithm has a run-time that is provably polynomial is notable

since the analogous deterministic affine algorithm analyzed by Dikin has no known polynomial guarantees.
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1. Introduction There is a large body of literature addressing algorithms for sam-

pling convex bodies in Rn. Previous sampling algorithms were applicable to convex sets

specified in the following way. The input consists of an n-dimensional convex set K cir-

cumscribed around and inscribed in balls of radius r and R respectively. The algorithm

has access to an oracle which, when supplied with a point in Rn answers “yes” if the point
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is in K and “no” otherwise.

The first polynomial time algorithm for sampling convex sets appeared in Dyer et al [6].

It did a random walk on a sufficiently dense grid. The dependence of its mixing time on

the dimension was O∗(n23). It resulted in the first randomized polynomial time algorithm

to approximate the volume of a convex set.

Another random walk that has been analyzed for sampling convex sets is known as

the ball walk, which does the following. Suppose the current point is xi. A point y is

chosen uniformly at random from a ball of radius δ centered at xi. If y ∈ K, xi+1 is

set to K; otherwise xi+1 = xi. After many successive improvements over several papers,

it was shown in Kannan et al [7] that a ball walk mixes in O∗(nR2

δ2
) steps from a warm

start if δ < r√
n
. A ball walk has not been proved to mix rapidly from any single point.

A third random walk analyzed recently is known as Hit-and-Run Lovász [12]. This walk

mixes in O
(
n3(R

r
)2 ln R

dε

)
steps from a point at a distance d from the boundary Lovász

and vempala [14], where ε is the desired variation distance to stationarity.

In this paper, we use ideas from interior point algorithms to define a random walk on

a polytope. We call this walk Dikin walk after I. I. Dikin, because it relies on ellipsoids

introduced by Dikin [5] in 1967, which he used to develop an affine-scaling interior point

algorithm for linear programming.

2. Results The Markov Chain defining Dikin walk is invariant under affine transfor-

mations of the polytope. Consequently, the complex interleaving of rounding and sampling

present in previous sampling algorithms for convex sets (see Dyer et al [6], Kannan et al

[7], Lovász and Vempala [16]) is unnecessary.

Some features of Dikin walk are the following.

(i) The measures defined by the transition probabilities of Dikin walk are affine in-

variants, so there is no dependence on R/r (where R is the radius of the smallest
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ball containing the polytope K and r is the radius of the largest ball contained in

K).

(ii) If K is an n-dimensional polytope defined by m linear constraints, the mixing time

of the Dikin walk is O(nm) from a warm start (i. e. if the starting distribution has

a density bounded above by a constant).

(iii) If the walk is started at the “analytic center” (which can be found efficiently by

interior point methods Renegar [20], Vaidya [21]), it achieves a variation distance

of ε in

O
(
mn

(
n logm+ log 1

ε

))
steps. This is strongly polynomial in the description of

the polytope.

Dikin walk is similar to ball walk except that Dikin ellipsoids (defined later) are used

instead of balls. Dikin walk is the first walk to mix in strongly polynomial time from a

central point such as the center of mass (for which s, as defined below, is O(n)) and the

analytic center (for which s = O(m)). Note that the distribution of the point after the

first non-trivial move has an L∞ norm that is bounded above by eO(n ln s). Our main result

related to the Dikin walk is the following.

Theorem 2.1 Let n be greater than some universal constant. Let K be an n-dimensional

polytope defined by m linear constraints and x0 ∈ K be a point such that s is the supremum

over all chords pq passing through x0 of |p−x0|
|q−x0| and ε > 0 be the desired variation distance

to the uniform distribution. Let τ > 7×108×mn
(
n ln (20 s

√
m) + ln

(
32
ε

))
and x0, x1, . . .

be a Dikin walk in which the radius is 1/40. Then, for any measurable set S ⊆ K, the

distribution of xτ satisfies
∣∣∣P[xτ ∈ S]− vol(S)

vol(K)

∣∣∣ < ε.

2.0.1 Running times The mixing time for Hit-and-Run from a warm start is

O
(

n2R2

r2

)
, while for Dikin walk this is O(mn). Hit-and-Run takes more random walk

steps to provably mix on any class of polytopes where m = o
(

nR2

r2

)
. For polytopes with
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polynomially many faces, R/r cannot be O
(
n

1
2
−ε
)
for any fixed ε > 0 (but can be arbi-

trarily larger). Thus, m = o(n
(
R
r

)2
) holds true for some important classes of polytopes,

such as those arising from the question of sampling contingency tables with fixed row

and column sums (where m = O(n)). Each step of Dikin walk can be implemented using

O(mnγ−1) arithmetic operations, γ < 2.376 being the exponent of matrix multiplication

(see 3.1.1). One step of Hit-and-Run implemented naively would need O(mn) arithmetic

operations. Evaluating costs in this manner, Hit-and-Run takes more random walk steps

to provably mix on any class of polytopes where mγ = o
(

n2R2

r2

)
. A sufficient condition

for m = o
(

n3−γR2

r2

)
to hold is m = o(n4−γ).

2.1 Applications

2.1.1 Sampling lattice points in polytopes While polytopes form a restricted

subclass of the set of all convex bodies, algorithms for sampling polytopes have numerous

applications. It was shown in Kannan and Vempala [8] that if an n dimensional polytope

defined by m inequalities contains a ball of radius Ω(n
√
logm), then it is possible to sam-

ple the lattice points inside it in polynomial time by sampling the interior of the polytope

and picking a nearby lattice point. Often, combinatorial structures can be encoded as

lattice points in a polytope, leading in this way to algorithms for sampling them. Contin-

gency tables are two-way tables that are used by statisticians to represent bivariate data.

A solution proposed in Diaconis and Effron [4] to the frequently encountered problem of

testing the independence of two characteristics of empirical data involves sampling uni-

formly from the set of two-way tables having fixed row and column sums. It was shown

in Morris [17] that under some conditions, this can be achieved in polynomial time by

quantizing random points from an associated polytope.

2.1.2 Linear Programming We use this result to design an affine interior point

algorithm that does a single random walk to solve linear programs approximately. In
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this respect, our algorithm differs from existing randomized algorithms for linear pro-

gramming such as that of Lovász and Vempala [15], which solves more general convex

programs. While optimizing over a polytope specified as in the previous subsection, if

m = O(n2−ε), the number of random steps taken by our algorithm is less than that of the

algorithm of Lovász and Vempala. Given a polytope Q containing the origin and a linear

objective c, our aim is to find with probability > 1−δ, a point y ∈ Q such that cTy ≥ 1−ε

if there exists a point z ∈ Q such that cT z ≥ 1. We first truncate Q using a hyperplane

cTy = 1 − ε̂, for ε̂ << ε and obtain Qε̂ = Q ∩ {y
∣∣cTy ≤ 1 − ε̂}. We then projectively

transform Qε̂ to “stretch” it into a new polytope γ(Qε̂) where γ : y 7→ y
1−cT y

. Finally,

we do a simplified Dikin walk (without the Metropolis filter) on γ(Qε̂) which approaches

close to the optimum in polynomial time. This algorithm is purely affine after one prelim-

inary projective transformation, in the sense that Dikin ellipsoids are used that are affine

invariants but not projective invariants. This is an important distinction in the theory

of interior point methods and the fact that our algorithm is polynomial time is notable

since the corresponding deterministic affine algorithm analyzed by Dikin [5, 23] has no

known polynomial guarantees on its run-time. Its projective counterpart, the algorithm

of Karmarkar however does [9]. In related work [2], Belloni and Freund have explored

the use of randomization for preconditioning. While there is no “local” potential function

that is improved upon in each step, our analysis may be interpreted as using the L2,µ

norm (µ being the appropriate stationary measure) of the probability density of the kth

point as a potential, and showing that this reduces at each step by a multiplicative factor

of (1− Φ2

2
) where Φ is the conductance of the walk on the transformed polytope. We use

the L2,µ norm rather than variation distance because this allows us to give guarantees of

exiting the region where the objective function is low before the relevant Markov Chain

has reached approximate stationarity. The main result related to algorithm (Dikin ) is the

following.
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Theorem 2.2 Let n be larger than some universal constant. Given a system of inequal-

ities By ≤ 1, a linear objective c such that the polytope

Q := {y : By ≤ 1 and |cTy| ≤ 1}

is bounded, and ε, δ > 0, the following is true. If ∃ z such that Bz ≤ 1 and cT z ≥ 1, then

y, the output of Algorithm Dikin , satisfies

By ≤ 1

cTy ≥ 1− ε

with probability greater than 1− δ.

2.1.3 Strong Polynomiality Let us call a point x as central if ln s, where s is the

function of x defined in Theorem 2.1, is polynomial in m. The mixing time of Dikin walk

both from a warm start, and from a starting point that is central, is strongly polynomial

in that the number of arithmetic operations depends only on m and n. Previous Markov

Chains for sampling convex sets (and hence polytopes) do not possess either of these

characteristics. In the setting of approximate Linear Programming that we have consid-

ered, the numbers of iterations taken by known interior point methods such as those of

Karmarkar [9], Renegar [20], Vaidya [21] etc are strongly polynomial when started from

a point that is central in the above sense. The algorithm Dikin presented here is no

different in this respect. The fact that Dikin walk has a mixing time that is strongly

polynomial from a central point such as the center of mass, is related to two properties

of Dikin ellipsoids listed below.

2.1.4 Dikin ellipsoids and their virtues Let K be a polytope in n−dimensional

Euclidean space given as the intersection of m halfspaces aTi x ≤ 1, 1 ≤ i ≤ m. Defining

A to be the m× n matrix whose ith row is aTi , the polytope can be specified by Ax ≤ 1.

Let x0 ∈ int(K) belong to the interior of K. Let

H(x) =
∑

1≤i≤m

aia
T
i

(1− aTi x)
2
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and ‖z− x‖2x := (z− x)TH(x)(z− x). The Dikin ellipsoid Dr
x of radius r for x ∈ K is the

ellipsoid containing all points z such that ‖z − x‖x ≤ r.

Fact 1 (1) Dikin ellipsoids are affine invariants in that if T is an affine transformation

and x ∈ K, the Dikin ellipsoid of radius r centered at the point Tx for the polytope

T (K) is T (Dr
x). This is easy to verify from the definition.

(2) For any interior point x, the Dikin ellipsoid centered at x, having radius 1, is

contained in K. This has been shown in Theorem 2.1.1 of Nesterov and Nemirovskii

[18]. Also, the Dikin ellipsoid at x having radius
√
m contains Symx(K) := K ∩

{y
∣∣2x−y ∈ K}. This can be derived by an argument along the lines of Theorem 3.2.

3. Randomly Sampling Polytopes

3.1 Preliminaries For two vectors v1, v2, let
〈
v1, v2

〉
x
= vT1 H(x)v2. For x ∈ K, we

denote by Dx, the Dikin ellipsoid of radius 3
40

centered at x. Dikin ellipsoids have been

studied in the context of optimization (see Dikin [5]) and have recently been used in online

learning (Abernathy et al [1]). The second property mentioned in the subsection below

implies that the Dikin walk does not leave K.

The “Dikin walk” is a “Metropolis” type walk which picks a move and then decides

whether to “accept” the move and go there or “reject” and stay. The transition proba-

bilities of the Dikin walk are listed below. When at x, one step of the walk is made as

follows.

(i) Flip an unbiased coin. If Heads, stay at x.

(ii) If Tails pick a random point y from Dx.

(iii) If x /∈ Dy, then reject y (stay at x);

if x ∈ Dy, then accept y with probability

min
(
1, vol(Dx)

vol(Dy)

)
= min

(
1,
√

detH(y)
detH(x)

)
.
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K

Figure 1: A realization of Dikin walk. Dikin ellipsoids Dx0
, Dx1

and Dx6
have been depicted.

Therefore,

P[x → y] =





min
(

1
2 vol(Dx)

, 1
2 vol(Dy)

)
,

if y ∈ Dx and x ∈ Dy;

0, otherwise.

and P[x → x] = 1− ∫
y
dP[x → y].

3.1.1 Implementation of a Dikin step Let K be the set of points satisfying the

system of inequalities Ax ≤ 1. H(x) = ATD(x)2A where D(x) is the diagonal matrix

whose ith diagonal entry dii(x) =
1

1−aTi x
.

We can generate a Gaussian vector v such that E[vvT ] = (ATD2A)−1 by the following

procedure. Let u be a random m-vector from a Gaussian distribution whose covariance

matrix is Id. Find v that satisfies the linear equations:

DAv = z

ATD(z − u) = 0,

or equivalently,

ATD2Av = ATDu.

Allowing (DA)† to be the Moore-Penrose pseudo-inverse of DA,

(DA)†(z − u) = 0 ⇔ (z − u) ⊥ column span(DA)

⇔ ATD(z − u) = 0.
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Thus, EvvT = (DA)†EzzT (DA)†T . Since z is the orthogonal projection of u onto the

column span of DA,

therefore (DA)†EzzT (DA)†T = H(x)−1. We can now generate a random point w from

the Dikin ellipsoid of radius r centered at x by scaling v as follows. Let F1(x) be the

cumulative distribution of the magnitude of an n−dimensional standard Gaussian random

variable and F2(x) be the cumulative distribution of the magnitude of a random point

in a Euclidean unit ball of radius r (which for us is 1/40). Then,
(
F−1
2 F1

(
v

‖v‖x

))
v has

the distribution of a random point in the Dikin ellipsoid. The probability of accepting a

Dikin step, is either 0 or the minimum of 1 and ratio of two determinants. Two matrix-

vector products suffice to test whether the original point lies in the Dikin ellipsoid of the

new one. By results of Baur and Strassen [3], the complexity of solving linear equations

and of computing the determinant of an n × n matrix is O(nγ). The most expensive

step, the computation of ATD(x)2A can be acheived using mnγ−1 arithmetic operations,

by partitioning a padded extension of ATD into ≤ m+n−1
n

square matrices. Thus, all

the computations needed for one step of Dikin walk can be computed using O(mnγ−1)

arithmetic operations where γ < 2.377 is the exponent for matrix multiplication.

3.2 Isoperimetric inequality Given interior points x, y in a polytope K, suppose

p, q are the ends of the chord in K containing x, y and p, x, y, q lie in that order. Then we

denote |x−y||p−q|
|p−x||q−y| by σ(x, y). The metric defined on the interior of K in which the distance

between two points x and y is ln(1 + σ(x, y)) is a metric known as the Hilbert metric.

Given four collinear points a, b, c, d, (a : b : c : d) = (a−c)·(b−d)
(a−d)·(b−c)

is known as the cross ratio.

The theorem below was proved by Lovász in [12].

Theorem 3.1 (Lovász) Let S1 and S2 be measurable subsets of K. Then,

vol(K \ S1 \ S2) vol(K) ≥ σ(S1, S2) vol(S1) vol(S2).
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3.3 Dikin norm and Hilbert metric Theorem 3.2 relates the Dikin norm to the

Hilbert metric.

Theorem 3.2 Let x, y be interior points of K. Then,

σ(x, y) ≥ ‖x− y‖x√
m

.

Proof.

Recall that

‖x− y‖2x = (x− y)T
∑

1≤i≤m

aia
T
i

(1− aTi x)
2
(x− y).

We may also assume that x = 0 after translation. Moreover,

(y)T
∑

1≤i≤m

aia
T
i

(1− aTi x)
2
(y) =

∑
1≤i≤m

(yTai)
2

(1− aTi x)
2
. (1)

We now restrict attention to the line ` containing the origin and y. Recall that the

constraints were {aTi x ≤ bi}. So ∀i, bi ≥ 0. Let ci be the component of ai along `; we

may view ci, y as real numbers with ` as the real line now. K ∩ ` = {y : ciy ≤ bi} (where

bi had been taken to be 1). Dividing constraint i by |ci|, we may assume that |ci| = 1.

After renumbering constraints so that b1 = min{bi
∣∣ci = −1} and b2 = min{bi

∣∣ci = 1}, we

have K ∩ ` = [−b1, b2]. It follows from (1) that

‖y‖2x = y2
∑
i

1

b2i
.

Without loss of generality, assume that y ≥ 0. [The proof is symmetric for y ≤ 0.] Then,

σ(x, y) = y(b1+b2)
b1(b2−y)

, which is at least ymaxi(1/|bi|). This is in turn at least ‖y‖x√
m
. ¤

3.4 Geometric and probabilistic distance Let the Lebesgue measure be denoted

λ. The total variation distance between two distributions π1 and π2 is d(π1, π2) :=

supS |π1(S) − π2(S)| where S ranges over all measurable sets. Let the marginal dis-

tributions of transition probabilities starting from a point u be denoted Pu. Let us fix

r := 3/40 for the remainder of this chapter. The main lemma of this section is stated

below.
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Lemma 3.1 Let x, y be points such that σ(x, y) ≤ 3
400

√
mn

. Then, the total variation

distance between Px and Py is less than 1− 13
200

+ o(1).

Proof. Let us fix the convention that dPy

dPx
(x) := 0 and dPy

dPx
(y) := +∞. If x → w is

one step of the Dikin walk,

d(Px, Py) = 1− Ew

[
min

(
1,

dPy

dPx

(w)

)]
.

It follows from Lemma 3.2 that

Ew

[
min

(
1,

dPy

dPx

(w)

)]
≥ min

(
1,

vol(Dx)

vol(Dy)

)
P [(y ∈ Dw) ∧ (w ∈ Dy \ {x})] .

It follows from Lemma 3.4 that

min

(
1,

vol(Dx)

vol(Dy)

)
P [(y ∈ Dw) ∧ (w ∈ Dy \ {x})] ≥ (2)

e−
r
5P [(y ∈ Dw) ∧ (w ∈ Dy \ {x})] . (3)

Let Ex denote the event that

0 < max
(‖x− w‖2w, ‖x− w‖2x

) ≤ r2
(
1− 1

n

)
,

Ey denote the event that max (‖y − w‖w, ‖y − w‖y) ≤ r and Evol denote the event that

vol(Dw) ≥ e4r vol(Dx). The complement of an event E shall be denoted E.

The probability of Ey when x → w is a transition of Dikin walk can be bounded from

below by
(

e−4r

2

)
P
[
Ey ∧ Ex ∧ Evol

]
where w is chosen uniformly at random from Dx. It

thus suffices to find a lower bound for P
[
Ey ∧ Ex ∧ Evol

]
where w is chosen uniformly

at random from Dx, which we proceed to do. Let erf(x) denote the well known error

function 2√
π

∫ x

0
e−t2dt and erfc(x) := 1− erf(x).

P
[
Ey ∧ Ex ∧ Evol

] ≥ (4)

P [Ey ∧ Ex]− P [Evol] . (5)

Lemma 3.3 implies that P [Evol] ≤ erfc(2)
2

+ o(1). Let E1
x be the event that

‖x− w‖2x ≤ r2
(
1− 1

n

)
.
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As a consequence of Lemma 3.5,

P [Ex] + o(1) ≥
(
1− 3

√
2r

2

)
P
[
E1

x

]

≥
(
1− 3

√
2r

2
√
e

)
− o(1). (6)

Lemma 3.6 and Lemma 3.7 together tell us that

P
[
Ey

∣∣∣Ex

]
≥ 1−

(
4r2 + erfc(2) + o(1)

1− 3
√
2r

)
−

(
4r2 + erfc(3/2) + o(1)

1− 3
√
2r

)
(7)

= 1−
(
8r2 + erfc(2) + erfc(3

2
) + o(1)

1− 3
√
2r

)
. (8)

Putting (6) and (8) together gives us that

P [Ey ∧ Ex] = P
[
Ey

∣∣∣Ex

]
P [Ex] (9)

≥ 1− 3
√
2r

2
√
e

−
(
8r2 + erfc(2) + erfc(3

2
)

2
√
e

)
− o(1). (10)

Putting together (3), (5) and (10), we see that if x → w is a transition of the Dikin walk,

Ew

[
min

(
1,

dPy

dPx

(w)

)]
≥ e−

21r
5

4
√
e

(
1− (3

√
2r + 8r2 + erfc(2)(1 +

√
e) + erfc(

3

2
))

)
− o(1).

For our choice of r = 3/40, this evaluates to more than 13
200

− o(1). ¤

Since Dikin ellipsoids are affine-invariant, we shall assume without loss of generality that

x is the origin and the Dikin ellipsoid at x is the Euclidean unit ball of radius r. This

also means that in system of coordinates, the local norm ‖ · ‖x = ‖ · ‖o is the Euclidean

norm ‖ · ‖ and the local inner product
〈·, ·〉

x
=

〈·, ·〉
o
is the usual inner product

〈·, ·〉. On

occasion we have used a · b to signify
〈
a, b

〉
.

Lemma 3.2 Let w ∈ supp(Px) \ {x, y} and y ∈ Dw and w ∈ Dy. Then,

dPy

dPx

(w) ≥ min

(
1,

vol(Dx)

vol(Dy)

)
.

Proof. Under the hypothesis of the lemma,

dPy

dPx

(w) =
min

(
1

vol(Dy)
, 1
vol(Dw)

)

min
(

1
vol(Dx)

, 1
vol(Dw)

)

=
min

(
vol(Dw)
vol(Dy)

, 1
)

min
(

vol(Dw)
vol(Dx)

, 1
) .
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The above expression can be further simplified by considering two cases.

(i) Suppose min
(

vol(Dw)
vol(Dy)

, 1
)
= 1, then

min
(

vol(Dw)
vol(Dy)

, 1
)

min
(

vol(Dw)
vol(Dx)

, 1
) ≥ 1.

(ii) Suppose min
(

vol(Dw)
vol(Dy)

, 1
)
= vol(Dw)

vol(Dy)
, then

min
(

vol(Dw)
vol(Dy)

, 1
)

min
(

vol(Dw)
vol(Dx)

, 1
) ≥ vol(Dx)

vol(Dy)
.

Therefore,

dPy

dPx

(w) ≥ min

(
1,

vol(Dx)

vol(Dy)

)
.

¤

Lemma 3.3 Let w be chosen uniformly at random from Dx. The probability that

vol(Dw) ≤ e2rc vol(Dx) is greater or equal to 1− erfc(c)
2

− o(1), i. e.

P
[
vol(Dw)

vol(Dx)
≤ e2rc

]
≥ 1− erfc (c)

2
− o(1).

Proof. By Lemma 3.13, ln( 1
vol(Dx)

) is a convex function. Therefore,

ln vol(Dw)− ln vol(Dx) ≤ ∇ ln(
1

vol(Dx)
) · (w − x).

By Lemma 3.12, ‖∇ ln( 1
vol(Dx)

)‖ ≤ 2
√
n. Therefore,

∇ ln(
1

vol(Dx)
) · (w − x) ≤ 2r

(√
n∇ ln( 1

vol(Dx)
) · (w − x)

‖∇ ln( 1
vol(Dx)

)‖‖w − x‖

)

As stated in Theorem 3.3, when the dimension n → ∞,
√
n∇ ln( 1

vol(Dx)
) · (w − x)

‖∇ ln( 1
vol(Dx)

)‖‖w − x‖
converges in distribution to a standard Gaussian random variable whose mean is 0 and

variance is 1. Therefore,

P

[√
n∇ ln( 1

vol(Dx)
) · (w − x)

‖∇ ln( 1
vol(Dx)

)‖‖w − x‖ ≤ c

]
≥ 1 + erf(c)

2
− o(1).
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This implies that

P
[
vol(Dw)

vol(Dx)
≤ ec

]
≥ P

[
∇ ln(

1

vol(Dx)
) · (w − x) ≤ c

]

≥
(
1 + erf

(
c
2r

)

2

)
− o(1).

¤

Lemma 3.4

ln

(
vol(Dy)

vol(Dx)

)
≤ nσ(x, y).

Proof. Suppose pq is a chord containing x and y and p, x, y, q appear in that order.

By Theorem 6.1,

ln

(
vol(Dy)

vol(Dx)

)
≤ ln

( |p− y|n
|p− x|n

)

≤ nσ(x, y).

¤

In the following lemma, we condition on the event that ‖x−w‖2x ≤ r2
(
1− 1

n

)
because,

this allows us to apply Lemma 3.8 with a value of c = 3
√
24 and obtain an upper bound

on ‖x − w‖2w that is r2
(
1− 1

n

)
. If we do not condition upon this event, there would be

no value of c that would achieve this objective.

Lemma 3.5 Let w be chosen uniformly at random from Dx. Then,

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2
(
1− 1

n

)]

≥ 1− 3
√
2r

2
− o(1).

Proof. Let E1
x be the event that

‖x− w‖2x ≤ r2
(
1− 1

n

)
.

We set c to 3
√
2r in Lemma 3.8 and see that

P
[
‖x− w‖2w + ‖x− w‖22x−w ≤ 2r2

(
1− 1

n

) ∣∣∣E1
x

]

≥ 1− 3
√
2r − o(1).
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If ‖x− w‖2w + ‖x− w‖22x−w ≤ 2r2
(
1− 1

n

)
, then either ‖x− w‖2w or ‖x− w‖22x−w must be

less or equal to r2
(
1− 1

n

)
.

Therefore,

P
[
‖x− w‖2w ≥ r2

(
1− 1

n

) ∣∣∣E1
x

]
≥

P
[
‖x− w‖2w + ‖x− w‖22x−w ≥ 2r2

(
1− 1

n

) ∣∣∣E1
x

]

2

≥ 1− 3
√
2r

2
− o(1).

¤

Lemma 3.6 Let σ(x, y) ≤ 3
400

√
mn

. Then, if w is chosen uniformly at random from Dx,

P
[
‖y − w‖y ≥ r

∣∣∣max
(‖x− w‖2x, ‖x− w‖2w

) ≤ r2
(
1− 1

n

)]

≤ 4r2 + erfc(2) + o(1)

1− 3
√
2r

.

Proof.

It follows from Lemma 3.10, after substituting 1 for η and 2 for η1 that

P
[
‖y − w‖y ≥ r

∣∣∣‖x− w‖2x ≤ r2
(
1− 1

n

)]

≤ 2r2 +
erfc(2)

2
+ o(1).

This lemma follows using the upper bound from Lemma 3.5 for

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2
(
1− 1

n

)]
.

An application of Theorem 3.2 completes the proof. ¤

Lemma 3.7 Suppose σ(x, y) ≤ 3
400

√
mn

. Let w be chosen uniformly at random from Dx.

Then,

P
[
‖y − w‖w ≥ r

∣∣∣max(‖x− w‖2w, ‖x− w‖2x) ≤ r2
(
1− 1

n

)]

≤ 4r2 + erfc(3/2) + o(1)

1− 3
√
2r

.
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Proof. Substituting c = 1 in Lemma 3.9, we see that

P
[
‖y − w‖2w − ‖x− w‖2w ≥ ψ1

∣∣∣‖x− w‖2x ≤ r2(1− c

n
)
]

≤ 2r2 +
erfc(3/2)

2
+ o(1).

This implies that

P
[
‖y − w‖2w − ‖x− w‖2w ≥ r

n

∣∣∣‖x− w‖2x ≤ r2
(
1− 1

n

)]

≤ 2r2 +
erfc(3/2)

2
+ o(1).

This lemma follows using the lower bound from Lemma 3.5 for

P
[
‖x− w‖2w ≤ r2

(
1− 1

n

) ∣∣∣‖x− w‖2x ≤ r2
(
1− 1

n

)]
.

¤

The following theorem has the geometric interpretation that the probability distribution

obtained by orthogonally projecting a random vector vn from an n-dimensional ball of

radius
√
n onto a line converges in distribution to the standard mean zero, variance 1,

normal distribution N [0, 1]. This was known to Poincaré, and is a fact often mentioned

in the context of measure concentration phenomena, see for example Ledoux [11].

Theorem 3.3 (Poincaré) Let vn be any n-dimensional vector and hn be a random

vector chosen uniformly from the n-dimensional unit Euclidean ball. Then, as n →

∞,
√
n<vn,hn>
‖vn‖‖hn‖ converges in distribution to a zero-mean Gaussian whose variance is 1,

i. e.N [0, 1].

Let

ψ1 :=
‖y − x‖2x
(1− r)2

+
(3 + 2

√
6)r‖y − x‖x√
n

.

Lemma 3.8 Let v be chosen uniformly at random from Dx and c be a positive constant.



Kannan, Narayanan: Random Walks on Polytopes
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 17

Then,

P

[
‖x− v‖2v + ‖x− v‖22x−v ≥ 2r2

(
1− (c− 18r2

c
)

n

)]

≤ c+ o(1).

Proof. Let the ith constraint be aTi x ≤ 1 for all i ∈ {1, . . . ,m}. Let x− v be denoted

h. In the present frame, for any vector v, ‖v‖x = ‖v‖.

‖x− v‖2v + ‖x− v‖22x−v =
∑
i

(aTi h)
2

(1− aTi h)
2
+
∑
i

(aTi h)
2

(1 + aTi h)
2

(11)

In the present coordinate frame
∑

i aia
T
i = I. Consequently for each i,

E[(aTi h)2] =
‖ai‖2E[‖h‖2]

n
(12)

≤ r2

n
. (13)

∑
i

(
(aTi h)

2

2(1− aTi h)
2
+

(aTi h)
2

2(1 + aTi h)
2

)
=

∑
i

(aTi h)
2

(
1 + (aTi h)

2

(1− (aTi h)
2)2

)
(14)

=
∑
i

(
(aTi h)

2 +
3(aTi h)

4 − (aTi h)
6

(1− (aTi h)
2)2

)

= ‖h‖2x +
∑
i

3(aTi h)
4 − (aTi h)

6

(1− (aTi h)
2)2

. (15)

In the present coordinate frame
∑

i aia
T
i = I. Consequently for each i,

E
[

(aTi h)
2

‖ai‖2‖h‖2
]

=
1

n
. (16)

By Theorem 3.3, the probability that |aTi h| ≥ n− 1
4 is O(e−

√
n/2). |aTi h| is ≤ ‖aTi ‖r,

which is less than 1
2
. This allows us to write

E
[
3(aTi h)

4 − (aTi h)
6

(1− (aTi h)
2)2

]
= 3E[(aTi h)4](1 + o(1)), (17)

and so

E

[∑
i

3(aTi h)
4 − (aTi h)

6

(1− (aTi h)
2)2

]
=

∑
i

3E[(aTi h)4](1 + o(1)). (18)

Next, we shall find an upper bound on E[
∑

i(a
T
i h)

4]. The length of h and its direction

are independent, therefore

E

[∑
i

(aTi h)
4

]
=

∑
i

‖ai‖4E[‖h‖4]E
[

(aTi h)
4

‖ai‖4‖h‖4
]
. (19)
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A direct integration by parts tells us that if the distribution ofX isN [0, 1], then E[X4] = 3.

Therefore,

E
[

(aTi h)
4

‖ai‖4‖h‖4
]

=
3 + o(1)

n2
. (20)

E[‖h‖4] is equal to r4(1 + o(1)) and so

E

[∑
i

(aTi h)
4

]
=

∑
i

(
3 + o(1)

n2

)
‖ai‖4r4. (21)

This implies that

E

[∑
i

3(aTi h)
4

(1− (aTi h)
2)2

]
=

9 + o(1)

n2

∑
i

‖ai‖4r4 (22)

≤ 9 + o(1)

n2

∑
i

‖ai‖2r4 (23)

=
(9 + o(1))r4

n
. (24)

In (23), we used the fact that
∑

i aia
T
i = I and so ‖ai‖2 ≤ 1 for each i. Together, Markov’s

inequality and (24) yield the following.

P

[∑
i

3(aTi h)
4 − (aTi h)

6

(1− (aTi h)
2)2

≥ c2r
4

n

]
≤ P

[∑
i

3(aTi h)
4

(1− (aTi h)
2)2

≥ c2r
4

n

]
(25)

≤ 9 + o(1)

c2
. (26)

Also,

P[‖h‖2x ≥ r2(1− c1
n
)] = P[‖h‖nx ≥ rn(1− c1

n
)n/2] (27)

≤ 1− e−
c1
2 + o(1). (28)

We infer from (26) and (28) that

P

[
‖h‖2x +

∑
i

3(aTi h)
4 − (aTi h)

6

(1− (aTi h)
2)2

≥ r2(1− c1 − c2r
2

n
)

]
≤ 1− e−

c1
2 +

9

c2
+ o(1)

≤ c1
2
+

9

c2
+ o(1). (29)

Setting c1 to c and c2 to 18
c
proves the lemma. ¤

Recall that if ‖x−w‖w > r, we reject the move, in order to keep the chain reversible. For

this reason, in the analysis, it is advantageous to condition on the Ec
x which is defined to

be the event that ‖x− w‖2x ≤ r2(1− c
n
).
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Lemma 3.9 Let w be a point chosen uniformly at random from Dx. Then, for any positive

constant c, independent of n,

P
[
‖y − w‖2w − ‖x− w‖2w ≥ ψ1

∣∣∣Ec
x

]

≤ 2r2 +
erfc(3/2)

2
+ o(1).

Proof. ‖y‖2w can be bounded above in terms of ‖y‖o as follows.

‖y‖2w ≤ yT

(∑
i

aia
T
i

(1− aTi w)
2

)
y (30)

≤
(
sup
i

1

(1− aTi w)
2

)∑
i

yTaia
T
i y. (31)

For each i, ‖ai‖ ≤ 1, therefore

(
sup
i

1

(1− aTi w)
2

)∑
i

yTaia
T
i y ≤ ‖y‖2o

(1− r)2
. (32)

Let Ec
w be the event that ‖w‖2o ≤ 1− c

n
.

By Theorem 3.3,

P
[
(−2

〈
y, w

〉
o
) ≥ 2rη1‖y‖o√

n

∣∣∣Ec
w

]
≤ 1− erf(η1)

2
+ o(1). (33)

(
〈
y, w

〉
o
−〈

y, w
〉
w
)2 can be bounded above using the Cauchy-Schwarz inequality as follows.

(
〈
y, w

〉
o
− 〈

y, w
〉
w
)2 =

(
wT

(
1−

∑
i

aia
T
i

(1− aTi w)
2

)
y

)2

=

(∑
i

wTai((1− aTi w)
2 − 1)aTi y

(1− aTi w)
2

)2

≤
(∑

i

(
wTai((1− aTi w)

2 − 1)
)2

(1− aTi w)
4

)(∑
i

(aTi y)
2

)
.

Let κ be a standard one-dimensional Gaussian random variable whose variance is 1 and

mean is 0 ( i. e. having distribution N [0, 1]). Since r < 1
2
and each ‖ai‖ = ‖ai‖o is less or

equal to 1, it follows from Theorem 3.3 that conditional on Ec
w,

(
nwTai((1− aTi w)

2 − 1)
)2

4r2‖ai‖2(1− aTi w)
4
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converges in distribution to the distribution of κ4, whose expectation can be shown using

integration by parts to be 3. So,

E

[∑
i

(
wTai((1− aTi w)

2 − 1)
)2

(1− aTi w)
4

∣∣∣Ec
w

]
≤

∑
i

(
4

n2

)
‖ai‖4or4(3 + o(1))

≤
(
12 + o(1)

n2

)
r4

∑
i

‖ai‖2o

=
(12 + o(1))r4

n
.

Thus by Markov’s inequality,

P

[∑
i

(
wTai((1− aTi w)

2 − 1)
)2

(1− aTi w)
4

≥ 12η2r
4

n

∣∣∣Ec
w

]
≤ 1 + o(1)

η2
. (34)

∑
i(a

T
i y)

2 is equal to ‖y‖2o. Therefore (34) implies that

P
[
(
〈
y, w

〉
o
− 〈

y, w
〉
w
)2 ≥ 12η2r

4‖y‖2o
n

]
≤ 1 + o(1)

η2
. (35)

Putting (33) and (35) together, we see that

P

[
−2

〈
y, w

〉
w
≥ 2rη1‖y‖o√

n
+ 2

√
12η2r4‖y‖2o

n

∣∣∣∣∣E
c
w

]
≤ 1− erf(η1)

2
+

1 + o(1)

η2
(36)

Conditional on Ec
w, ‖w‖2w is less or equal to r(1− c

n
).

Therefore, using erfc(x) to denote 1− erf(x),

P
[
‖y − w‖2w − ‖w‖2w ≥ ‖y‖2o

(1− r)2
+

2r‖y‖o√
n

(
η1 + r

√
12η2

) ∣∣∣Ec
w

]
≤ η−1

2 +
erfc(η1)

2
+ o(1).

Setting η1 = 3/2 and η2 =
1

2r2
, gives

P
[
‖y − w‖2w − ‖w‖2w ≥

∣∣∣Ec
w

]
≤ 2r2 +

erfc(3/2)

2
+ o(1). (37)

¤

Lemma 3.10 Let c be a positive constant. If w is a point chosen uniformly at random

from Dx, for any positive constants η and η1, and let

ψ2 := ‖y − x‖2y +
2rη1‖y − x‖x√

n
+

2η‖y − x‖x√
n

(√
3r + ‖y − x‖x

)
.
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Then,

P
[
‖y − w‖2y − ‖x− w‖2x ≥ ψ2

∣∣∣Ec
w

]

≤ 2r2

η2
+

erfc(η1)

2
+ o(1).

Proof.

‖y − w‖2y = ‖y‖2y + ‖w‖2y − 2
〈
w, y

〉
y

(38)

≤ ‖y‖2y + ‖w‖2o (39)

+
√

(‖w‖2y − ‖w‖2o)2 − 2
〈
w, y

〉
o
+ 2

√
(
〈
w, y

〉
o
− 〈

w, y
〉
y
)2. (40)

We shall obtain probabilistic upper bounds on each term in (40).

(‖w‖2y − ‖w‖2o)2 =

(
wT

(∑
i

aia
T
i

(
1− (1− aTi y)

2

(1− aTi y)
2

))
w

)2

(41)

≤
(∑

i

(wTai)
4

)(∑
i

(
1− (1− aTi y)

2

(1− aTi y)
2

)2
)

(42)

=

(∑
i

(wTai)
4

)(∑
i

4
(
aTi y

)2
(1 + o(1))

)
(43)

= (4 + o(1)) ‖y‖2o
∑
i

(wTai)
4. (44)

In inferring (43) from (42) we have used the fact that ‖y‖o is O( 1√
n
) which is o(1). As

was stated in (20) in slightly different terms,

E
[
(wTai)

4
]

=
‖ai‖4r4(3 + o(1))

n2
.

Therefore by Markov’s inequality (applied in the second line below), for any constant c,

E

[∑
i

(wTai)
4
∣∣∣‖w‖2o ≤ r2(1− c

n
)

]
=

∑
i

‖ai‖4r4(3 + o(1))

n2

≤ r4(3 + o(1))

n2

∑
i

‖ai‖2

=
r4(3 + o(1))

n
.

Therefore,

P
[
(‖w‖2y − ‖w‖2o)2 ≥ η2

12‖y‖2or4
n

]
≤ 1 + o(1)

η2
. (45)
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By Theorem 3.3, as n → ∞, the distribution of
√
n
〈
w,y

〉
o

r‖y‖o converges in distribution to

N [0, 1]. Therefore

P
[
(−2

〈
w, y

〉
o
) ≥ 2η1r‖y‖o√

n

∣∣∣‖w‖2o ≤ r2(1− c

n
)

]
≤ erfc(η1)

2
+ o(1). (46)

Finally, we need similar tail bounds for (
〈
w, y

〉
o
− 〈

w, y
〉
y
)2. Note that

(
〈
w, y

〉
o
− 〈

w, y
〉
y
)2 =

(
wT

(∑
i

aia
T
i

(
1− (1− aTi y)

2

(1− aTi y)
2

))
y

)2

(47)

≤
(∑

i

(wTaia
T
i y)

2

)(∑
i

(
1− (1− aTi y)

2

(1− aTi y)
2

)2
)

(48)

=

(∑
i

(wTaia
T
i y)

2

)(∑
i

(4 + o(1))(aTi y)
2

)
(49)

= (4 + o(1))

(∑
i

(wTaia
T
i y)

2

)
‖y‖2o. (50)

It suffices now to obtain a tail bound on
∑

i(w
Taia

T
i y)

2. By Theorem 3.3,

E

[∑
i

(wTaia
T
i y)

2
∣∣∣‖w‖2o ≤ r2(1− c

n
)

]
≤

(∑
i

‖aiaTi y‖2
)

r2(1 + o(1))

n

≤
(∑

i

(aTi y)
2

)
r2(1 + o(1))

n

≤ ‖y‖2or2(1 + o(1))

n
.

Therefore,

P
[
(
〈
w, y

〉
o
− 〈

w, y
〉
y
)2 ≤ 4η2‖y‖4or2

n

]
≤ 1 + o(1)

η2
. (51)

Putting together (45), (46) and (51), we see that

P
[
‖y − w‖2y − ‖w‖2o ≥ ‖y‖2y +

2η‖y‖o√
n

(√
3r +

rη1
η

+ ‖y‖o
) ∣∣∣Ec

w

]
≤ 2r2

η2
+

erfc(η1)

2
+ o(1).

¤

The following is a generalization of the Cauchy-Schwarz inequality that takes values in a

cone of semidefinite matrices where inequality is replaced by dominance in the semidefinite

cone. It will be used to prove Lemma 3.12 and may be of independent interest.
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Lemma 3.11 (Semidefinite Cauchy-Schwarz) Let

α1, . . . , αm be reals and A1, . . . , Am be r × n matrices. Let B 4 C signify that B is

dominated by C in the semidefinite cone. Then(
m∑
i=1

αiAi

)(
m∑
i=1

αiAi

)T

4
(

m∑
i=1

α2
i

)(
m∑
i=1

AiA
T
i

)
. (52)

Proof. For each i and j,

0 4 (αjAi − αiAj) (αjAi − αiAj)
T

Therefore,

0 4 1

2

m∑
i=1

m∑
j=1

(αjAi − αiAj) (αjAi − αiAj)
T

=

(
m∑
i=1

α2
i

)(
m∑
i=1

AiA
T
i

)
−

(
m∑
i=1

αiAi

)(
m∑
i=1

αiAi

)T

¤

We shall obtain an upper bound of 2
√
n on

‖∇ ln(
1

vol(Dx)
)‖
∣∣∣
x=o

= ‖∇ ln detH‖
∣∣∣
o
.

Lemma 3.12 ‖∇ ln detH|x‖x ≤ 2
√
n.

Proof.

In our frame,

∑
aia

T
i = I, (53)

where I is the n× n identity matrix, and for any vector v,

‖v‖o = ‖v‖. (54)

If X is a matrix whose `2 → `2 norm is less than 1, log(I +X) can be assigned a unique

value by equating it with the power series
∞∑
i=1

(−1)i−1X
i

i
.
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Using this formalism when y is in a small neighborhood of the identity.

ln detH(y) = trace lnH(y). (55)

In order to obtain an upper bound on ‖∇ ln detH‖ at o, it suffices to uniformly bound

∣∣∂ ln detH
∂h

∣∣ along all unit vectors h, since

‖∇ ln detH‖ = sup
‖h‖=1

∣∣ ∂
∂h

trace lnH
∣∣. (56)

[
∂

∂h
trace lnH

] ∣∣∣∣∣
o

= lim
δ→0

(
trace ln

(∑ aia
T
i

(1−δaTi h)2

)
− ln I

)

δ
(57)

=
∑
i

2(aTi h)(trace aia
T
i ) (58)

= 2
∑
i

‖ai‖2aTi h. (59)

The Semidefinite Cauchy-Schwarz inequality from Lemma 3.11 gives us the following.

(
∑
i

‖ai‖2ai)(
∑
i

‖ai‖2aTi ) 4 (
∑
i

‖ai‖4)(
∑
i

aia
T
i ) (60)

∑
i aia

T
i = I, so the magnitude of each vector ai must be less or equal to 1, and

∑
i ‖ai‖2

must equal n.

Therefore

(
∑
i

‖ai‖4)(
∑
i

aia
T
i ) = (

∑
i

‖ai‖4)I (61)

4 (
∑
i

‖ai‖2)I (62)

= nI (63)

(60) and (63) imply that

(
∑
i

‖ai‖2ai)(
∑
i

‖ai‖2aTi ) 4 nI. (64)
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(56), (59) and (64) together imply that

‖∇ ln detH‖ ≤ 2
√
n. (65)

¤

The following is due to P. Vaidya [22].

Lemma 3.13 ln detH is a convex function.

Proof. Let ∂
∂h

denote partial differentiation along a unit vector h. Recall that

∑
i aia

T
i = I.

∂2 ln detH

(∂h)2

∣∣∣
o

= lim
δ→0

1

δ2
trace ln

((∑ aia
T
i

(1− δaTi h)
2

)(∑ aia
T
i

(1 + δaTi h)
2

))

= lim
δ→0

trace
(
ln
(∑

i aia
T
i (
∑

j≥0(j + 1)(δaTi h)
j)
))

δ2

+
trace

(
ln
(∑

i aia
T
i (
∑

j≥0(j + 1)(−δaTi h)
j)
))

δ2

= lim
δ→0

trace
∑

k≥1
(−1)k−1

k

(∑
i aia

T
i (
∑

j≥1(j + 1)(δaTi h)
j)
)k

δ2

+
trace

∑
k≥1

(−1)k−1

k

(∑
i aia

T
i (
∑

j≥1(j + 1)(−δaTi h)
j)
)k

δ2
.

The only terms in the numerators of the above limit that matter are those involving δ2.

So this simplifies to

2
∑
i

trace aia
T
i (a

T
i h)

2 = 2
∑
i

‖ai‖2(aTi h)2

≥ 2
∑
i

(aTi h)
4

≥ 2
(∑

i(a
T
i h)

2
)2

m

=
2

m
.

This proves the lemma. ¤
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3.5 Conductance and mixing time The proof of the following theorem is along

the lines of Theorem 11 in Lovász [12].

Theorem 3.4 Let n be greater than some universal constant. Let S1 and S2 := K \ S1

be measurable subsets of K. Then,

∫

S1

Px(S2)dλ(x) ≥ 6

105
√
mn

min ( vol(S1), vol(S2)) .

Proof. Let ρ be the density of the uniform distribution on K. We shall use ρ in

some places where it is seemingly unnecessary because, then, most of this proof transfers

verbatim to a proof of Theorem 6.4 as well. For any x 6= y ∈ K,

ρ(y)
dPy

dλ
(x) = ρ(x)

dPx

dλ
(y),

therefore ρ is the stationary density of the Markov chain. Let δ = 3
400

√
mn

and ε = 13
200

.

Let S ′
1 = S1 ∩ {x

∣∣ρ(x)Px(S2) ≤ ε
2 vol(K)

} and S ′
2 = S2 ∩ {y

∣∣ρ(y)Py(S1) ≤ ε
2 vol(K)

}. By the

reversibility of the chain, which is easily checked,

∫

S1

ρ(x)Px(S2)dλ(x) =

∫

S2

ρ(y)Py(S1)dλ(y).

If x ∈ S ′
1 and y ∈ S ′

2 then

∫

K

min

(
ρ(x)

dPx

dλ
(w), ρ(y)

dPy

dλ
(w)

)
dλ(w) <

ε

vol(K)
.

For sufficiently large n, Lemma 3.1 implies that σ(S ′
1, S

′
2) ≥ δ. Therefore Theorem 3.1

implies that

π(K \ S ′
1 \ S ′

2) ≥ δπ(S ′
1)π(S

′
2).

First suppose π(S ′
1) ≥ (1− δ)π(S1) and π(S ′

2) ≥ (1− δ)π(S2). Then,

∫

S1

Px(S2)dρ(x) ≥ επ(K \ S ′
1 \ S ′

2)

2

≥ εδπ(S ′
1)π(S

′
2)

2

≥
(
(1− δ)2εδ

8

)
min(π(S1), π(S2))
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and we are done. Otherwise, without loss of generality, suppose π(S ′
1) ≤ (1 − δ)π(S1).

Then ∫

S1

Px(S2)dρ(x) ≥ εδ

2
π(S1)

and we are done. ¤

The following theorem was proved in Lovász and Simonovits [13].

Theorem 3.5 (Lovász-Simonovits) Let µ0 be the initial distribution for a lazy re-

versible ergodic Markov chain whose conductance is Φ and stationary measure is µ, and

µk be the distribution of the kth step. Let M := supS
µ0(S)
µ(S)

where the supremum is over all

measurable subsets S of K. Then, for all such S,

|µk(S)− µ(S)| ≤
√
M

(
1− Φ2

2

)k

.

We are now in a position to prove the main theorem regarding Dikin walk, Theorem 2.1.

Proof. [of Theorem 2.1] Let t be the time when the first non-zero move is made.

P[t ≥ t′
∣∣t ≥ t′ − 1] ≤ 1− 13

200
+ o(1) by Lemma 3.1 applied when x = x0 and y approaches

x0. Therefore when n is sufficiently large,

P
[
t <

ln( ε
2
)

ln(1− 6
100

)

]
≥ 1− ε

2
.

Let µk be the distribution of xk and µ be the stationary distribution, which is uniform.

Let ρk and ρ likewise be the density of µk and ρ = 1
vol(K)

the density of the uniform

distribution. We shall now find an upper bound for ρk+t

ρ
. For any x ∈ K, ρt(x) ≥ 100

6 vol(Dx)

by Lemma 3.1, applied when x = x0 and y approaches x0. By (2) in Fact 1 vol(Dx)
vol(K)

≥
(

r√
2ms

)n

, which implies that

sup
S⊆K

µt(S)

µ(S)
= sup

x∈K

ρt(x)

ρ
(66)

≤
(√

2ms

r

)n(
100

6

)
. (67)

The theorem follows by plugging in Equation 67 and the lower bound on the conductance

of Dikin walk given by Theorem 3.4 into Theorem 3.5. ¤
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γ (Uε̂)

γ (Uε)
U

Uε

Uε̂

γ
Kε

K = Kε̂

o

o

Figure 2: The effect of the projective transformation γ.

4. Affine algorithm for linear programming We shall consider problems of the

following form. Given a system of inequalities By ≤ 1, a linear objective c such that the

polytope

Q := {y : By ≤ 1 and |cTy| ≤ 1}

is bounded, and ε, δ > 0 the algorithm is required to do the following.

• If ∃ y such that By ≤ 1 and cTy ≥ 1, output y such that By ≤ 1 and cTy ≥ 1− ε

with probability greater than 1− δ.

Any linear program can be converted to such a form, either by the sliding objective method

or by combining the primal and dual problems and using the duality gap added to an

appropriate slack variable as the new objective (see Kojima and Ye [10] and references

therein). Before the iterative stage of the algorithm which is purely affine, we need to

transform the problem using a projective transformation. Let s ≥ sup
y∈Q

‖By‖+ 1, and

τ :=
⌈
4× 108 ×mn

(
n ln

(
4ms2

ε2

)
+ 2 ln

(
2

δ

))⌉
. (68)

Let γ be the projective transformation γ : y 7→ y
1−cT y

, and γ−1 the inverse map, γ−1 :

x 7→ x
1+cT x

. For any ε′ > 0, let Qε′ := Q ∩ {y
∣∣cTy ≤ 1 − ε′} and Uε′ be the hyperplane

{y
∣∣cTy = 1− ε′}. Let ε̂ = εδ

4n
and Kε := γ(Qε). Let K := Kε̂ = γ (Qε̂). For x ∈ K, let Dx

denote the Dikin ellipsoid (with respect to K) of radius r := 3
40
, centered at x.
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(i) Choose x0 uniformly at random from r−1Do, where o is the origin.

(ii) While i < τ and cT γ−1(xi) < 1− ε, choose xi+1 using the rule below.

(a) Flip an unbiased coin. If Heads, set xi+1 to xi.

(b) If Tails pick a random point y from Dxi .

(c) If xi 6∈ Dy, then reject y and set xi+1 to xi; if xi ∈ Dy, then set xi+1 to y.

(iii) If cT γ−1(xτ ) ≥ 1− ε output γ−1(xτ ), otherwise declare that there is no y such that By ≤ 1 and

cT y ≥ 1.

5. Algorithm

6. Analysis For any bounded f : K → R, we define

‖f‖2 :=
√∫

K

f(x)2ρ(x)dλ(x)

where ρ(x) = vol(Dx)∫
K vol(Dx)dλ(x)

. The following lemma shows that cross ratio is a projective

invariant.

Lemma 6.1 Let γ : Rn → Rn be a projective transformation. Then, for any 4 collinear

points a, b, c and d, (a : b : c : d) = (γ(a) : γ(b) : γ(c) : γ(d)).

Proof. Let {e1, . . . , en} be a basis for Rn. Without loss of generality, suppose that

a, b, c, d ∈ Re1. γ can be factorized as γ = γ2 ◦ γ1 where γ1 : Rn → Rn is a projective

transformation and maps Re1 to Re1 and γ2 : Rn → Rn is an affine transformation. Affine

transformations clearly preserve the cross ratio, so the problem reduces to showing that

(a : b : c : d) = (γ1(a) : γ1(b) : γ1(c) : γ1(d)), which is a 1-dimensional question. In

1-dimension, the group of projective transformations is generated by translations (x 7→

x+ β), scalar multiplication (x 7→ αx) and inversion (x 7→ x−1), where α, β ∈ R \ {0}. In

each of these cases the equality is easily checked. ¤

The following was proved in a more general context by Nesterov and Todd in Theorem

4.1, [19].
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Theorem 6.1 (Nesterov-Todd) Let pq be a chord of K and x, y be interior points on

it so that p, x, y, q are in order. Then z ∈ Dy implies that p+ |p−x|
|p−y|(z − p) ∈ Dx.

Theorem 6.2 (Lovász-Simonovits) Let M be a lazy reversible ergodic Markov chain

on K ⊆ Rn with conductance Φ, whose stationary distribution is µ. For every bounded f ,

let ‖f‖2,µ denote
√∫

K
f(x)2dµ(x). For any fixed f , let Mf be the function that takes x

to
∫
K
f(y)dPx(y). Then if

∫
K
f(x)dµ(x) = 0,

‖Mkf‖2,µ ≤
(
1− Φ2

2

)k

‖f‖2,µ.

We shall now prove the main theorem regarding Algorithm Dikin , Theorem 2.2.

Proof. [of Theorem 2.2] Throughout this proof, we will work in the transformed poly-

tope. Let pq be a chord of the polytope Kε containing the origin o such that

cT (γ−1(p)) ≥ cT (γ−1(q)). Let p′ = γ−1(p), q′ = γ−1(q) and r′ be the intersection of the

chord p′q′ with the hyperplane U := {y
∣∣cTy = 1}. Then, |q−o|

|p−o| ≤ |q′−o|
|p′−o| ≤ s. |p−o|

|q−o| is

equal to |(∞ : o : q : p)|. By Lemma 6.1, the cross ratio is a projective invariant. Since

cT (p′) ≤ 1− ε, and cT (r′) = 1,

|p− o|
|q − o| =

( |p′ − o|
|p′ − r′|

)( |r′ − q′|
|q′ − o|

)
(69)

≤
(
1

ε

)
(s). (70)

Therefore, for any chord pq of Kε through o, |p|
|q| ≤ s

ε
.

Let D =
∫
K

vol(Dy)dλ(y). Let

ρo(x) =





1
vol(Do)

, x ∈ Do;

0, otherwise,

be the density of xo and likewise ρτ be the density of the distribution of xτ . Let f0(x) =

ρ0(x)
ρ(x)

and fτ (x) =
ρτ (x)
ρ(x)

.

‖f0‖22 =

∫

Do

(
ρ0(x)

ρ(x)

)2

ρ(x)dλ(x)

≤ D

vol(Do) inf
x∈Do

vol(Dx)
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By Fact 1 and the fact that the Dikin ellipsoid of radius r with respect toKε is contained

in the Dikin ellipsoid of the same radius with respect to K,
√
2mDo ⊇ Symo(Kε). (70)

implies that Symo(Kε) ⊇
(
ε
s

)
Kε. We see from Theorem 6.1 that inf

x∈Do

vol(Dx) ≥ vol((1−

r)Do). Therefore,

‖f0‖22 ≤ D

vol(Do) inf
x∈Do

vol(Dx)

≤
(
2m( s

ε
)2

1− r

)n
(

D∫
Kε

vol(Dy)dλ(y)

)

=

(
2m( s

ε
)2

1− r

)n(
1

π(Kε)

)
, (71)

where π is the stationary distribution. For a line ` ⊥ U , let π` and ρ` be interpreted as

the induced measure and density respectively. Let ` intersect the facet of K that belongs

to Uε̂ at u. Then by Theorem 6.1, for any x, y ∈ ` ∩ K such that |x − u| > |y − u|,
ρ`(x)
|u−x|n ≤ ρ`(y)

|u−y|n . By integrating over such 1-dimensional fibres ` perpendicular to U , we

see that

π(Kε) =

∫
`⊥U

π`(` ∩Kε)du∫
`⊥U

π`(`)du

≤ sup
`⊥U

π`(` ∩Kε)

π`(`)

≤
(
(1− 1/ε̂)n+1 − (1/ε− 1/ε̂)n+1

(1/ε− 1/ε̂)n+1

)

. exp(
δ

4
)− 1 as n → ∞. (72)

The relationship between conductance Φ and decay of the L2 norm from Theorem 6.2

tells us that

‖fτ − Eρfτ‖22 ≤ ‖f0 − Eρf0‖22 e−τΦ2

=
(‖f0‖22 − ‖(Eρf0)1‖22

)
e−τΦ2

≤
(
2m( s

ε
)2

1− r

)n
(

e−τΦ2

π(Kε)

)
(from (71))

which is less than δ2

4π(Kε)
, when we substitute Φ from Theorem 6.4 and the value of τ from

(68).
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δ2

4π(Kε)
≥

∫

Kε

(fτ (x)− Eρfτ )
2ρ(x)dλ(x)

≥

(∫
Kε
(fτ (x)− Eρfτ )ρ(x)dλ(x)

)2

∫
Kε

ρ(x)dλ(x)

=
(P[xτ ∈ Kε]− π(Kε))

2

π(Kε)
.

which together with (72) implies that P[xτ ∈ Kε] . δ and completes the proof. ¤

For two sets S1, S2, we define

σ(S1, S2) := inf
x∈S1,y∈S2

σ(x, y).

The following generalization of Theorem 3.1 was proved in Lovász and Vempala [16].

Theorem 6.3 (Lovász-Vempala) Let S1 and S2 be measurable subsets of K and µ a

measure supported on K that possesses a density whose logarithm is concave. Then,

µ(K \ S1 \ S2)µ(K) ≥ σ(S1, S2)µ(S1)µ(S2).

The proof of the following lemma is along the lines of Lemma 3.1 and is provided below.

Lemma 6.2 Let x, y be points such that σ(x, y) ≤ 3
400

√
mn

. Then, the overlap

∫

Rn

min ( vol(Dx)Px, vol(Dy)Py) dλ(x)

between vol(Dx)Px and vol(Dy)Py in algorithm Dikin is greater than ( 9
100

− o(1)) vol(Dx).

Proof. If x → w is one step of Dikin ,

∫

Rn

min ( vol(Dx)Px, vol(Dy)Py) dλ(x) =

Ew

[
min

(
vol(Dx), vol(Dy)

dPy

dPx

(w)

)]
.

Ew

[
min

(
vol(Dx), vol(Dy)

dPy

dPx

(w)

)]
=

vol(Dx)P [(y ∈ Dw) ∧ (w ∈ Dy \ {x})] .
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Let Ex denote the event that

0 < max (‖x− w‖2w, ‖x− w‖2x) ≤ r2
(
1− 1

n

)
and

Ey denote the event that max (‖y − w‖w, ‖y − w‖y) ≤ r. The probability of Ey when

x → w is a transition of Dikin is greater or equal to P[Ey∧Ex]

2
when w is chosen uniformly

at random from Dx. Thus, using Lemmas 3.5, 3.6 and 3.7,
∫

Rn

min ( vol(Dx)Px, vol(Dy)Py) dλ(x) ≥

vol(Dx)
P
[
Ey

∣∣∣Ex

]
P [Ex]

2
≥

vol(Dx)(1− 3
√
2r − 8r2 − erfc(2)− erfc(3

2
)− o(1))

4
√
e

.

When r = 3/40, this evaluates to more than

vol(Dx)(
9

100
− o(1)). ¤

The proof of the following theorem closely follows that of Theorem 3.2.

Theorem 6.4 If K is a bounded polytope, the conductance of the Markov chain in Algo-

rithm Dikin is bounded below by 8
105

√
mn

.

Proof. For any x 6= y ∈ K, vol(Dy)
dPy

dλ
(x) =

vol(Dx)
dPx

dλ
(y), and therefore

ρ(x) :=
vol(Dx)∫

K
vol(Dx)dλ(x)

is the stationary density. Let δ = 3
400

√
mn

and ε = 9
100

. Theorem 6.3 is applicable in our

situation because by Lemma 3.13, the stationary density ρ is log-concave. The proof of

Theorem 3.2 now applies verbatim apart from using Lemma 6.2 instead of Lemma 3.1,

and Theorem 6.3 instead of Theorem 3.1. This gives us
∫

S1

Px(S2)dρ(x) ≥
(
(1− δ)2εδ

8

)
min(π(S1), π(S2)).

Thus we are done. ¤
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