Estimating Certain Non-Zero Littlewood-Richardson Coefficients

Hariharan Narayanan
Department of Statistics and Department of Mathematics
University of Washington
harin@uw.edu

June 18, 2013

Abstract

Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups $\left(G L_{n}\right)$. The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for certain Littlewood-Richardson coefficients. 2. A proof of approximate log-concavity of certain Littlewood-Richardson coefficients.

1 Introduction

Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups $\left(G L_{n}\right)$. They are ubiquitous in mathematics, appearing in representation theory, algebraic combinatorics, and the study of tilings. They appear in physics in the context of the fine structure of atomic spectra since Wigner [19]. They count the number of tilings using squares and triangles of certain domains [17]. They play a role in Geometric Complexity Theory, which seeks to separate complexity classes such as P and $N P$ by associating group-theoretic varieties to them, and then proving the non-existence of injective morphisms from one to the other by displaying representation theoretic obstructions [13, 14]. Thus, computing or estimating Littlewood-Richardson coefficents is important in several areas of science. Results for testing the positivity of a Littlewood-Richardson coefficient may be found in $[15,1]$. For the case where the Lie group has a
fixed rank, efficient (i. e. polynomial time) computation is possible based on Barvinok's algorithm (see "LATTE" [5]), or by using vector partition functions (see [4]). The degree of the polynomial in the runtime depends on the rank. Unfortunately Littlewood-Richardson coefficients are $\# P$-complete (see [16]), and so in the case of variable rank, under the widely held complexity theoretic belief that $P \neq N P$, they cannot be computed exactly in polynomial time.

We are thus lead to the question of efficient approximation:
Question 1. Is there an algorithm which takes as input the labels λ, μ, ν of a Littlewood-Richardson coefficient $c_{\lambda \mu}^{\nu}$, and produces in polynomial time an $1 \pm \epsilon$ approximation with probability more than $1-\delta$?

Definition 1.1. We say that an algorithm for estimating a quantity $f(x)$, where $x \in \mathbb{Q}^{n}$ runs in randomized strongly polynomial time, if the number of "standard" operations that it uses depends polynomially on n, but is independent of the bit-length of those rational numbers. We require that there be a universal constant C such that the algorithm output a random rational number $\hat{f}(x)$ with the property that

$$
\mathbb{P}\left[\frac{\hat{f}(x)}{f(x)} \in(1-C \epsilon, 1+C \epsilon)\right]>1-C \delta .
$$

We allow a polynomial dependence in n, ϵ^{-1} and the negative logarithm $-\log \delta$ but not the bitlength of x. Our set of standard operations consists of additions, subtractions, multiplications, divisions, comparisons and taking square-roots. We allow the use of random numbers whose bitlength depends on the bitlength of the input, provided the operations done on them are standard.

1.1 Littlewood-Richardson Cone

Given a symmetric non-negative definite matrix X, let $\operatorname{eig}(X)$ denote the eigenvalues of X listed in non-increasing order. The Littlewood-Richardson cone (or LRC) is defined as the cone of 3-tuples $(\operatorname{eig}(U), \operatorname{eig}(V), \operatorname{eig}(W))$, where U, V, W are symmetric positive definite and $U+V=W$.

Knutson and Tao proved the following in [11].
Theorem 2. The Littlewood-Richardson coefficient $c_{\lambda \mu}^{\nu}$ is greater than 0 if and only if (λ, μ, ν) is an integer point in the Littlewood-Richardson cone.

Figure 1: $L R C$ and $L R C+\left(\Delta, \Delta, \Delta^{\prime}\right)$

In the remainder of this paper, C, C_{1}, \ldots will denote sufficiently large absolute constants.

In particular, as γ tends to infinity, the fraction of all $c_{\lambda \mu}^{\nu}$ corresponding to integer points in

$$
L R C \cap\left\{\|(\lambda, \mu, \nu)\|_{1} \leq \gamma\right\}
$$

that can be approximated, tends to 1 .
Let $\Delta=2\left(n^{3}, n^{3}-n^{2}, \ldots, n^{2}\right)$,
$\Delta^{\prime}=\left(3 n^{3}+n^{2}, 3 n^{3}-n^{2}, \ldots, n^{3}+3 n^{2}\right)$.
For $n^{2} \epsilon^{-1} \in \mathbb{N}$, let $\Delta_{\epsilon}=\left(\frac{2}{\epsilon}\right)\left(n^{3}, n^{3}-n^{2}, \ldots, n^{2}\right)$, and $\Delta_{\epsilon}^{\prime}=\left(\frac{1}{\epsilon}\right)\left(3 n^{3}+\right.$ $\left.n^{2}, 3 n^{3}-n^{2}, \ldots, n^{3}+3 n^{2}\right)$.

Theorem 3. If $(\lambda, \mu, \nu) \in\left(\Delta, \Delta, \Delta^{\prime}\right)+L R C$, then $c_{\lambda \mu}^{\nu}$ can be approximated in randomized strongly polynomial time.

The following theorem is shown by proving (in Lemma 12) that the fraction of all $c_{\lambda \mu}^{\nu}$ corresponding to integer points in

$$
\left(\left(\Delta, \Delta, \Delta^{\prime}\right)+L R C\right) \cap\left\{\|(\lambda, \mu, \nu)\|_{1} \leq \gamma\right\}
$$

in $L R C \cap\left\{\|(\lambda, \mu, \nu)\|_{1} \leq \gamma\right\}$ is at least $1-C\left(\frac{n^{5}}{\gamma}\right)$.
Theorem 4. There is an absolute constant C such that for $n>C$, and $\gamma>C n^{5}$, there is a randomized strongly polynomial time algorithm for approximating a $1-C\left(\frac{n^{5}}{\gamma}\right)$ fraction of all $c_{\lambda \mu}^{\nu}$ corresponding to integer points in

$$
L R C \cap\left\{\|(\lambda, \mu, \nu)\|_{1} \leq \gamma\right\}
$$

The following result shows that while Okounkov's question on the logconcavity of Littlewood-Richcardson coeffecients in [18] has been answered in the negative, a form of approximate log-concavity can be shown to hold among the coefficients corresponding to integer points in $(1 / \epsilon)\left(\Delta, \Delta, \Delta^{\prime}\right)+$ LRC.

Theorem 5. If $n>C$ and $\theta(\lambda, \mu, \nu)+(1-\theta)\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}\right)=(\bar{\lambda}, \bar{\mu}, \bar{\nu})$, and each vector indexes a Littlewood-Richardson coefficient and is in $(1 / \epsilon)\left(\Delta, \Delta, \Delta^{\prime}\right)+$ $L R C$, then

$$
\log \left(c_{\lambda \mu}^{\nu}\right)+C \epsilon \geq \theta \log \left(c_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}}\right)+(1-\theta) \log \left(c_{\bar{\lambda} \bar{\mu}}^{\bar{\nu}}\right) .
$$

2 Preliminaries

2.1 Group Representations

Suppose V is a complex vector space and G and $G L(V)$ are respectively a group and the group of automorphisms of V, then given a homomorphism $\rho: G \rightarrow G L(V)$, we call V a representation of V. If no non-trivial proper subspace of V is mapped to itself by all $g \in G, V$ is said to be irreducible. Littlewood-Richardson coefficients appear in the representation theory of the general linear group $G L_{n}(\mathbb{C})$. Suppose V_{λ}, V_{μ} and V_{ν} are irreducible representations of $G L_{n}(\mathbb{C})$. The Littlewood-Richardson coefficient $c_{\lambda \mu}^{\nu}$ is the multiplicity of V_{ν} in $V_{\lambda} \otimes V_{\mu}$.

$$
\begin{equation*}
V_{\lambda} \otimes V_{\mu}=\bigoplus_{\nu} V_{\nu}^{c_{\lambda \mu}^{\nu}} \tag{2.1}
\end{equation*}
$$

2.2 Hive model and rhombus inequalities for LittlewoodRichardson coefficients

Let λ, μ, ν be vectors in \mathbb{Z}^{n} whose entries are non-increasing non-negative integers. In all subsequent appearances, this will be assumed of λ, μ and ν. Let the sum of the entries of a vector α be denoted $|\alpha|$. Further, let

$$
|\lambda|+|\mu|=|\nu| .
$$

Take an equilateral triangle Δ_{n} of side n. Tessellate it with unit equilateral triangles. Assign boundary values to Δ_{n} as in Figure 1; Clockwise, assign the values $0, \lambda_{1}, \lambda_{1}+\lambda_{2}, \ldots,|\lambda|,|\lambda|+\mu_{1}, \ldots,|\lambda|+|\mu|$. Then anticlockwise, on the horizontal side, assign

$$
0, \nu_{1}, \nu_{1}+\nu_{2}, \ldots,|\nu| .
$$

Figure 2: Hive model for LR coefficients

Figure 3: Interior nodes in the hive model for LR coefficients

Knutson and Tao defined this hive model for Littlewood-Richardson coefficients in [10]. They proved that the Littlewood-Richardson coefficient $c_{\lambda \mu}^{\nu}$ is given by the number of ways of assigning integer values to the interior nodes of the triangle, such that the piecewise linear extension to the interior of Δ_{n} is a concave function f from Δ_{n} to \mathbb{R}. Another way of stating this condition is that for every rhombus such as that in Figure 2, if the values taken at the nodes are w, x, y, z where y and w correspond to 120° angles, then $y+w \geq x+z$. Let L denote the unit triangular lattice that subdivides Δ_{n}. We refer to any map from $\Delta_{n} \cap L$ to \mathbb{Z} that satisfies the rhombus inequalities as a hive.

Definition 2.1. Let $P_{\lambda \mu}^{\nu}$ be a subset of $\mathbb{R}^{\binom{n}{2}}$. Let the canonical basis correspond to the set of interior nodes in the corresponding hive. (see Figure $2)$. Let $P_{\lambda \mu}^{\nu}$ denote the hive polytope corresponding to (λ, μ, ν) defined by the above inequalities, one for every unit rhombus.

3 A Randomized Approximation Scheme

The number of points in $P_{\lambda \mu}^{\nu} \cap \mathbb{Z}\binom{n}{2}$ is equal to the volume of the set

$$
\begin{equation*}
\zeta_{\lambda \mu}^{\nu}:=\left\{x \inf _{y \in P_{\lambda \mu}^{\nu} \cap \mathbb{Z}\binom{n}{2}}\|x-y\|_{\infty}<\frac{1}{2}\right\} . \tag{3.1}
\end{equation*}
$$

Let $P_{\lambda \mu}^{\nu}$ be described as

$$
\begin{equation*}
A x-b_{\lambda \mu}^{\nu} \preccurlyeq \overrightarrow{0}, \tag{3.2}
\end{equation*}
$$

where the rows of A correspond to rhombus inequalities.
We make the following observation.

Observation 1. Each row of A has at most 4 non-zero entries. Each of these entries equals ± 1.

The vector $b_{\lambda \mu}^{\nu}$ depends on λ, μ, ν in a way that reflects the boundary conditions of the hive.

Let $Q_{\lambda \mu}^{\nu}$ denote the polytope defined by the inequalities

$$
\begin{equation*}
A x-b_{\lambda \mu}^{\nu} \preccurlyeq \overrightarrow{2} . \tag{3.3}
\end{equation*}
$$

Let $O_{\lambda \mu}^{\nu}$ denote the polytope defined by the inequalities

$$
\begin{equation*}
A x-b_{\lambda \mu}^{\nu} \preccurlyeq-\overrightarrow{2} . \tag{3.4}
\end{equation*}
$$

By (3.2), (3.3) and (3.4),

$$
\begin{equation*}
O_{\lambda \mu}^{\nu} \subseteq \zeta_{\lambda \mu}^{\nu} \subseteq Q_{\lambda \mu}^{\nu} . \tag{3.5}
\end{equation*}
$$

In what follows, we were strongly influenced by a result of Kannan and Vempala, who show in [8] that the number of integer points in an n-dimensional polytope with r-faces containing a Euclidean ball of radius $O(n \sqrt{\log r})$ is within a constant factor of the volume. However, by exploiting Observation 1, we avoid the multiplicative factor of $\sqrt{\log r}$.
Lemma 6. If $(\lambda, \mu, \nu) \in\left(\Delta_{\epsilon}, \Delta_{\epsilon}, \Delta_{\epsilon}^{\prime}\right)+L R C$, then $P_{\lambda \mu}^{\nu}$ contains a Euclidean ball of radius $\frac{\binom{n}{2}}{2 \epsilon}$.
Proof. By Results of Knutson-Tao [10] and Knutson-Tao-Woodward [11], for every integer point $\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}\right)$ in LRC, $c_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}}>0$. Fix $\lambda^{\prime}=\lambda-\Delta_{\epsilon}, \mu^{\prime}=\mu-\Delta_{\epsilon}$ and $\nu^{\prime}=\nu-\Delta_{\epsilon}^{\prime}$. Let z denote an arbitrary integer point in $P_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}}$ (which exists by the last remark). By (3.2) and the corresponding set of inequalities for $P_{\Delta_{\epsilon} \Delta_{\epsilon}}^{\Delta_{\epsilon}^{\prime}}$, we see that $z+P_{\Delta_{\epsilon} \Delta_{\epsilon}}^{\Delta_{\epsilon}^{\prime}} \subseteq P_{\lambda \mu}^{\nu}$. To prove the lemma, it thus suffices to show that $P_{\Delta_{\varepsilon} \Delta_{\epsilon}}^{\Delta_{\epsilon}^{\prime}}$ contains a ball of radius $\binom{n}{2}$. We first describe the center of this ball. Let $(0,0)$ be the leftmost - bottommost corner of the hive in question. Here u is the coordinate corresponding to the x direction, and v is the coordinate corresponding to the $x / 2+\frac{\sqrt{3}}{2} y$ direction. Consider the restriction of the following function to $\Delta_{n} \cap L$:

$$
f(u, v)=\left(\frac{1}{\epsilon}\right)\left(\left(3 n^{3}+n^{2}\right) u+\left(2 n^{3}\right) v-\left(n^{2}-n\right)\left(u^{2}+v^{2}\right)\right) .
$$

This corresponds to a hive. Moreover, the resulting vector x_{f} satisfies

$$
\begin{equation*}
A x_{f}-b_{\Delta_{\epsilon} \Delta_{\epsilon}}^{\Delta_{\epsilon}^{\prime}} \preccurlyeq-\left(\frac{2}{\epsilon}\right)\binom{\vec{n}}{2} . \tag{3.6}
\end{equation*}
$$

Therefore, by Observation 1, for any vector $y \in \mathbb{R}^{\binom{n}{2}}$ such that $\|y\|_{\infty} \leq \frac{\binom{n}{2}}{2 \epsilon}$.

$$
\begin{equation*}
A\left(x_{f}+y\right)-b_{\Delta_{\epsilon} \Delta_{\epsilon}}^{\Delta_{\epsilon}^{\prime}} \preccurlyeq \overrightarrow{0} . \tag{3.7}
\end{equation*}
$$

In particular, this means that $P_{\lambda \mu}^{\nu}$ contains a ball of radius $\frac{\binom{n}{2}}{2 \epsilon}$.
Lemma 7. If $n>C$, and $n^{2} \epsilon^{-1} \in \mathbb{N}$ then if $(\lambda, \mu, \nu) \in\left(\Delta_{\epsilon}, \Delta_{\epsilon}, \Delta_{\epsilon}^{\prime}\right)+L R C$

$$
\begin{equation*}
1-C \epsilon \leq \frac{\operatorname{vol} \zeta_{\lambda \mu}^{\nu}}{\operatorname{vol} Q_{\lambda \mu}^{\nu}} \leq 1 \tag{3.8}
\end{equation*}
$$

Proof. Let $\lambda^{\prime}=\lambda-\Delta_{\epsilon}, \mu^{\prime}=\mu-\Delta_{\epsilon}$ and $\nu^{\prime}=\nu-\Delta_{\epsilon}^{\prime}$. By Results of KnutsonTao [10] and Knutson-Tao-Woodward [11], $P_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}}$ contains an integer point. Let this point be z.

Lemma 8. Let the origin be translated so that centered at $z+\left(\Delta_{\epsilon}, \Delta_{\epsilon}, \Delta_{\epsilon}^{\prime}\right)$ is the new origin. Let $d:=\binom{n}{2}$ and $n \geq C$. Then,

$$
\begin{equation*}
\left(1+\frac{C_{1} \epsilon}{d}\right) O_{\lambda \mu}^{\nu} \supseteq Q_{\lambda \mu}^{\nu} \tag{3.9}
\end{equation*}
$$

Proof. This follows from Lemma 6 and elementary geometry.
Consequently

$$
\begin{equation*}
\operatorname{vol} \zeta_{\lambda \mu}^{\nu} \geq\left(1+\frac{C_{1} \epsilon}{d}\right)^{-d}\left(\operatorname{vol} Q_{\lambda \mu}^{\nu}\right) \tag{3.10}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\operatorname{vol} \zeta_{\lambda \mu}^{\nu} & \geq\left(1+\frac{C_{1} \epsilon}{d}\right)^{-d}\left(\operatorname{vol} Q_{\lambda \mu}^{\nu}\right) \tag{3.11}\\
& \geq e^{-C_{1} \epsilon}\left(\operatorname{vol} Q_{\lambda \mu}^{\nu}\right) \tag{3.12}
\end{align*}
$$

The following theorem is a special case of Kirszbraun's Theorem [9].
Theorem 9. if U is a subset of \mathbb{R}^{2}, and

$$
f: U \rightarrow \mathbb{R}
$$

is a Lipschitz-continuous map, then there is a Lipschitz-continuous map

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

that extends f and has the same Lipschitz constant as f.

Lemma 10. Given (α, β, θ) where each each vector is in \mathbb{R}^{n} and

$$
\sum_{i} \alpha_{i}+\beta_{i}=\sum_{i} \theta_{i},
$$

suppose that $4\|(\alpha, \beta, \theta)\|_{\infty} \leq \delta$. Assign boundary values to Δ_{n} as in Figure 1; Clockwise, assign the values $0, \alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots,|\alpha|,|\alpha|+\beta_{1}, \ldots,|\alpha|+|\beta|$. Then anticlockwise, on the horizontal side, assign

$$
0, \theta_{1}, \theta_{1}+\theta_{2}, \ldots,|\theta| .
$$

Then there exists a assignment of real values to the interior nodes of Δ_{n} that has the property that the Lipschitz constant of the resulting map from $\Delta_{n} \cap L$ to \mathbb{R} is less or equal to $\delta / 2$. Consequently no rhombus inequality of the form $w+y-x-z \geq 0$ (see Figure 2) is violated by more than δ.

Proof. We apply Theorem 9 after setting U to be the the set of boundary vertices of Δ_{n}. In order to get an upper bound on the Lipschitz onstant of f corresponding to boundary data α, β, θ, it suffices to consider the worst-case geometrical configuration involving a 60 degree angle. More precisely, we can bound the Lipschitz constant by

$$
\begin{equation*}
\sup _{A B C}(\delta / 4) \frac{|A B|+|B C|}{|A C|} . \tag{3.13}
\end{equation*}
$$

as $A B C$ ranges over all triangles having a 60 degree angle at B. By the cosine law,

$$
\begin{equation*}
|A B|^{2}+|B C|^{2}-|A B| \cdot|B C|=|A C|^{2} . \tag{3.14}
\end{equation*}
$$

Therefore, using the A.M-G.M inequality

$$
(|A B|+|B C|)^{2}-\frac{3}{4}(|A B|+|B C|)^{2} \leq|A C|^{2} .
$$

This tells us that

$$
\frac{|A B|+|B C|}{|A C|} \leq 2 .
$$

Therefore, The Lipschitz constant of f is at most

$$
\begin{equation*}
\sup _{A B C}(\delta / 4) \frac{|A B|+|B C|}{|A C|} \leq \delta / 2 . \tag{3.15}
\end{equation*}
$$

We apply Theorem 9 and note that $w+y-x-z=(w-x)+(y-z)$ and so the maximum value of $w+y-x-z$ (see Figure 2) taken around a unit rhombus is twice the Lipschitz constant. This proves the Lemma.

Figure 4: $K_{-\delta}$ contains $\left(1-\frac{\delta}{r_{i n}}\right) K$

Definition 3.1. We denote the set of points within a distance δ of a convex body K (including K itself) by K_{δ}. This is called the outer parallel body of K and is convex. The set of points at a distance $\geq \delta$ to $\mathbb{R}^{n} \backslash K$ shall be denoted $K_{-\delta}$. This is called the inner parallel body of K and is convex as well.

The following Lemma appeared in [2].
Lemma 11. Let K contain a ball of radius $r_{i n}$ centered at the origin. Then,

$$
K_{-\delta} \supseteq\left(1-\frac{\delta}{r_{i n}}\right) K
$$

Proof. Let O be the center of the sphere of radius $r_{i n}$ contained inside K. Let A be a point on ∂K and let $F:=\left(1-\frac{\delta}{r_{i n}}\right) A$. It suffices to prove that $F \in K_{-\delta}$.

We construct the smallest cone from A containing the sphere. Let B be a point where the cone touches the sphere of radius $r_{i n}$ centered at the origin. We have $O B=r_{i n}$. Now consider the inscribed sphere centered at F. By similarity of triangles, we have

$$
\frac{C F}{O B}=\frac{A F}{A O} .
$$

Noticing that $A F=\frac{\delta}{r_{i n}} O A$, we obtain

$$
C F=O B \frac{A F}{A O}=\delta
$$

We thus see that the radius of the inscribed ball is δ and hence the δ-ball centered in F is contained in K. Therefore, $F \in K_{-\delta}$.

Lemma 12. Let $\bar{\gamma}:=\frac{n^{5}}{\gamma}$. There is an absolute constant C such that if $n>C$ and $0<\bar{\gamma}<C^{-1}$, then the fraction of integer points

$$
\begin{equation*}
(\lambda, \mu, \nu) \in L R C \cap\left\{(\lambda, \mu, \nu) \left\lvert\,\|(\lambda, \mu, \nu)\|_{1} \leq \frac{C n^{5}}{\bar{\gamma}}\right.\right\} \tag{3.16}
\end{equation*}
$$

such that

$$
(\lambda, \mu, \nu) \in\left(\Delta, \Delta, \Delta^{\prime}\right)+L R C
$$

is greater or equal to $1-C \bar{\gamma})$.
Proof. Let $D:=L R C \cap\left\{\|(\lambda, \mu, \nu)\|_{1} \leq \frac{C n^{5}}{\bar{\gamma}}\right\}$. For $(\lambda, \mu, \nu) \in L R C,\|(\lambda, \mu, \nu)\|_{1}=$ $\sum_{i=1}^{n}\left(\lambda_{1}+\mu_{1}+\nu_{i}\right)$. As a result, the integer points inside

$$
\begin{equation*}
\left(L R C+\left(\Delta, \Delta, \Delta^{\prime}\right)\right) \cap\left\{\|(\lambda, \mu, \nu)\|_{1} \leq \frac{C n^{5}}{\bar{\gamma}}\right\} \tag{3.17}
\end{equation*}
$$

are in bijective correspondence (via subtraction of $\left(\Delta, \Delta, \Delta^{\prime}\right)$) with the integer points in

$$
\begin{equation*}
D^{\prime}:=L R C \cap\left\{(\lambda, \mu, \nu) \left\lvert\,\|(\lambda, \mu, \nu)\|_{1} \leq \frac{C n^{5}}{\bar{\gamma}}-\left\|\left(\Delta, \Delta, \Delta^{\prime}\right)\right\|_{1}\right.\right\} . \tag{3.18}
\end{equation*}
$$

We will first show that D^{\prime} contains a ball whose radius is large. Suppose $\left(\lambda^{o}, \mu^{o}, \nu^{o}\right)=\left(\frac{n^{2}}{8 \bar{\gamma}}\right)\left(\Delta, \Delta, \Delta^{\prime}\right)$. Suppose $4\|\alpha, \beta, \theta\|_{\infty}<\left(\frac{\left(n^{3}\right)}{16 \bar{\gamma}}\right)\binom{n}{2}$. By Lemma 10

$$
\left(\lambda^{o}+\alpha, \mu^{o}+\beta, \nu^{o}+\theta\right) \in D^{\prime} .
$$

Thus D^{\prime} contains a cube of side $2 R:=2\left(\frac{n^{2}}{16 \bar{\gamma}}\right)\binom{n}{2}$, and a hence a Euclidean ball of radius R centered at $\left(\lambda^{o}, \mu^{o}, \nu^{o}\right)$. Let $D_{-\sqrt{3 n}}^{\prime}$ be the inner parallel body of D^{\prime} at a distance of $\sqrt{3 n}$. Let $D_{\sqrt{3 n}}$ be the outer parallel body of D^{\prime} at a distance of $\sqrt{3 n}$. Then, we have the following lemma.

Lemma 13. Translate the origin to $\left(\lambda^{o}, \mu^{o}, \nu^{o}\right)$. There is an absolute constant C_{1}, such that for $n \geq C_{1}$,

$$
\begin{equation*}
\left(1+\frac{\bar{\gamma}}{n}\right) D_{-\sqrt{3 n}}^{\prime} \supseteq D_{\sqrt{3 n}} . \tag{3.19}
\end{equation*}
$$

Proof. Let $K:=D_{\sqrt{3 n}}$ and $\delta:=\sqrt{3 n}$. Then, $K_{-\delta}=D$, and applying Lemma 11, we have

$$
\begin{equation*}
D_{\sqrt{3 n}} \subseteq\left(1-\frac{\sqrt{3 n}}{R+\sqrt{3 n}}\right)^{-1} D \tag{3.20}
\end{equation*}
$$

Next, because D^{\prime} and D are homothetic cones (with respect to the common apex), we have

$$
\begin{equation*}
\left(1-\frac{\bar{\gamma}\left\|\left(\Delta, \Delta, \Delta^{\prime}\right)\right\|_{1}}{C n^{5}}\right) D \subseteq D^{\prime} \tag{3.21}
\end{equation*}
$$

Lastly, using Lemma 11, we have

$$
\begin{equation*}
\left(1-\frac{\sqrt{3 n}}{R}\right) D^{\prime} \subseteq D_{-\sqrt{3 n}}^{\prime} \tag{3.22}
\end{equation*}
$$

The lemma follows from (3.20), (3.21) and (3.22).
Therefore

$$
\begin{align*}
\operatorname{vol} D_{-\sqrt{3 n}}^{\prime} & \geq e^{-C \bar{\gamma}}\left(1+\frac{C \bar{\gamma}}{n}\right)^{n} \operatorname{vol} D_{-\sqrt{3 n}}^{\prime} \tag{3.23}\\
& \geq(1-C \bar{\gamma}) \operatorname{vol} D_{\sqrt{3 n}} . \tag{3.24}
\end{align*}
$$

The volume vol $D_{-\sqrt{3 n}}^{\prime}$ is less or equal to the number of lattice points in D^{\prime}, since the union of all unit cubes centered at lattice points in D^{\prime} contains $D_{-\sqrt{3 n}}^{\prime}$. Also, vol $D_{\sqrt{3 n}}$ is greater or equal to the number of lattice points in D, since the union of all unit cubes centered at lattice points in D is contained in $D_{\sqrt{3 n}}$. This proves the lemma.

Proof of Theorem 3. We denote by $W_{\infty}\left(\nu_{1}, \nu_{2}\right)$ the infinity-Wasserstein distance between two measures ν_{1} and ν_{2} supported on a metric space X. This is defined as

$$
\begin{equation*}
\inf _{\nu} \sup _{\left(x_{1}, x_{2}\right) \in \operatorname{supp}(\nu)}\left\|x_{1}-x_{2}\right\|, \tag{3.25}
\end{equation*}
$$

where the infimum is over all measures on $X \times X$ such that the marginal on the first factor is ν_{1} and the marginal on the second factor is ν_{2}. The Dikin walk [7], started at the point $x_{0} \in Q_{\lambda \mu}^{\nu}$ can be used to sample from a distribution μ that satisfies the following property in strongly polynomial time: there is a measure μ^{\prime} such that $W_{\infty}\left(\mu^{\prime}, \mu\right)<e^{-\left(\|(\lambda, \mu, \nu)\|_{1}\right)\left(\frac{n}{\epsilon}\right)^{C}}$ and $\left\|\mu^{\prime}-\mu^{\prime \prime}\right\|_{T V}<\epsilon$, where $\mu^{\prime \prime}$ is the uniform measure on $Q_{\lambda \mu}^{\nu}$. We note that this involves using random numbers whose bitlength depends on $\|(\lambda, \mu, \nu)\|$, however the number of operations on these random numbers depends polynomially on n, ϵ and $\log \frac{1}{\delta}$.

This us allows produce s i.i.d random points in $T Q_{\lambda \mu}^{\nu}$, each from a distribution μ that is close to $\mu^{\prime \prime}$ in the above sense.

3.1 Algorithm

3.2 Step 1.

There are a number of algorithms that compute estimates of the volume of a convex set K in polynomial time as a function of n and the ratio between

1. Produce an estimate \hat{V} of the volume V of the the polytope $Q_{\lambda \mu}^{\nu}$ in strongly polynomial time that has the following property:

$$
\begin{equation*}
\mathbb{P}\left[\frac{\hat{V}}{V} \in[1-\epsilon, 1+\epsilon]\right]>1-\delta . \tag{3.26}
\end{equation*}
$$

2. Produce $s=\frac{C \log \frac{1}{\delta}}{\epsilon^{2}}$ from a distribution μ such that the following holds. There is a measure μ^{\prime} such that $W_{\infty}\left(\mu^{\prime}, \mu\right)<e^{-\left(\|(\lambda, \mu, \nu)\|_{1}\right)\left(\frac{n}{\epsilon}\right)^{C}}$ and $\left\|\mu^{\prime}-\mu^{\prime \prime}\right\|_{T V}<\epsilon$, where $\mu^{\prime \prime}$ is the uniform measure on $Q_{\lambda \mu}^{\nu}$. Take the nearest lattice point to each sample, and compute the proportion f of the resulting points that lie in $P_{\lambda \mu}^{\nu}$.
3. Output $f \hat{V}$ (an estimate of $\operatorname{vol} \zeta_{\lambda \mu}^{\nu}$).
a the radius R_{K} of a ball containing K and the radius r_{K} of another ball contained in K. The most efficient of these is the algorithm of Lovász and Vempala [12]. However, we wish to compute this estimate using a number of operations that is polynomial in n rather than the bitlength, and therefore we cannot afford any dependence on $\frac{R_{K}}{r_{K}}$. To this end, given polytope $Q_{\lambda \mu}^{\nu}$, we describe below, how to find in strongly polynomial time, a linear transformation T such that for a $T Q_{\lambda \mu}^{\nu}$ contains a ball of radius 1 and is contained inside a ball of radius $m^{\frac{3}{2}}$, where m is the number of constraints.

Let Q be a polytope given by $A x \preccurlyeq 1$. Then, the Dikin ellipsoid $D_{x_{0}}(r)$ of radius r centered at a point x_{0} is the set of all y such that

$$
\begin{equation*}
\left\{y:\left(x_{0}-y\right)^{T}\left(\sum_{i=1}^{m} \frac{a_{i} a_{i}^{T}}{\left(1-a_{i}^{T} x_{0}\right)^{2}}\right)\left(x_{0}-y\right) \leq r^{2}\right\} \tag{3.27}
\end{equation*}
$$

For every codimension 1 facet f of $Q_{\lambda \mu}^{\nu}$, consider the vector v_{f} orthogonal to the hyperplane containing f. Use the strongly polynomial time linear programming algorithm of Tardös as in [15] to maximize both $\left\langle x, v_{f}\right\rangle$ and $\left\langle x,-v_{f}\right\rangle$ over all x in $Q_{\lambda \mu}^{\nu}$. If both of the resulting points are contained in f, we declare the polytope $Q_{\lambda \mu}^{\nu}$ to be contained in the affine span of f, and therefore have 0 volume. Otherwise, exactly one of the points is not in f. Denote this point by x_{f}. Let x_{0} be the average of all points x_{f} as f ranges over the codimension 1 facets of $Q_{\lambda \mu}^{\nu}$. Define T to be a linear
transformation that maps the Dikin ellipsoid $D_{x_{0}}(1)$ of $Q_{\lambda \mu}^{\nu}$ onto the unit ball. Suppose $Q_{\lambda \mu}^{\nu}$ is expressed as $C x \preccurlyeq 1$. Such a T can be found using the Cholesky decomposition of

$$
\left(\sum_{i=1}^{m} \frac{c_{i} c_{i}^{T}}{\left(1-c_{i}^{T} x_{0}\right)^{2}}\right),
$$

where m is the number of rows in C, which can be found in strongly polynomial time provided one can find square-roots in one operation. We have assumed this in our model of computation.

3.2.1 Correctness of Step 1.

Let $K \cap(x-K)$ be defined to be the symmetrization around x of the convex set K. Then, translating the origin to x_{0} we have the following lemma.

Lemma 14. 1. $\frac{1}{\sqrt{m}}\left(Q_{\lambda \mu}^{\nu} \cap\left(-Q_{\lambda \mu}^{\nu}\right)\right) \subseteq D_{x_{0}}(1) \subseteq Q_{\lambda \mu}^{\nu} \cap\left(-Q_{\lambda \mu}^{\nu}\right)$.
2. $\frac{1}{m-1} Q_{\lambda \mu}^{\nu} \subseteq Q_{\lambda \mu}^{\nu} \cap\left(-Q_{\lambda \mu}^{\nu}\right)$.

Proof. Consider an arbitrary chord of $a b$ of $Q_{\lambda \mu}^{\nu}$ through the origin x_{0}. Identify it with the real line. Let $\pm t$ be the points where the chord intersects the ellipsoid. Let $\pm t_{1}, \pm t_{2}, \ldots$ be the intersections of the chord with the extended facets of the symmetrized body. Then,

$$
\frac{1}{t^{2}}=\sum_{i} \frac{1}{t_{i}^{2}}
$$

It follows that

$$
\begin{equation*}
\frac{1}{\sqrt{m}} \min _{i}\left|t_{i}\right| \leq|t| \leq \min _{i}\left|t_{i}\right| . \tag{3.28}
\end{equation*}
$$

This completes the proof of the first part of the lemma. To see the second part, consider again the same arbitrary chord $a b$ through x_{0}. Suppose without loss of generality that $\left|t_{1}\right| \leq\left|t_{2}\right| \leq \ldots$, and that $a=-t_{1}$ and $b=t_{k}$. Let a lie on the face f. Let a^{\prime} be the intersection with the hyperplane containing face $f_{1}:=f$ of the line through x_{0} and x_{f}. Then, by the definition of x_{f},

$$
\begin{equation*}
\frac{\left|x_{f}\right|}{\left|a^{\prime}\right|} \geq \frac{|b|}{|a|} . \tag{3.29}
\end{equation*}
$$

It thus suffices to show that $m-1 \geq \frac{\left|x_{f}\right|}{\left|a^{\prime}\right|}$. As f_{i} ranges over the faces of $Q_{\lambda \mu}^{\nu}$, all the points $x_{f_{i}}$ lie on the same side of the affine span of f_{1}.

Therefore their average $x_{2, a v}:=\left(\frac{1}{m-1}\right) \sum_{i \geq 2} x_{f_{i}}$ lies on the same side of the affine span of f_{1} as does $x_{f_{1}}$. However $x_{2, a v}$ lies on the line joining $x_{f_{1}}$ and $x_{0}=(1 / m) \sum_{i \geq 1} x_{f_{i}}$. Therefore

$$
\begin{equation*}
m-1=\frac{\left|x_{f}\right|}{\left|x_{2, a v}\right|} \geq \frac{\left|x_{f}\right|}{\left|a^{\prime}\right|} \geq \frac{|b|}{|a|} . \tag{3.30}
\end{equation*}
$$

This proves the lemma.

3.3 Step 2.

We observe that f is the average of i.i.d $0-1$ random variables x_{i}, each having a success probability p that satisfies $p-\epsilon<\frac{\operatorname{vol} \zeta_{\lambda \mu}^{\nu}}{\operatorname{vol} Q_{\lambda \mu}^{\mu}}<p+\epsilon$. By (7) $\frac{1}{C} \leq p \leq 1$ for each i.

The following inequality is a consequence of Theorem 1 of Hoeffding [6].
Proposition 3.2. Let a coin have success probability p. Let \hat{m} be the number of successes after m proper trials. Then

$$
\mathbb{P}\left[\left|\frac{\hat{m}}{m}-p\right| \geq \lambda p\right] \leq 2 e^{-\frac{\lambda^{2} m p}{3}}
$$

By the above proposition,

$$
\begin{equation*}
\mathbb{P}\left[\left|f-\frac{\operatorname{vol} \zeta_{\lambda \mu}^{\nu}}{\operatorname{vol} Q_{\lambda \mu}^{\nu}}\right| \geq 2 \epsilon\right] \leq \delta \tag{3.31}
\end{equation*}
$$

3.3.1 Correctness of Step 2.

Provided we work with numbers whose bitlength is

$$
\left(\|(\lambda, \mu, \nu)\|_{1}\right)\left(\frac{n}{\epsilon}\right)^{C}
$$

we can produce μ such that there exists μ^{\prime} satisfying the following.

$$
\begin{equation*}
W_{\infty}\left(\mu^{\prime}, \mu\right)<e^{-\left(\|(\lambda, \mu, \nu)\|_{1}\right)\left(\frac{n}{\epsilon}\right)^{C}} \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mu^{\prime}-\mu^{\prime \prime}\right\|_{T V}<\epsilon \tag{3.33}
\end{equation*}
$$

where $\mu^{\prime \prime}$ is the uniform measure on $Q_{\lambda \mu}^{\nu}$. In a real number model of computation, Dikin walk produces a sample from μ^{\prime} in polynomial time. By truncating these real numbers at every step to a bit-length of $\left(\|(\lambda, \mu, \nu)\|_{1}\right)\left(\frac{n}{\epsilon}\right)^{C}$, the errors do not accumulate to beyond a multiplicative factor of $O\left(n^{C}\right)$ and the resulting measure μ satisfies the above conditions (3.32) and (3.33).

This completes the proof of Theorem 3.
Proof of Theorem 4. This follows from Theorem 3 and Lemma 12.

4 Approximate Log-Concavity

In [18], Okounkov raised the question of whether the Littlewood-Richardson coefficients $c_{\lambda \mu}^{\nu}$ are a log-concave function of λ, μ, ν. Chindris, Derkson and Weyman showed in [3] that this is false in general. In this section, we show that certain Littlewood-Richardson coefficients satisfy a form of approximate log-concavity by proving Theorem 5 .

Theorem 15 (Brunn-Minkowski). Let Q_{1}, Q_{2} and Q_{3} be convex subsets of \mathbb{R}^{n} and $\theta \in(0,1)$, such that $\theta Q_{1}+(1-\theta) Q_{3} \subseteq Q_{2}$. where + denotes Minkowski addition. Then,

$$
\left(\operatorname{vol} Q_{2}\right)^{\frac{1}{n}} \geq \theta\left(\operatorname{vol} Q_{1}\right)^{\frac{1}{n}}+(1-\theta)\left(\operatorname{vol} Q_{3}\right)^{\frac{1}{n}} .
$$

Recall that (3.3), $Q_{\lambda \mu}^{\nu}$ is described by the system of inequalities

$$
A x-b_{\lambda \mu}^{\nu} \preccurlyeq \overrightarrow{2} .
$$

If $\theta(\lambda, \mu, \nu)+(1-\theta)\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}\right)=(\bar{\lambda}, \bar{\mu}, \bar{\nu})$, and each vector indexes a Littlewood-Richardson coefficient, then, because $Q_{\lambda \mu}^{\nu}, Q_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}}$ and $Q_{\bar{\lambda} \bar{\mu}}^{\bar{\nu}}$ are described by rhombus inequalities, we have

$$
\begin{equation*}
\theta Q_{\lambda \mu}^{\nu}+(1-\theta) Q_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}} \subseteq Q_{\bar{\lambda} \bar{\mu}}^{\bar{\nu}} . \tag{4.1}
\end{equation*}
$$

Therefore, by the Brunn-Minkowski inequality,

$$
\left(\operatorname{vol} Q_{\lambda \mu}^{\nu}\right)^{\frac{1}{n}} \geq \theta\left(\operatorname{vol}_{\lambda_{\lambda^{\prime} \mu^{\prime}}}^{\nu^{\prime}}\right)^{\frac{1}{n}}+(1-\theta)\left(\operatorname{vol} Q_{\bar{\lambda} \bar{\mu}}^{\bar{\nu}}\right)^{\frac{1}{n}}
$$

Hence, by the concavity and monotonicity of the logarithm,

$$
\log \left(\operatorname{vol} Q_{\lambda \mu}^{\nu}\right) \geq \theta \log \left(\operatorname{vol} Q_{\lambda^{\prime} \mu^{\prime}}^{\nu^{\prime}}\right)+(1-\theta) \log \left(\operatorname{vol} Q_{\bar{\lambda} \bar{\mu}}^{\bar{\nu}}\right) .
$$

By Lemma 7 , if $n>C$, and $n^{2} \epsilon^{-1} \in \mathbb{N}$ then if $(\lambda, \mu, \nu) \in(1 / \epsilon)\left(\Delta, \Delta, \Delta^{\prime}\right)+$ LRC

$$
1-C \epsilon \leq \frac{c_{\lambda \mu}^{\nu}}{\operatorname{vol} Q_{\lambda \mu}^{\nu}} \leq 1
$$

and corresponding statements hold for $\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}\right)$ and $(\bar{\lambda}, \bar{\mu}, \bar{\nu})$.
This proves Theorem 5.

5 Concluding Remarks

In this paper, we developed a strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients that belong to a translate of the Littlewood-Richardson cone by the vector $\left(\Delta, \Delta, \Delta^{\prime}\right)$. It would be of interest to extend these results to the entire Littlewood-Richardson cone.

6 Acknowledgements

I thank Ketan Mulmuley for suggesting the question of computing LittlewoodRichardson coefficients, and Ravi Kannan for bringing [8] to my notice.

References

[1] P. Bürgisser, C. Ikenmeyer, "A max-flow algorithm for positivity of Littlewood-Richardson coefficients," FPSAC 2009, 357368
[2] M. Belkin, H. Narayanan, P. Niyogi, "Heat flow and a faster algorithm to compute the surface area of a convex body", To appear in Random Structures and Algorithms.
[3] C. Chindris, H. Derksen, J. Weyman, "Non-log-concave Littlewood-Richardson coefficients," Compos. Math. 43 (2007), 1545-1557
[4] E. Rassart,"A polynomiality property for Littlewood-Richardson coefficients." Journal of Combinatorial Theory, Series A 107 (2004), no. 2, 161-179
[5] M. Köppe, J. De Loera, "Lattice Point Enumeration Software," https://www.math.ucdavis.edu/ latte/
[6] W. Hoeffding, "Probability inequalities for sums of bounded random variables". Journal of the American Statistical Association 58 (301): 1330
[7] R. Kannan and H. Narayanan, "Random walks on polytopes and an affine interior point algorithm for linear programming," Mathematics of Operations Research, February 2012
[8] R. Kannan, V. Vempala, "Sampling Lattice Points," Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, (1997)
[9] Kirszbraun, M. D. (1934). "ber die zusammenziehende und Lipschitzsche Transformationen". Fund. Math. 22: 77108
[10] A. Knutson, T. Tao, "The honeycomb model of $G L_{n}(\mathbb{C})$ tensor products I: proof of the saturation conjecture," J. Amer. Math. Soc. 12 (1999) 1055-1090.
[11] A. Knutson, T. Tao, and C. Woodward, "The honeycomb model of $G L_{n}(\mathbb{C})$ tensor products II. Puzzles determine facets of the Littlewood-Richardson cone," J. Amer. Math. Soc. 17 (2004), no. 1, 1948
[12] L. Lovász and S. Vempala, "Simulated annealing in convex bodies and an $O^{*}\left(n^{4}\right)$ volume algorithm" Proc. of the 44th IEEE Foundations of Computer Science (FOCS '03), Boston, 2003.
[13] K. Mulmuley, M. Sohoni, "Geometric complexity theory I: An approach to the P vs. NP and related problems," SIAM J. Comput., vol 31, no. 2, pp. 496-526, (2001).
[14] K. Mulmuley, M. Sohoni, "Geometric complexity theory II: Towards explicit obstructions for embeddings among class varieties." SIAM J. Comput., Vol. 38, Issue 3, June 2008.
[15] K. D. Mulmuley, H. Narayanan, and M. Sohoni., "Geometric complexity theory III: on deciding nonvanishing of a LittlewoodRichardson coefficient." J. Algebraic Combin. 36 (2012), no. 1, 103110.
[16] H. Narayanan, "On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients", Journal of Algebraic Combinatorics, Volume 24 Issue 3, November 2006
[17] K. Purbhoo, "Puzzles, Tableaux and Mosaics," Journal of Algebraic Combinatorics, 28 (2008) no. 4, 461480.
[18] A. Okounkov, "Why would multiplicities be log-concave?", The Orbit Method in Geometry and Physics Progress in Mathematics Volume 213, 2003, pp 329-347
[19] Wigner, E. P., "Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, expanded and improved," ed. New York: Academic Press, 1959.

