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Abstract

In breakthrough developments about two decades ago, L. G. Khachiyan [14] showed that the
Ellipsoid method solves linear programs in polynomial time, while M. Grotschel, L. Lovasz and
A. Schrijver [4, 5] extended this to the problem of minimizing a convex function over any convex
set specified by a separation oracle. In 1996, P. M. Vaidya [21] improved the running time via a
more sophisticated algorithm. We present a simple new algorithm for convex optimization based
on sampling by a random walk; it also solves for a natural generalization of the problem.

1 Introduction

The problem of minimizing a convex function over a convex set in R" is a common generalization
of well-known geometric optimization problems such as linear programming as well as a variety
of combinatorial optimization problems including matchings, flows and matroid intersection, all
of which have polynomial-time algorithms. As such, it represents a frontier of polynomial-time
solvability and occupies a central place in the theory of algorithms.

In his groundbreaking work, Khachiyan [14] showed that the Ellipsoid method [22] solves linear
programs in polynomial time. Shortly thereafter, Karp and Papadimitriou [13], Padberg and Rao
[18], and Grotschel, Lovasz and Schrijver [4] independently discovered the wide applicability of the
ellipsoid method to combinatorial optimization problems. This culminated in the book by the last
set of authors [5], in which it is shown that the Ellipsoid method solves the problem of minimizing a
convex function over a convex set in R™ specified by a separation oracle, i.e., a procedure which given
a point z either reports that the set contains x or returns a half-space that separates the set from z.
For the special case of linear programming, the oracle simply checks if the query point satisfies all
the constraints of the linear program, and if not, reports a violated constraint; another well-known
special case is semi-definite programming. Vaidya [21] later improved the running time via a more
sophisticated algorithm.

In this paper, we present a simple new algorithm for the problem, based on random sampling.
Our algorithm also solves a natural generalization that was previously not known to be solvable in
polynomial-time.

The key component of the algorithm is sampling a convex set by a random walk. Random walks
have long been studied for their mathematical appeal, but of late they have also played a crucial role
in the discovery of polynomial-time algorithms. Notable applications include estimating the volume
of a convex set [3] and computing the permanent of a non-negative matrix [7]. They have also been
used in machine learning and online algorithms [8]. Our algorithm is a new application of random
walks to the field of optimization.



In the description below, we assume that the convex set K is contained in the axis-aligned cube
of width R centered at the origin; further if K is non-empty then it contains a cube of width r (see
e.g. [1, 5] for a justification). The choice of cubes here is somewhat arbitrary; we could instead use
balls, for example. The parameter L is equal to log %

Algorithm.
Input: A separation oracle for a convex set K and a number L.
Output: A point in K or a guarantee that K is empty.

1. Let P be the axis-aligned cube of width R with center z = 0.

2. Check if z is in K. 1If so then report z and stop. If not,
then let o’z < b be the half-space containing K reported by
the oracle. Set H = {z |alz <a’2}.

3. Set P = PN H. Pick N random points yi,¥%2,...,yn from P.
Set z to be their average: =z = %Zi\il Yi.-

4. Repeat steps 2 and 3 at most 2nL times. Report K is empty.

Roughly speaking, the algorithm is computing an approximate centroid in each iteration!. The

number of samples required in each iteration, N, is O(n) for an arbitrary convex set in R™ and
O(log? m) if K is a polyhedron with m inequalities (i.e. a linear program). Note that optimization

Figure 1: An illustration of the algorithm.

is easily reduced to the feasibility problem solved above: to (say) minimize a convex function f(z)
we simply add the constraint f(z) < ¢ and search (in a binary fashion) for the optimal ¢.

The idea behind the algorithm is that the volume of the enclosing polytope P is likely to drop
by a constant factor in each iteration. We prove this in Section 2 and derive as a consequence that if

!The idea of an algorithm based on computing the ezact centroid was suggested in 1965 by Y. Levin [15], but is
computationally intractable.



the algorithm does not stop in 2nL iterations, then K must be empty (with high probability). Thus,
the total number of calls to the separation oracle is at most 2nL. This matches the (asymptotic)
bound for Vaidya’s algorithm, and is in general the best possible [22]. The ellipsoid algorithm, in
contrast, makes up to O(n2L) iterations and as many calls to the oracle.

In the discussion so far, we have assumed that the convex set of interest has an efficient separation
oracle. A natural question is whether optimization can be solved using a significantly weaker oracle,
namely a membership oracle (which reports whether a query point is in the set or not, but provides
no other information). One of the main results in [5] is that a linear function can be optimized over
a convex set K given only by a membership oracle, provided K is “centered”, i.e., we are also given a
point y and a guarantee that a ball of radius r around y is contained in K. The algorithm is intricate
and involves a sophisticated variant of the Ellipsoid method, called the shallow-cut Ellipsoid. Our
algorithm provides a simple solution to this problem. In fact, as we show in Section 4, it solves the
following generalization: let K be the intersection of two convex sets K; and Ky, where K; is a
“centered” convex set with a membership oracle and K> is a convex set with a separation oracle;
find a point in K if one exists. The generalization includes the special case of minimizing a convex
function over a centered convex set given by a membersip oracle. This problem (and its special case
mentioned above) are not known to be solvable using the Ellipsoid method or Vaidya’s algorithm.

Each iteration of our algorithm needs random samples from the current polytope P. The time
per iteration depends on how quickly we can draw random samples from P. The problem of sampling
from a convex set has received much attention in recent years [3, 17, 11, 16, 9], in part because it is
the only known way of efficiently estimating the volume of a convex set. The general idea is to take
a random walk in the set. There are many ways to walk randomly; of these, the ball walk (go to a
random point within a small distance) [9] and hit-and-run (go to a random point along a random
direction) [16] have the best known bounds on the number of steps needed to draw a random sample.
The bounds on the number of steps depend on how “round” the convex set is. For a set that is close
to isotropic position (see Section 2), O(n3) steps are enough for one random point. In our case, the
initial convex set, the cube, is indeed in isotropic position. However this might not be the case after
some iterations. As we describe in Section 3, this problem can be tackled by computing an affine
transformation that keeps the current polytope P into near-isotropic position. We also propose an
alternative (in Section 3.1) that avoids this computation and instead incorporates the information
about isotropy implicitly in the steps of a random walk by maintaining a set of points. The time per
iteration is bounded by O*(n*) steps of a random walk, giving an overall running time of O*(n®L).

As the reader might notice, the current bound on the worst-case time per iteration of our al-
gorithm is higher than both the Ellipsoid method and Vaidya’s algorithm. However, in practice
drawing random samples from convex sets might be much faster than the known worst-case bounds;
also, sampling convex sets is an active research area and there might well be faster sampling methods
in the future.

2 Number of iterations

The following definitions will be useful throughout the analysis. We assume that all our convex sets
are closed and bounded.

Definition 1. A convezx set K in R™ is said to be in isotropic position if its center of gravity is the
origin, i.e., for a random point x in K,
EK(ZL‘) =0

and its variance-covariance matriz is the identity, i.e.,

Eg(zzT) = I.



Equivalently, for any unit vector v (||v|| =1)

1 v x)?de =
vol(K) /K( Jde =1.

In other words, for a set K in isotropic position, the average squared length in any direction is
1. In particular, this implies that
1 2
z||“dx = n.
i . el

A convex set can be brought into isotropic position by an affine transformation. To bring a convex
set K with center of gravity z into isotropic position, let A = Ex((z — z)(z — 2z)T) and consider the

transformation K' = {y : y = A*%(x —2),z € K}. Then Eg(y) = 0 and Eg(yy?) = 1.

Our proof utilizes log-concave functions which we introduce next.

Definition 2. A function f : R® — Ry is log-concave for any two points a,b € R® and any
Ae(0,1),
FQa+ (1= X)b) > f(a)*F(b)" .

In other words, a nonnegative function f is log-concave if its support is convex and log f is
concave. For example, a function that is constant over a bounded convex set and zero outside the
set is log-concave. Another example is a Gaussian density function. It can be easily verified from
the definition above that the product of two log-concave functions is also log-concave (but their sum
is not).

The next theorem, whose proof uses Lemma 3, is the key to bounding the number of iterations.
In this section, by high probability we mean probability higher than any desired constant.

Theorem 1. The volume of P drops by a factor of% with high probability in each iteration.

Proof. We will prove that for any convex set K, if z is the average of sufficiently many random
samples from K, then any half-space through z cuts off a constant fraction of the volume of K. To
this end we can assume without loss of generality that K is in isotropic position. This is because
of two facts: (i) as shown earlier, any convex set can be brought into isotropic position by an affine
transformation and (ii) on applying an affine transformation A to K, the volume scales by det(A),
i.e. vol(AK) = det(A)vol(K); so affine transformations preserve ratios of volumes.

Let y1,¥y2,...,yn be the NV samples drawn uniformly from K. Let

1 N
i=1
Then, using the isotropy of K,

E(y;)=0 and Var(|lyll) = E([yl]*) = n.

Thus,
n
B(z)=0 ad Var(l]) = E(<l]) = =
We next consider a unit vector a € R (||a|| = 1) and define the one-dimensional marginal distribu-
tion f

1
1) = S /K dz.
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In other words f(y) is the (n— 1)-dimensional volume of K intersected with the hyperplane a’z = y.

By Lemma 3, maxycr f(y) < 1.

Another fact that we will use is that any hyperplane through the center of gravity of a convex
set has at least a % fraction of its volume on either side [6]:

1 1
e e

D tway> L ama [ g
/. I

Assume without loss of generality that a”z < 0. The fraction of the volume of K that is cut off by
a half-space through z is at least

aTz 0 0
[ tway= [ sy [ swiy> -l

Since E(|[z]|?) = % by choosing N = O(n) we can have ||z|| and hence |a’2| smaller than any
constant. We choose N so that % —laTz| > % with high probability. That is, any half-space through
z cuts off at least % of the volume of K. O

We remark that in the proof above we only need the random samples to be pairwise indepen-
dent. Also note that Theorem 1 remains true even if the samples are only nearly uniform, i.e., the
probability density everywhere is at most (1+ €) times the uniform density, for a sufficiently small e.

Corollary 2. If the algorithm does not find a feasible point in 2nL iterations, then with high prob-
ability, the given convex set is empty.

Proof. The initial volume of P is R™. If the set K is nonempty, then it has volume at least ™. Thus
the number of iterations in which the volume drops by 2/3 is at most

R? R
logs | — ) =nlogs —
2 \r" 2T

and thus with high probability, the total number of iterations is at most 2nL. ]

2.1 The maximum cross-sectional area

Lemma 3. For an isotropic conver set K and any unit vector a € R™, define a function f : R — R,

as )
= dz.
f(y) UOZ(K) /.’BEK,aTa:—y ’
Then
< 1.
max f(y)

Proof. Fix a unit vector a € R*. Let fx be the one-dimensional marginal distribution

1
fK(y) N UOl(K) x/meK,aT.'Ey da.

In other words, fx(y) is the (n — 1)-dimensional volume of K intersected with the hyperplane
a’z = y. Define

I = /R yf(y)dy and I(K)= /R (v 9% (v)dy.
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Figure 2: The proof of Lemma 3.

We will in fact prove a slightly stronger statement. For any convex body K for which fx defined
as above satisfies

/yf(y)dy—O and /ny(y)dy—l,
Y Yy

max, fx(y) < 1.

To this end let K be such a convex set for which max, fx(y) is the maximum possible. We will
show that K can be assumed to be an isotropic cone. To see this first consider the set K’ obtained by
replacing each cross-section K N {z|a”z = y} by an (n — 1)-dimensional ball of area fx(y). Clearly
K' has the same volume as K. Further, by the Brunn-Minkowski principle of symmetrization, K’
is also convex (in other words, fx is log-concave [19]). So without loss of generality, we can assume
that K is symmetric about the vector a; let us also translate K so that g = 0. Also, the conditions
of fix continue to be satisfied.

If K is a cone, we are done. If not, let y* be a point where fx is maximum and suppose that
y* > 0 (the other case is symmetric). Divide K into three parts:

Ky =Kn{zla"z <0}, Ky=Kn{z[0<a"z<y*}, K3=Kn{zla"z>y*}.

We will now use the observation that moving mass away from the center of gravity can only increase
the moment of inertia, and make the following operations. Replace Kj by a cone K] of the same
volume with base area equal to fx(0). Replace Ky by a truncated cone K} of height y*, top area
[k (0) and base area fx(y*). Finally replace K3 by a cone Kj of base area f(y*) and vol(K3) =
vol(K3) + vol(K3) — vol(K}). Let K' = K| U K} U K} be the new convex set.

After the first step, the new center of gravity along a can only move to the left. Thus the next
two steps also move mass away from the center of gravity. So at the end,

I(K') > I(K), wvol(K)=vwvol(K'), max fx(y)= max fg(y).

Now a simple computation shows that a cone of the same volume as K’ and base area fx(y*) has a
larger moment of inertia than K’ unless K’ itself is a cone. However, if I(K') > I(K), then we can
scale down K’ along a and scale it up perpendicular to a, in such a way as to maintain the volume,
achieve I(K') = I(K), and have max fxg+(y) > max fx(y). This contradicts the choice of K.

An isotropic cone has height n + 1,/ "T“ and so maxy f(y) < 7774/ 703 O



2.2 A better bound for linear programming

For the case of linear programming, when the target convex set K is a polyhedron defined by m
linear inequalities, a smaller number of samples can be used in each iteration. The next lemma is
the basis of the improved sample complexity.

Lemma 4. Let K be a convex set and z be the average of N random samples from K. Let a be a
fized unit vector. Then the probability that the halfspace aTx < aTz cuts off at least % of K 1is at

least 1 — 2—<VN for some constant c.

Proof. Assume without loss of generality that P is in isotropic position. Let Y; = a’y; for i =
1,...,N. Then, Y;’s are independent random variables with distribution given by the log-concave

function .
= dz.
f(y) ’UOl(K) »/.'L'EK,aTa:—y ’
We have
E(Y;)=0 and E(?) =1
Let
1 N
Z=aT2=— Z Y;
N i=1
Then,
1
E(Z)=0 d EZ?=—.
(2)=0 and B(Z%) =~

Now the distribution of Z is the convolution of the distributions of the Y;’s and is also log-concave
[19]. Thus, there are constants C' > 1, D such that for any ¢ > C,

t
Pl(|Z] > —) <e Pt
(121> 75) <

As a consequence, for N > C?/c?
Pr(la”z > ¢) < e <PVN,

By choosing ¢ small enough, we get that the half-space a”z < aTz cuts off at least % of the volume
of P with probability at least 1 — e~“VN for some absolute constant ¢ ]

Corollary 5. Let the target convex set be the intersection of m half-spaces. Then with N =
O(log? m) the volume of P drops by a factor of% in each iteration with high probability.

Proof. As in the proof of Theorem 1, let yq,...,yn be random variables denoting the samples from
the current polytope P and let z be their average. In Theorem 1, we showed that for any unit vector
a, the hyperplane normal to a and passing through z is likely to cut off at least % of the volume of
P. Suppose that the target set K is the intersection of m half-spaces defined by hyperplanes with
normal vectors ay, ..., ay, (with ||a;|| = 1). Then we only need to show that each of the hyperplanes
alz = al'z cuts off at least % of P. This is because the separation oracle for the target convex set
(which simply checks the m half-spaces and reports one that is violated) will return a hyperplane
parallel to one of these.

By Lemma 4, any single hyperplane a”z = a” z cuts off % of P with probability at least 1— 9—eVN
for some constant c. Setting N = O(log2 m) implies that with high probability any one of m half-
spaces will cut off a constant fraction of P. O



3 Sampling and Isotropy

In each iteration, we need to sample the current polytope. For this we take a random walk. There
are many ways to walk randomly but the two ways with the best bounds on the mizing time are the
ball walk and hit-and-run. They are both easy to describe.

Ball walk

1. Choose y uniformly at random from the ball of radius § centered at the current point z.

2. If y is in the convex set then move to y; if not, try again.
Hit-and-run

1. Choose a line £ through the current point  uniformly at random.

2. Move to a point y chosen uniformly from K N £.

The mixing time of the walk depends on how close the convex set is to being in isotropic position.
We say that a convex set K is in near-isotropic position if for any unit vector v,

1 1 _
3 < ol (K) /K(UT(ZE —Z))%dz < 2.

Equivalently, the variance-covariance matrix (also called the matrix of inertia) of the uniform dis-
tribution over K has eigenvalues between % and 2. In addition to isotropy, the starting point (or
distribution) of a random walk plays a role in the bounds on the mixing time. The best bounds
available are for a warm start — a starting distribution with the property that the density at any
point in K is at most a constant times the uniform density, 7. The following result is paraphrased

from [16].

Theorem 6. [16] Let K be a near-isotropic convez set, o be any distribution on it with the property

that o(z) < 10m(z) and o' be the distribution obtained after O(Z—; log 1) steps of hit-and-run starting
at o. Then o' has total variation distance less than € from the uniform distribution.
A similar statement holds for ball walk with step size § = @(ﬁ) (see [9]). One advantage of

hit-and-run is that there is no need to choose the “step size” 4.

The problem with applying this directly in our algorithm to the current polytope P is that after
some iterations P may not be in near-isotropic position. One way to maintain isotropic position
is by using random samples to calculate an affine transformation. It was proven in [11] that for
any convex set, O(n?) samples allow us to find an affine transformation that brings the set into
near-isotropic position. This was subsequently improved to O(nlog?n) [2, 20]. The procedure for a
general convex set K is straightforward:

1. Let y1,y2,...,yn be random samples from K.
2. Compute
1 & 1 &
y= Nzyi and Y = NZ(yi—ﬂ)(yi—ﬂ)T-
i=1 i=1

The analysis of this procedure rests on the following consequence of a more general lemma due to
Rudelson [20].



Lemma 7. [20] Let K be a convex body in R™ in isotropic position and n > 0. Let y1,...,ym be
independent random points uniformly distributed in K, with

n n
m > C— log — (p + logn).
n n
for an absolute constant C and any positive integer p between 1 and n. Then
1 T
Bl Sl 1P <
i=1m

Corollary 8. There is an absolute constant C' such that such that for any integer t > 1, and
1

N > Ctnlog?n, with probability at least 1 — #, the set K' = Y 2(K — §) 1is in near-isotropic

position.

Proof. Without loss of generality, we can assume that K is in isotropic position. Let
1 T
i=1m

Then applying Lemma 7 we have
E|lY —I|[P <n".

Hence,
Pri|[y —I||>2n] = Pr([|Y —I|[P > (2n)"]
B[]y — I|]7]
- (2n)P
1
<
S

Using p = tlogn and n = %, we get that with N > Ctnlog?n points (this is a different constant C
from that in Lemma 7),
1 1
Pr|||Y — I > Z] < —.
Y 1> 5] <

Next we evaluate max v Yv and minv”Yv over unit vectors v.

vTYv = oTTv+0T(Y = I
< 14|y -1
vTYv = oTTv+0T(Y — I
> 1=y -1

Thus with probability 1 — %, vTY v is between % and % for any unit vector v, and so K’ is in near
isotropic position. O

In fact, using N = O*(n) points, the probability of failure in each iteration can be made so low
(inverse polynomial) that the probability of failure over the entire course of the algorithm is smaller
than than any fixed constant. In order to keep the sampling efficient, we calculate such an affine
transformation in each iteration, using samples from the previous iteration. However we do not need
to apply the transformation to the current polytope P. Instead, we could keep P as it is and use
the following modified random walk: From a point z,



1. Choose a point y uniformly at random from z + 5Y%Bn.

2. If y is in the convex set then move to y; if not, try again.

A similar modification (choose the line £ from Y%Bn rather than B,) can be made to hit-and-run
also.

Theorem 9. Each iteration of the algorithm can be implemented in O*(n*) steps of a random walk
in P.

Proof. Our initial convex set, the cube, is in isotropic position and it is easy to sample from it.
Given a warm start in a current polytope P in near-isotropic position, we take O*(n3N) steps of a
random walk to get 2N nearly random samples (using Theorem 6). We compute the average z of
N of these, and if z is not in the target convex set, then we refine P with a new half-space H to get
P'. Of the remaining N points, at least a constant fraction (say %) are in P’ with high probability.

Further, their distribution is nearly uniform over P’. Using these points, we estimate Y3 by the
formula of Corollary 8. With high probability this is a nonsingular matrix. By Corollary 8, we only
need N = O*(n) samples in each iteration. The reason for discarding the subset of samples used in
computing the average is to avoid correlations with future samples. O

3.1 An isotropic variant

Here we describe an alternative method which implicitly maintains isotropy. It has the advantage
1
of completely avoiding the computation of the linear transformation Y 2.

Instead of walking with a single point, we maintain m points v1,va,...,Up.
For each j =1,...,m,
1. Choose a direction £ = > 7" | a;v; where au, . .., @y, are drawn independently from the standard

normal distribution.
2. Move v; to a random point in K along /.

Theorem 10. Suppose the multi-point walk is started with m = Q(nlog2 n) points drawn from a
distribution o that satisfies o(z) < 10mw(z). Then the distribution of each point after a total of

O(m’;—z3 log %) steps has total variation distance less than € from the stationary distribution.

Proof. The random walk described above is invariant under affine transformations, meaning there
is a one-to-one map betweeen a walk in K and a walk in an affine transformation of K; hence we
can assume that K is isotropic. Now consider a slightly different walk where we keep m points, pick
one and make a standard hit-and-run step, i.e. the direction is chosen uniformly. The correspond-
ing Markov chain has states for each m-tuple of points from K, and since each point is walking
independently, it follows from Theorem 6 that the chain has the bound described above.

Compare this to the Markov chain for our random walk. The stationary distribution is the same
(our Markov chain is symmetric). The main observation is that for v1, ..., v, picked at random and
m = Q(n log? n), the matrix of inertia is very likely to have eigenvalues bounded by constants from

above and below. Using Corollary 8, we can choose m so that this probability is 1 — ﬁ Thus,
for all but a ﬁ fraction of states, the probability of each single transition of our Markov chain is
within a constant factor of the first Markov chain. So the conductance of any subset of probability
greater than % (say) is within a constant factor of its conductance in the first chain. Since we start

out with a warm distribution (i.e., a large subset), this implies the bound on the mixing time. [J
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Thus the entire convex programming algorithm now consists of the following: We maintain 2N
random points in the current polytope P. We use N of them to generate the query point and refine
P. Among the rest, we keep those that remain in P, and continue to walk randomly as described
above till we have 2N random points again.

4 A generalization

In this section we consider the problem of optimization over a convex set given by a weaker oracle,
namely a membership oracle. In [5], it is shown that this is indeed possible using a sophisticated
variant of the ellipsoid algorithm, provided we have a centered convex set K. That is, in addition to
the membership oracle, we are given a point y € K, and a guarantee that a ball of radius r around
y is contained in K. The algorithm and proof there are quite nice but intricate?.

Our algorithm provides a solution for a more general problem: K is the intersection of two convex
sets K1 and K3. We are given a separation oracle for K7, a membership oracle for K2 and a point
in K9. The problem is to minimize a convex function over K.

Theorem 11. Let K = K1 N Ky where Ky is given by a separation oracle and Ky by a membership
oracle. Let R be the radius of an origin-centered ball containing K. Then, given a point y € Ko such
that the ball of radius r around y is contained in K (i.e., Ko is centered), the optimization problem
over K can be solved in time polynomial in n and log %.

Proof. 1t is clear that optimization is reducible to feasibility, i.e., we just need to find a point z in
K or declare that K is empty. We start with P as Ko intersected with the ball of radius 2R with
center y and apply our algorithm. The key procedure, a random walk in P, needs a point in P and a
membership oracle for P, both of which we have initially and at each iteration. Using O*(n) samples
we can bring P into near-isotropic position. Also, each subsequent query point z is guaranteed to
be in K>, since it is the average of points from Kj3. Thus the algorithm needs at most O(nlog %)
iterations and O(n log £) calls to the separation oracle for K. Each iteration (after the first) makes
O*(n*) calls to the membership oracle for K.

To bring the initial set P into isotropic position, we can adapt the “chain of bodies” procedure
of [11]. Since K3 is centered, it contains a ball of radius r around y. Scale up so that y + rB,, is in
isotropic position and call it @ (just for convenience; this has the effect of scaling up R also). Now

consider Q' = PNy -+ 2%7"Bn, i.e., Ko intersected with the ball of radius 2'/"r around y. The volume
of Q' is at most twice the volume of ) and so a uniform sample from @ provides a warm start for
sampling from @'. Sample from @', drawing each sample in poly(n) time and use the samples to
calculate an affine transformation that would put Q' in isotropic position. Apply the transformation
to P. Reset Q to be the transformed Q’, y to be its center of gravity and r to be the radius of
the ball around y containing Q. Again let Q' be the intersection of P with the ball of radius 2/"r
around y. After at most O(n log IT—:{) such phases, P will be in near-isotropic position. O

5 Extensions

The methods of this paper suggest the following interior point algorithm for optimization. Suppose
we want to maximize ¢!z over a full-dimensional convex set K. We start with a feasible solution z;
in K. Then add the constraint ¢’z > cT2; and let K := K N {z | ¢’z > cT2}. Next we generate

2Tt is not known whether Vaidya’s algorithm can be extended to solve this problem.
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N random points y; in the set K and let zo be their average. If ¢T'zy — ¢! 21 < € we stop; otherwise
we set K := K N {z | cT'z > cT 2}, and continue.

The algorithms seems to merit empirical evaluation; in practice, it might be possible to sample

more efficiently than the known worst-case bounds. In any case, the algorithm presents a strong
motivation to find geometric random walks that mix faster.

Acknowledgement. We thank Adam Kalai, Ravi Kannan, Laci Lovasz and Mike Sipser for useful
discussions and their encouragement.

References

[1]
2]

[3]

D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Athena Scientific, 1997.

J. Bourgain, “Random points in isotropic convex sets,” Convex geometric analysis, 53-58, Math.
Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999.

M. Dyer, A. Frieze and R. Kannan. “A random polynomial time algorithm for estimating the
volumes of convex bodies,” Journal of the ACM, 38, 1991.

M. Grotschel, L. Lovasz, and A. Schrijver, “The ellipsoid method and its consequences in
combinatorial optimization,” Combinatorica 1, 169-197, 1981.

M. Grotschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimiza-
tion, Springer, 1988.

B. Grunbaum. “Partitions of mass-distributions and convex bodies by hyperplanes,” Pacific J.
Math. 10, 1257-1261, 1960.

M. Jerrum, A. Sinclair, E. Vigoda “A polynomial-time approximation algorithm for the perma-
nent of a matrix with non-negative entries,” Proc. STOC, 712-721, 2001.

A. Kalai and S. Vempala, “Efficient algorithms for universal portfolios,” Proc. 41st Annual
IEEE Symp. on the Foundations of Computer Science, 486—491, 2000.

R. Kannan and L. Lovasz, “Faster mixing via average conductance,” Proc. STOC, 1995.

R. Kannan, L. Lovasz and M. Simonovits. “Isoperimetric problems for convex bodies and a
localization lemma,” Discrete Computational Geometry 13, 541-559, 1995.

R. Kannan, L. Lovasz and M. Simonovits. “Random walks and and an O*(n%) volume algorithm
for convex sets,” Random Structures and Algorithms 11, 1-50, 1997.

R. Kannan, J. Mount, S. Tayur, “A randomized algorithm to optimize over certain convex sets,”
Math. Oper. Res. 20, 3, 529-549, 1995.

R. M. Karp and C. H. Papadimitriou, “On linear characterization of combinatorial optimization
problems,” Siam J. Comp., 11, 620-632, 1982.

L. G. Khachiyan, “A polynomial algorithm in linear programming,” (in Russian), Doklady
Akedamii Nauk SSSR, 244, 1093-1096, 1979 (English translation: Soviet Mathematics Doklady,
20, 191-194, 1979).

A. Yu. Levin, “On an algorithm for the minimization of convex functions,” (in Russian), Doklady
Akedemii Nauk SSSR, 160, 1244-1247, 1965 (English translation: Soviet Mathematics Doklady,
6, 286-290, 1965).

12



[16]
[17]

[18]

[19]

[20]
[21]

[22]

L. Lovasz, “Hit-and-run mixes fast,” Mathematical Programming 86, 443-461, 1998.

L. Lovasz and M. Simonovits, “Random walks in convex bodies and an improved volume algo-
rithm,” Random Structures and Algorithms 4, 259-412, 1993.

M. W. Padberg and M. R. Rao, “The Russian method for linear programming III: Bounded in-
teger programming,” Research Report 81-39, New York University, Graduate School of Business
Administration, New York, 1981.

A. Prekopa, “On logarithmic concave measures and functions,” Acta Sci. Math. Szeged, 34,

335-343, 1973.
M. Rudelson, “Random vectors in the isotropic position,” J. Funct. Anal. 164, 60-72, 1999.

P. M. Vaidya, “A new algorithm for minimizing convex functions over convex sets,” Mathemat-
ical Programming, 291-341, 1996.

D. B. Yudin and A. S. Nemirovski, “Evaluation of the information complexity of mathematical
programming problems,” (in Russian), Ekonomika i Matematicheskie Metody 12, 128-142, 1976
(English translation: Matekon 13, 2, 3-45, 1976).

13



