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AbstratIn breakthrough developments about two deades ago, L. G. Khahiyan [14℄ showed that theEllipsoid method solves linear programs in polynomial time, while M. Gr�otshel, L. Lov�asz andA. Shrijver [4, 5℄ extended this to the problem of minimizing a onvex funtion over any onvexset spei�ed by a separation orale. In 1996, P. M. Vaidya [21℄ improved the running time via amore sophistiated algorithm. We present a simple new algorithm for onvex optimization basedon sampling by a random walk; it also solves for a natural generalization of the problem.

1 IntrodutionThe problem of minimizing a onvex funtion over a onvex set in R n is a ommon generalizationof well-known geometri optimization problems suh as linear programming as well as a varietyof ombinatorial optimization problems inluding mathings, ows and matroid intersetion, allof whih have polynomial-time algorithms. As suh, it represents a frontier of polynomial-timesolvability and oupies a entral plae in the theory of algorithms.In his groundbreaking work, Khahiyan [14℄ showed that the Ellipsoid method [22℄ solves linearprograms in polynomial time. Shortly thereafter, Karp and Papadimitriou [13℄, Padberg and Rao[18℄, and Gr�otshel, Lov�asz and Shrijver [4℄ independently disovered the wide appliability of theellipsoid method to ombinatorial optimization problems. This ulminated in the book by the lastset of authors [5℄, in whih it is shown that the Ellipsoid method solves the problem of minimizing aonvex funtion over a onvex set in R n spei�ed by a separation orale, i.e., a proedure whih givena point x either reports that the set ontains x or returns a half-spae that separates the set from x.For the speial ase of linear programming, the orale simply heks if the query point satis�es allthe onstraints of the linear program, and if not, reports a violated onstraint; another well-knownspeial ase is semi-de�nite programming. Vaidya [21℄ later improved the running time via a moresophistiated algorithm.In this paper, we present a simple new algorithm for the problem, based on random sampling.Our algorithm also solves a natural generalization that was previously not known to be solvable inpolynomial-time.The key omponent of the algorithm is sampling a onvex set by a random walk. Random walkshave long been studied for their mathematial appeal, but of late they have also played a ruial rolein the disovery of polynomial-time algorithms. Notable appliations inlude estimating the volumeof a onvex set [3℄ and omputing the permanent of a non-negative matrix [7℄. They have also beenused in mahine learning and online algorithms [8℄. Our algorithm is a new appliation of randomwalks to the �eld of optimization. 1



In the desription below, we assume that the onvex set K is ontained in the axis-aligned ubeof width R entered at the origin; further if K is non-empty then it ontains a ube of width r (seee.g. [1, 5℄ for a justi�ation). The hoie of ubes here is somewhat arbitrary; we ould instead useballs, for example. The parameter L is equal to log Rr .Algorithm.Input: A separation orale for a onvex set K and a number L.Output: A point in K or a guarantee that K is empty.1. Let P be the axis-aligned ube of width R with enter z = 0.2. Chek if z is in K. If so then report z and stop. If not,then let aTx � b be the half-spae ontaining K reported bythe orale. Set H = fx j aTx � aT zg:3. Set P = P \ H. Pik N random points y1; y2; : : : ; yN from P.Set z to be their average: z = 1N PNi=1 yi:4. Repeat steps 2 and 3 at most 2nL times. Report K is empty.
Roughly speaking, the algorithm is omputing an approximate entroid in eah iteration1. Thenumber of samples required in eah iteration, N , is O(n) for an arbitrary onvex set in R n andO(log2m) if K is a polyhedron with m inequalities (i.e. a linear program). Note that optimization
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Figure 1: An illustration of the algorithm.
is easily redued to the feasibility problem solved above: to (say) minimize a onvex funtion f(x)we simply add the onstraint f(x) � t and searh (in a binary fashion) for the optimal t.The idea behind the algorithm is that the volume of the enlosing polytope P is likely to dropby a onstant fator in eah iteration. We prove this in Setion 2 and derive as a onsequene that if1The idea of an algorithm based on omputing the exat entroid was suggested in 1965 by Y. Levin [15℄, but isomputationally intratable. 2



the algorithm does not stop in 2nL iterations, then K must be empty (with high probability). Thus,the total number of alls to the separation orale is at most 2nL. This mathes the (asymptoti)bound for Vaidya's algorithm, and is in general the best possible [22℄. The ellipsoid algorithm, inontrast, makes up to O(n2L) iterations and as many alls to the orale.In the disussion so far, we have assumed that the onvex set of interest has an eÆient separationorale. A natural question is whether optimization an be solved using a signi�antly weaker orale,namely a membership orale (whih reports whether a query point is in the set or not, but providesno other information). One of the main results in [5℄ is that a linear funtion an be optimized overa onvex set K given only by a membership orale, provided K is \entered", i.e., we are also given apoint y and a guarantee that a ball of radius r around y is ontained in K. The algorithm is intriateand involves a sophistiated variant of the Ellipsoid method, alled the shallow-ut Ellipsoid. Ouralgorithm provides a simple solution to this problem. In fat, as we show in Setion 4, it solves thefollowing generalization: let K be the intersetion of two onvex sets K1 and K2, where K1 is a\entered" onvex set with a membership orale and K2 is a onvex set with a separation orale;�nd a point in K if one exists. The generalization inludes the speial ase of minimizing a onvexfuntion over a entered onvex set given by a membersip orale. This problem (and its speial asementioned above) are not known to be solvable using the Ellipsoid method or Vaidya's algorithm.Eah iteration of our algorithm needs random samples from the urrent polytope P . The timeper iteration depends on how quikly we an draw random samples from P . The problem of samplingfrom a onvex set has reeived muh attention in reent years [3, 17, 11, 16, 9℄, in part beause it isthe only known way of eÆiently estimating the volume of a onvex set. The general idea is to takea random walk in the set. There are many ways to walk randomly; of these, the ball walk (go to arandom point within a small distane) [9℄ and hit-and-run (go to a random point along a randomdiretion) [16℄ have the best known bounds on the number of steps needed to draw a random sample.The bounds on the number of steps depend on how \round" the onvex set is. For a set that is loseto isotropi position (see Setion 2), O(n3) steps are enough for one random point. In our ase, theinitial onvex set, the ube, is indeed in isotropi position. However this might not be the ase aftersome iterations. As we desribe in Setion 3, this problem an be takled by omputing an aÆnetransformation that keeps the urrent polytope P into near-isotropi position. We also propose analternative (in Setion 3.1) that avoids this omputation and instead inorporates the informationabout isotropy impliitly in the steps of a random walk by maintaining a set of points. The time periteration is bounded by O�(n4) steps of a random walk, giving an overall running time of O�(n5L).As the reader might notie, the urrent bound on the worst-ase time per iteration of our al-gorithm is higher than both the Ellipsoid method and Vaidya's algorithm. However, in pratiedrawing random samples from onvex sets might be muh faster than the known worst-ase bounds;also, sampling onvex sets is an ative researh area and there might well be faster sampling methodsin the future.
2 Number of iterationsThe following de�nitions will be useful throughout the analysis. We assume that all our onvex setsare losed and bounded.De�nition 1. A onvex set K in R n is said to be in isotropi position if its enter of gravity is theorigin, i.e., for a random point x in K, EK(x) = 0and its variane-ovariane matrix is the identity, i.e.,EK(xxT ) = I:3



Equivalently, for any unit vetor v (jjvjj = 1)1vol(K) ZK(vTx)2dx = 1:
In other words, for a set K in isotropi position, the average squared length in any diretion is1. In partiular, this implies that 1vol(K) ZK jjxjj2dx = n:A onvex set an be brought into isotropi position by an aÆne transformation. To bring a onvexset K with enter of gravity z into isotropi position, let A = EK((x� z)(x� z)T ) and onsider thetransformation K 0 = fy : y = A� 12 (x� z); x 2 Kg. Then EK0(y) = 0 and EK0(yyT ) = I.Our proof utilizes log-onave funtions whih we introdue next.De�nition 2. A funtion f : R n ! R+ is log-onave for any two points a; b 2 R n and any� 2 (0; 1), f(�a+ (1� �)b) � f(a)�f(b)1��:In other words, a nonnegative funtion f is log-onave if its support is onvex and log f isonave. For example, a funtion that is onstant over a bounded onvex set and zero outside theset is log-onave. Another example is a Gaussian density funtion. It an be easily veri�ed fromthe de�nition above that the produt of two log-onave funtions is also log-onave (but their sumis not).The next theorem, whose proof uses Lemma 3, is the key to bounding the number of iterations.In this setion, by high probability we mean probability higher than any desired onstant.Theorem 1. The volume of P drops by a fator of 23 with high probability in eah iteration.Proof. We will prove that for any onvex set K, if z is the average of suÆiently many randomsamples from K, then any half-spae through z uts o� a onstant fration of the volume of K. Tothis end we an assume without loss of generality that K is in isotropi position. This is beauseof two fats: (i) as shown earlier, any onvex set an be brought into isotropi position by an aÆnetransformation and (ii) on applying an aÆne transformation A to K, the volume sales by det(A),i.e. vol(AK) = det(A)vol(K); so aÆne transformations preserve ratios of volumes.Let y1; y2; : : : ; yN be the N samples drawn uniformly from K. Let

z = 1N NXi=1 yi:Then, using the isotropy of K,E(yi) = 0 and V ar(jjyijj) = E(jjyijj2) = n:Thus, E(z) = 0 and V ar(jjzjj) = E(jjzjj2) = nN :We next onsider a unit vetor a 2 R n (jjajj = 1) and de�ne the one-dimensional marginal distribu-tion f f(y) = 1vol(K) Zx2K;aT x=y dx:4



In other words f(y) is the (n�1)-dimensional volume of K interseted with the hyperplane aTx = y.By Lemma 3, maxy2R f(y) < 1.Another fat that we will use is that any hyperplane through the enter of gravity of a onvexset has at least a 1e fration of its volume on either side [6℄:Z 0�1 f(y)dy � 1e and Z 10 f(y)dy � 1e :Assume without loss of generality that aT z � 0. The fration of the volume of K that is ut o� bya half-spae through z is at leastZ aT z�1 f(y)dy = Z 0�1 f(y)dy � Z 0aT z f(y)dy � 1e � jaT zj:Sine E(jjzjj2) = nN by hoosing N = O(n) we an have jjzjj and hene jaT zj smaller than anyonstant. We hoose N so that 1e � jaT zj � 13 with high probability. That is, any half-spae throughz uts o� at least 13 of the volume of K.We remark that in the proof above we only need the random samples to be pairwise indepen-dent. Also note that Theorem 1 remains true even if the samples are only nearly uniform, i.e., theprobability density everywhere is at most (1+ �) times the uniform density, for a suÆiently small �.Corollary 2. If the algorithm does not �nd a feasible point in 2nL iterations, then with high prob-ability, the given onvex set is empty.Proof. The initial volume of P is Rn. If the set K is nonempty, then it has volume at least rn. Thusthe number of iterations in whih the volume drops by 2=3 is at mostlog 32 �Rnrn � = n log 32 Rrand thus with high probability, the total number of iterations is at most 2nL.
2.1 The maximum ross-setional areaLemma 3. For an isotropi onvex set K and any unit vetor a 2 R n , de�ne a funtion f : R ! R+as f(y) = 1vol(K) Zx2K;aT x=y dx:Then maxy2R f(y) < 1:
Proof. Fix a unit vetor a 2 R n . Let fK be the one-dimensional marginal distributionfK(y) = 1vol(K) Zx2K;aT x=y dx:In other words, fK(y) is the (n � 1)-dimensional volume of K interseted with the hyperplaneaTx = y. De�ne �yK = ZR yf(y) dy and I(K) = ZR (y � �yK)2fK(y)dy:
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Figure 2: The proof of Lemma 3.
We will in fat prove a slightly stronger statement. For any onvex body K for whih fK de�nedas above satis�es Zy yf(y) dy = 0 and Zy y2f(y) dy = 1;maxy fK(y) < 1.To this end let K be suh a onvex set for whih maxy fK(y) is the maximum possible. We willshow that K an be assumed to be an isotropi one. To see this �rst onsider the set K 0 obtained byreplaing eah ross-setion K \ fxjaTx = yg by an (n� 1)-dimensional ball of area fK(y). ClearlyK 0 has the same volume as K. Further, by the Brunn-Minkowski priniple of symmetrization, K 0is also onvex (in other words, fK is log-onave [19℄). So without loss of generality, we an assumethat K is symmetri about the vetor a; let us also translate K so that �yK = 0. Also, the onditionsof fK ontinue to be satis�ed.If K is a one, we are done. If not, let y� be a point where fK is maximum and suppose thaty� � 0 (the other ase is symmetri). Divide K into three parts:K1 = K \ fxjaTx < 0g; K2 = K \ fxj0 � aTx � y�g; K3 = K \ fxjaTx > y�g:We will now use the observation that moving mass away from the enter of gravity an only inreasethe moment of inertia, and make the following operations. Replae K1 by a one K 01 of the samevolume with base area equal to fK(0). Replae K2 by a trunated one K 02 of height y�, top areafK(0) and base area fK(y�). Finally replae K3 by a one K 03 of base area f(y�) and vol(K 03) =vol(K3) + vol(K2)� vol(K 02). Let K 0 = K 01 [K 02 [K 03 be the new onvex set.After the �rst step, the new enter of gravity along a an only move to the left. Thus the nexttwo steps also move mass away from the enter of gravity. So at the end,I(K 0) � I(K); vol(K) = vol(K 0); max fK(y) = max fK0(y):Now a simple omputation shows that a one of the same volume as K 0 and base area fK(y�) has alarger moment of inertia than K 0, unless K 0 itself is a one. However, if I(K 0) > I(K), then we ansale down K 0 along a and sale it up perpendiular to a, in suh a way as to maintain the volume,ahieve I(K 0) = I(K), and have max fK0(y) > max fK(y). This ontradits the hoie of K.An isotropi one has height n+ 1qn+2n and so maxy f(y) � nn+1q nn+2 .
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2.2 A better bound for linear programmingFor the ase of linear programming, when the target onvex set K is a polyhedron de�ned by mlinear inequalities, a smaller number of samples an be used in eah iteration. The next lemma isthe basis of the improved sample omplexity.Lemma 4. Let K be a onvex set and z be the average of N random samples from K. Let a be a�xed unit vetor. Then the probability that the halfspae aTx � aT z uts o� at least 13 of K is atleast 1� 2�pN for some onstant .Proof. Assume without loss of generality that P is in isotropi position. Let Yi = aT yi for i =1; : : : ; N . Then, Yi's are independent random variables with distribution given by the log-onavefuntion f(y) = 1vol(K) Zx2K;aT x=y dx:We have E(Yi) = 0 and E(Y 2i ) = 1:Let Z = aT z = 1N NXi=1 Yi:Then, E(Z) = 0 and E(Z2) = 1N :Now the distribution of Z is the onvolution of the distributions of the Yi's and is also log-onave[19℄. Thus, there are onstants C > 1;D suh that for any t � C,P �jZj > tpN� � e�Dt:As a onsequene, for N > C2=2, Pr(jaT zj > ) � e�DpN :By hoosing  small enough, we get that the half-spae aTx � aT z uts o� at least 13 of the volumeof P with probability at least 1� e�0pN for some absolute onstant 0.Corollary 5. Let the target onvex set be the intersetion of m half-spaes. Then with N =O(log2m) the volume of P drops by a fator of 23 in eah iteration with high probability.Proof. As in the proof of Theorem 1, let y1; : : : ; yN be random variables denoting the samples fromthe urrent polytope P and let z be their average. In Theorem 1, we showed that for any unit vetora, the hyperplane normal to a and passing through z is likely to ut o� at least 13 of the volume ofP . Suppose that the target set K is the intersetion of m half-spaes de�ned by hyperplanes withnormal vetors a1; : : : ; am (with jjaijj = 1). Then we only need to show that eah of the hyperplanesaTi x = aTi z uts o� at least 13 of P . This is beause the separation orale for the target onvex set(whih simply heks the m half-spaes and reports one that is violated) will return a hyperplaneparallel to one of these.By Lemma 4, any single hyperplane aTx = aT z uts o� 13 of P with probability at least 1�2�pNfor some onstant . Setting N = O(log2m) implies that with high probability any one of m half-spaes will ut o� a onstant fration of P .
7



3 Sampling and IsotropyIn eah iteration, we need to sample the urrent polytope. For this we take a random walk. Thereare many ways to walk randomly but the two ways with the best bounds on the mixing time are theball walk and hit-and-run. They are both easy to desribe.Ball walk1. Choose y uniformly at random from the ball of radius Æ entered at the urrent point x.2. If y is in the onvex set then move to y; if not, try again.Hit-and-run1. Choose a line ` through the urrent point x uniformly at random.2. Move to a point y hosen uniformly from K \ `.The mixing time of the walk depends on how lose the onvex set is to being in isotropi position.We say that a onvex set K is in near-isotropi position if for any unit vetor v,12 � 1vol(K) ZK(vT (x� �x))2dx � 2:Equivalently, the variane-ovariane matrix (also alled the matrix of inertia) of the uniform dis-tribution over K has eigenvalues between 12 and 2. In addition to isotropy, the starting point (ordistribution) of a random walk plays a role in the bounds on the mixing time. The best boundsavailable are for a warm start { a starting distribution with the property that the density at anypoint in K is at most a onstant times the uniform density, �. The following result is paraphrasedfrom [16℄.Theorem 6. [16℄ Let K be a near-isotropi onvex set, � be any distribution on it with the propertythat �(x) � 10�(x) and �0 be the distribution obtained after O(n3�2 log 1� ) steps of hit-and-run startingat �. Then �0 has total variation distane less than � from the uniform distribution.A similar statement holds for ball walk with step size Æ = �( 1pn) (see [9℄). One advantage ofhit-and-run is that there is no need to hoose the \step size" Æ.The problem with applying this diretly in our algorithm to the urrent polytope P is that aftersome iterations P may not be in near-isotropi position. One way to maintain isotropi positionis by using random samples to alulate an aÆne transformation. It was proven in [11℄ that forany onvex set, O(n2) samples allow us to �nd an aÆne transformation that brings the set intonear-isotropi position. This was subsequently improved to O(n log2 n) [2, 20℄. The proedure for ageneral onvex set K is straightforward:1. Let y1; y2; : : : ; yN be random samples from K.2. Compute �y = 1N NXi=1 yi and Y = 1N NXi=1(yi � �y)(yi � �y)T :
The analysis of this proedure rests on the following onsequene of a more general lemma due toRudelson [20℄. 8



Lemma 7. [20℄ Let K be a onvex body in R n in isotropi position and � > 0. Let y1; : : : ; ym beindependent random points uniformly distributed in K, withm � C n�2 log n�2 (p+ logn):for an absolute onstant C and any positive integer p between 1 and n. ThenEjj 1m Xi=1m yiyTi � Ijjp � �p
Corollary 8. There is an absolute onstant C suh that suh that for any integer t � 1, andN � Ctn log2 n, with probability at least 1 � 1nt , the set K 0 = Y � 12 (K � �y) is in near-isotropiposition.Proof. Without loss of generality, we an assume that K is in isotropi position. LetY = 1m Xi=1m yiyTi � I:
Then applying Lemma 7 we have EjjY � Ijjp � �p:Hene, Pr[jjY � Ijj > 2�℄ = Pr[jjY � Ijjp > (2�)p℄� E[jjY � Ijjp℄(2�)p� 12pUsing p = t logn and � = 14 , we get that with N � Ctn log2 n points (this is a di�erent onstant Cfrom that in Lemma 7), Pr[jjY � Ijj > 12℄ � 1nt :Next we evaluate max vTY v and min vTY v over unit vetors v.vTY v = vT Iv + vT (Y � I)v� 1 + jjY � Ijj

vTY v = vT Iv + vT (Y � I)v� 1� jjY � IjjThus with probability 1� 1nt , vTY v is between 12 and 32 for any unit vetor v, and so K 0 is in nearisotropi position.In fat, using N = O�(n) points, the probability of failure in eah iteration an be made so low(inverse polynomial) that the probability of failure over the entire ourse of the algorithm is smallerthan than any �xed onstant. In order to keep the sampling eÆient, we alulate suh an aÆnetransformation in eah iteration, using samples from the previous iteration. However we do not needto apply the transformation to the urrent polytope P . Instead, we ould keep P as it is and usethe following modi�ed random walk: From a point x,9



1. Choose a point y uniformly at random from x+ ÆY 12Bn.2. If y is in the onvex set then move to y; if not, try again.A similar modi�ation (hoose the line ` from Y 12Bn rather than Bn) an be made to hit-and-runalso.Theorem 9. Eah iteration of the algorithm an be implemented in O�(n4) steps of a random walkin P .Proof. Our initial onvex set, the ube, is in isotropi position and it is easy to sample from it.Given a warm start in a urrent polytope P in near-isotropi position, we take O�(n3N) steps of arandom walk to get 2N nearly random samples (using Theorem 6). We ompute the average z ofN of these, and if z is not in the target onvex set, then we re�ne P with a new half-spae H to getP 0. Of the remaining N points, at least a onstant fration (say 14) are in P 0 with high probability.Further, their distribution is nearly uniform over P 0. Using these points, we estimate Y 12 by theformula of Corollary 8. With high probability this is a nonsingular matrix. By Corollary 8, we onlyneed N = O�(n) samples in eah iteration. The reason for disarding the subset of samples used inomputing the average is to avoid orrelations with future samples.
3.1 An isotropi variantHere we desribe an alternative method whih impliitly maintains isotropy. It has the advantageof ompletely avoiding the omputation of the linear transformation Y 12 .Instead of walking with a single point, we maintain m points v1; v2; : : : ; vm.For eah j = 1; : : : ;m,1. Choose a diretion ` =Pmi=1 �ivi where �1; : : : ; �m are drawn independently from the standardnormal distribution.2. Move vj to a random point in K along `.Theorem 10. Suppose the multi-point walk is started with m = 
(n log2 n) points drawn from adistribution � that satis�es �(x) � 10�(x). Then the distribution of eah point after a total ofO(mn3�2 log 1� ) steps has total variation distane less than � from the stationary distribution.Proof. The random walk desribed above is invariant under aÆne transformations, meaning thereis a one-to-one map betweeen a walk in K and a walk in an aÆne transformation of K; hene wean assume that K is isotropi. Now onsider a slightly di�erent walk where we keep m points, pikone and make a standard hit-and-run step, i.e. the diretion is hosen uniformly. The orrespond-ing Markov hain has states for eah m-tuple of points from K, and sine eah point is walkingindependently, it follows from Theorem 6 that the hain has the bound desribed above.Compare this to the Markov hain for our random walk. The stationary distribution is the same(our Markov hain is symmetri). The main observation is that for v1; : : : ; vm piked at random andm = 
(n log2 n), the matrix of inertia is very likely to have eigenvalues bounded by onstants fromabove and below. Using Corollary 8, we an hoose m so that this probability is 1 � 1n10 . Thus,for all but a 1n10 fration of states, the probability of eah single transition of our Markov hain iswithin a onstant fator of the �rst Markov hain. So the ondutane of any subset of probabilitygreater than 1n8 (say) is within a onstant fator of its ondutane in the �rst hain. Sine we startout with a warm distribution (i.e., a large subset), this implies the bound on the mixing time.10



Thus the entire onvex programming algorithm now onsists of the following: We maintain 2Nrandom points in the urrent polytope P . We use N of them to generate the query point and re�neP . Among the rest, we keep those that remain in P , and ontinue to walk randomly as desribedabove till we have 2N random points again.
4 A generalizationIn this setion we onsider the problem of optimization over a onvex set given by a weaker orale,namely a membership orale. In [5℄, it is shown that this is indeed possible using a sophistiatedvariant of the ellipsoid algorithm, provided we have a entered onvex set K. That is, in addition tothe membership orale, we are given a point y 2 K, and a guarantee that a ball of radius r aroundy is ontained in K. The algorithm and proof there are quite nie but intriate2.Our algorithm provides a solution for a more general problem: K is the intersetion of two onvexsets K1 and K2. We are given a separation orale for K1, a membership orale for K2 and a pointin K2. The problem is to minimize a onvex funtion over K.Theorem 11. Let K = K1 \K2 where K1 is given by a separation orale and K2 by a membershiporale. Let R be the radius of an origin-entered ball ontaining K. Then, given a point y 2 K2 suhthat the ball of radius r around y is ontained in K2 (i.e., K2 is entered), the optimization problemover K an be solved in time polynomial in n and log Rr .Proof. It is lear that optimization is reduible to feasibility, i.e., we just need to �nd a point x inK or delare that K is empty. We start with P as K2 interseted with the ball of radius 2R withenter y and apply our algorithm. The key proedure, a random walk in P , needs a point in P and amembership orale for P , both of whih we have initially and at eah iteration. Using O�(n) sampleswe an bring P into near-isotropi position. Also, eah subsequent query point z is guaranteed tobe in K2, sine it is the average of points from K2. Thus the algorithm needs at most O(n log Rr )iterations and O(n log Rr ) alls to the separation orale for K1. Eah iteration (after the �rst) makesO�(n4) alls to the membership orale for K2.To bring the initial set P into isotropi position, we an adapt the \hain of bodies" proedureof [11℄. Sine K2 is entered, it ontains a ball of radius r around y. Sale up so that y + rBn is inisotropi position and all it Q (just for onveniene; this has the e�et of saling up R also). Nowonsider Q0 = P \y+2 1n rBn, i.e., K2 interseted with the ball of radius 21=nr around y. The volumeof Q0 is at most twie the volume of Q and so a uniform sample from Q provides a warm start forsampling from Q0. Sample from Q0, drawing eah sample in poly(n) time and use the samples toalulate an aÆne transformation that would put Q0 in isotropi position. Apply the transformationto P . Reset Q to be the transformed Q0, y to be its enter of gravity and r to be the radius ofthe ball around y ontaining Q. Again let Q0 be the intersetion of P with the ball of radius 21=nraround y. After at most O(n log Rr ) suh phases, P will be in near-isotropi position.
5 ExtensionsThe methods of this paper suggest the following interior point algorithm for optimization. Supposewe want to maximize Tx over a full-dimensional onvex set K. We start with a feasible solution z1in K. Then add the onstraint Tx � T z1 and let K := K \ fx j Tx � T z1g. Next we generate2It is not known whether Vaidya's algorithm an be extended to solve this problem.
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N random points yi in the set K and let z2 be their average. If T z2 � T z1 < � we stop; otherwisewe set K := K \ fx j Tx > T z2g, and ontinue.The algorithms seems to merit empirial evaluation; in pratie, it might be possible to samplemore eÆiently than the known worst-ase bounds. In any ase, the algorithm presents a strongmotivation to �nd geometri random walks that mix faster.Aknowledgement. We thank Adam Kalai, Ravi Kannan, Lai Lov�asz and Mike Sipser for usefuldisussions and their enouragement.
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