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Abstra
tIn breakthrough developments about two de
ades ago, L. G. Kha
hiyan [14℄ showed that theEllipsoid method solves linear programs in polynomial time, while M. Gr�ots
hel, L. Lov�asz andA. S
hrijver [4, 5℄ extended this to the problem of minimizing a 
onvex fun
tion over any 
onvexset spe
i�ed by a separation ora
le. In 1996, P. M. Vaidya [21℄ improved the running time via amore sophisti
ated algorithm. We present a simple new algorithm for 
onvex optimization basedon sampling by a random walk; it also solves for a natural generalization of the problem.

1 Introdu
tionThe problem of minimizing a 
onvex fun
tion over a 
onvex set in R n is a 
ommon generalizationof well-known geometri
 optimization problems su
h as linear programming as well as a varietyof 
ombinatorial optimization problems in
luding mat
hings, 
ows and matroid interse
tion, allof whi
h have polynomial-time algorithms. As su
h, it represents a frontier of polynomial-timesolvability and o

upies a 
entral pla
e in the theory of algorithms.In his groundbreaking work, Kha
hiyan [14℄ showed that the Ellipsoid method [22℄ solves linearprograms in polynomial time. Shortly thereafter, Karp and Papadimitriou [13℄, Padberg and Rao[18℄, and Gr�ots
hel, Lov�asz and S
hrijver [4℄ independently dis
overed the wide appli
ability of theellipsoid method to 
ombinatorial optimization problems. This 
ulminated in the book by the lastset of authors [5℄, in whi
h it is shown that the Ellipsoid method solves the problem of minimizing a
onvex fun
tion over a 
onvex set in R n spe
i�ed by a separation ora
le, i.e., a pro
edure whi
h givena point x either reports that the set 
ontains x or returns a half-spa
e that separates the set from x.For the spe
ial 
ase of linear programming, the ora
le simply 
he
ks if the query point satis�es allthe 
onstraints of the linear program, and if not, reports a violated 
onstraint; another well-knownspe
ial 
ase is semi-de�nite programming. Vaidya [21℄ later improved the running time via a moresophisti
ated algorithm.In this paper, we present a simple new algorithm for the problem, based on random sampling.Our algorithm also solves a natural generalization that was previously not known to be solvable inpolynomial-time.The key 
omponent of the algorithm is sampling a 
onvex set by a random walk. Random walkshave long been studied for their mathemati
al appeal, but of late they have also played a 
ru
ial rolein the dis
overy of polynomial-time algorithms. Notable appli
ations in
lude estimating the volumeof a 
onvex set [3℄ and 
omputing the permanent of a non-negative matrix [7℄. They have also beenused in ma
hine learning and online algorithms [8℄. Our algorithm is a new appli
ation of randomwalks to the �eld of optimization. 1



In the des
ription below, we assume that the 
onvex set K is 
ontained in the axis-aligned 
ubeof width R 
entered at the origin; further if K is non-empty then it 
ontains a 
ube of width r (seee.g. [1, 5℄ for a justi�
ation). The 
hoi
e of 
ubes here is somewhat arbitrary; we 
ould instead useballs, for example. The parameter L is equal to log Rr .Algorithm.Input: A separation ora
le for a 
onvex set K and a number L.Output: A point in K or a guarantee that K is empty.1. Let P be the axis-aligned 
ube of width R with 
enter z = 0.2. Che
k if z is in K. If so then report z and stop. If not,then let aTx � b be the half-spa
e 
ontaining K reported bythe ora
le. Set H = fx j aTx � aT zg:3. Set P = P \ H. Pi
k N random points y1; y2; : : : ; yN from P.Set z to be their average: z = 1N PNi=1 yi:4. Repeat steps 2 and 3 at most 2nL times. Report K is empty.
Roughly speaking, the algorithm is 
omputing an approximate 
entroid in ea
h iteration1. Thenumber of samples required in ea
h iteration, N , is O(n) for an arbitrary 
onvex set in R n andO(log2m) if K is a polyhedron with m inequalities (i.e. a linear program). Note that optimization
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Figure 1: An illustration of the algorithm.
is easily redu
ed to the feasibility problem solved above: to (say) minimize a 
onvex fun
tion f(x)we simply add the 
onstraint f(x) � t and sear
h (in a binary fashion) for the optimal t.The idea behind the algorithm is that the volume of the en
losing polytope P is likely to dropby a 
onstant fa
tor in ea
h iteration. We prove this in Se
tion 2 and derive as a 
onsequen
e that if1The idea of an algorithm based on 
omputing the exa
t 
entroid was suggested in 1965 by Y. Levin [15℄, but is
omputationally intra
table. 2



the algorithm does not stop in 2nL iterations, then K must be empty (with high probability). Thus,the total number of 
alls to the separation ora
le is at most 2nL. This mat
hes the (asymptoti
)bound for Vaidya's algorithm, and is in general the best possible [22℄. The ellipsoid algorithm, in
ontrast, makes up to O(n2L) iterations and as many 
alls to the ora
le.In the dis
ussion so far, we have assumed that the 
onvex set of interest has an eÆ
ient separationora
le. A natural question is whether optimization 
an be solved using a signi�
antly weaker ora
le,namely a membership ora
le (whi
h reports whether a query point is in the set or not, but providesno other information). One of the main results in [5℄ is that a linear fun
tion 
an be optimized overa 
onvex set K given only by a membership ora
le, provided K is \
entered", i.e., we are also given apoint y and a guarantee that a ball of radius r around y is 
ontained in K. The algorithm is intri
ateand involves a sophisti
ated variant of the Ellipsoid method, 
alled the shallow-
ut Ellipsoid. Ouralgorithm provides a simple solution to this problem. In fa
t, as we show in Se
tion 4, it solves thefollowing generalization: let K be the interse
tion of two 
onvex sets K1 and K2, where K1 is a\
entered" 
onvex set with a membership ora
le and K2 is a 
onvex set with a separation ora
le;�nd a point in K if one exists. The generalization in
ludes the spe
ial 
ase of minimizing a 
onvexfun
tion over a 
entered 
onvex set given by a membersip ora
le. This problem (and its spe
ial 
asementioned above) are not known to be solvable using the Ellipsoid method or Vaidya's algorithm.Ea
h iteration of our algorithm needs random samples from the 
urrent polytope P . The timeper iteration depends on how qui
kly we 
an draw random samples from P . The problem of samplingfrom a 
onvex set has re
eived mu
h attention in re
ent years [3, 17, 11, 16, 9℄, in part be
ause it isthe only known way of eÆ
iently estimating the volume of a 
onvex set. The general idea is to takea random walk in the set. There are many ways to walk randomly; of these, the ball walk (go to arandom point within a small distan
e) [9℄ and hit-and-run (go to a random point along a randomdire
tion) [16℄ have the best known bounds on the number of steps needed to draw a random sample.The bounds on the number of steps depend on how \round" the 
onvex set is. For a set that is 
loseto isotropi
 position (see Se
tion 2), O(n3) steps are enough for one random point. In our 
ase, theinitial 
onvex set, the 
ube, is indeed in isotropi
 position. However this might not be the 
ase aftersome iterations. As we des
ribe in Se
tion 3, this problem 
an be ta
kled by 
omputing an aÆnetransformation that keeps the 
urrent polytope P into near-isotropi
 position. We also propose analternative (in Se
tion 3.1) that avoids this 
omputation and instead in
orporates the informationabout isotropy impli
itly in the steps of a random walk by maintaining a set of points. The time periteration is bounded by O�(n4) steps of a random walk, giving an overall running time of O�(n5L).As the reader might noti
e, the 
urrent bound on the worst-
ase time per iteration of our al-gorithm is higher than both the Ellipsoid method and Vaidya's algorithm. However, in pra
ti
edrawing random samples from 
onvex sets might be mu
h faster than the known worst-
ase bounds;also, sampling 
onvex sets is an a
tive resear
h area and there might well be faster sampling methodsin the future.
2 Number of iterationsThe following de�nitions will be useful throughout the analysis. We assume that all our 
onvex setsare 
losed and bounded.De�nition 1. A 
onvex set K in R n is said to be in isotropi
 position if its 
enter of gravity is theorigin, i.e., for a random point x in K, EK(x) = 0and its varian
e-
ovarian
e matrix is the identity, i.e.,EK(xxT ) = I:3



Equivalently, for any unit ve
tor v (jjvjj = 1)1vol(K) ZK(vTx)2dx = 1:
In other words, for a set K in isotropi
 position, the average squared length in any dire
tion is1. In parti
ular, this implies that 1vol(K) ZK jjxjj2dx = n:A 
onvex set 
an be brought into isotropi
 position by an aÆne transformation. To bring a 
onvexset K with 
enter of gravity z into isotropi
 position, let A = EK((x� z)(x� z)T ) and 
onsider thetransformation K 0 = fy : y = A� 12 (x� z); x 2 Kg. Then EK0(y) = 0 and EK0(yyT ) = I.Our proof utilizes log-
on
ave fun
tions whi
h we introdu
e next.De�nition 2. A fun
tion f : R n ! R+ is log-
on
ave for any two points a; b 2 R n and any� 2 (0; 1), f(�a+ (1� �)b) � f(a)�f(b)1��:In other words, a nonnegative fun
tion f is log-
on
ave if its support is 
onvex and log f is
on
ave. For example, a fun
tion that is 
onstant over a bounded 
onvex set and zero outside theset is log-
on
ave. Another example is a Gaussian density fun
tion. It 
an be easily veri�ed fromthe de�nition above that the produ
t of two log-
on
ave fun
tions is also log-
on
ave (but their sumis not).The next theorem, whose proof uses Lemma 3, is the key to bounding the number of iterations.In this se
tion, by high probability we mean probability higher than any desired 
onstant.Theorem 1. The volume of P drops by a fa
tor of 23 with high probability in ea
h iteration.Proof. We will prove that for any 
onvex set K, if z is the average of suÆ
iently many randomsamples from K, then any half-spa
e through z 
uts o� a 
onstant fra
tion of the volume of K. Tothis end we 
an assume without loss of generality that K is in isotropi
 position. This is be
auseof two fa
ts: (i) as shown earlier, any 
onvex set 
an be brought into isotropi
 position by an aÆnetransformation and (ii) on applying an aÆne transformation A to K, the volume s
ales by det(A),i.e. vol(AK) = det(A)vol(K); so aÆne transformations preserve ratios of volumes.Let y1; y2; : : : ; yN be the N samples drawn uniformly from K. Let

z = 1N NXi=1 yi:Then, using the isotropy of K,E(yi) = 0 and V ar(jjyijj) = E(jjyijj2) = n:Thus, E(z) = 0 and V ar(jjzjj) = E(jjzjj2) = nN :We next 
onsider a unit ve
tor a 2 R n (jjajj = 1) and de�ne the one-dimensional marginal distribu-tion f f(y) = 1vol(K) Zx2K;aT x=y dx:4



In other words f(y) is the (n�1)-dimensional volume of K interse
ted with the hyperplane aTx = y.By Lemma 3, maxy2R f(y) < 1.Another fa
t that we will use is that any hyperplane through the 
enter of gravity of a 
onvexset has at least a 1e fra
tion of its volume on either side [6℄:Z 0�1 f(y)dy � 1e and Z 10 f(y)dy � 1e :Assume without loss of generality that aT z � 0. The fra
tion of the volume of K that is 
ut o� bya half-spa
e through z is at leastZ aT z�1 f(y)dy = Z 0�1 f(y)dy � Z 0aT z f(y)dy � 1e � jaT zj:Sin
e E(jjzjj2) = nN by 
hoosing N = O(n) we 
an have jjzjj and hen
e jaT zj smaller than any
onstant. We 
hoose N so that 1e � jaT zj � 13 with high probability. That is, any half-spa
e throughz 
uts o� at least 13 of the volume of K.We remark that in the proof above we only need the random samples to be pairwise indepen-dent. Also note that Theorem 1 remains true even if the samples are only nearly uniform, i.e., theprobability density everywhere is at most (1+ �) times the uniform density, for a suÆ
iently small �.Corollary 2. If the algorithm does not �nd a feasible point in 2nL iterations, then with high prob-ability, the given 
onvex set is empty.Proof. The initial volume of P is Rn. If the set K is nonempty, then it has volume at least rn. Thusthe number of iterations in whi
h the volume drops by 2=3 is at mostlog 32 �Rnrn � = n log 32 Rrand thus with high probability, the total number of iterations is at most 2nL.
2.1 The maximum 
ross-se
tional areaLemma 3. For an isotropi
 
onvex set K and any unit ve
tor a 2 R n , de�ne a fun
tion f : R ! R+as f(y) = 1vol(K) Zx2K;aT x=y dx:Then maxy2R f(y) < 1:
Proof. Fix a unit ve
tor a 2 R n . Let fK be the one-dimensional marginal distributionfK(y) = 1vol(K) Zx2K;aT x=y dx:In other words, fK(y) is the (n � 1)-dimensional volume of K interse
ted with the hyperplaneaTx = y. De�ne �yK = ZR yf(y) dy and I(K) = ZR (y � �yK)2fK(y)dy:
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Figure 2: The proof of Lemma 3.
We will in fa
t prove a slightly stronger statement. For any 
onvex body K for whi
h fK de�nedas above satis�es Zy yf(y) dy = 0 and Zy y2f(y) dy = 1;maxy fK(y) < 1.To this end let K be su
h a 
onvex set for whi
h maxy fK(y) is the maximum possible. We willshow that K 
an be assumed to be an isotropi
 
one. To see this �rst 
onsider the set K 0 obtained byrepla
ing ea
h 
ross-se
tion K \ fxjaTx = yg by an (n� 1)-dimensional ball of area fK(y). ClearlyK 0 has the same volume as K. Further, by the Brunn-Minkowski prin
iple of symmetrization, K 0is also 
onvex (in other words, fK is log-
on
ave [19℄). So without loss of generality, we 
an assumethat K is symmetri
 about the ve
tor a; let us also translate K so that �yK = 0. Also, the 
onditionsof fK 
ontinue to be satis�ed.If K is a 
one, we are done. If not, let y� be a point where fK is maximum and suppose thaty� � 0 (the other 
ase is symmetri
). Divide K into three parts:K1 = K \ fxjaTx < 0g; K2 = K \ fxj0 � aTx � y�g; K3 = K \ fxjaTx > y�g:We will now use the observation that moving mass away from the 
enter of gravity 
an only in
reasethe moment of inertia, and make the following operations. Repla
e K1 by a 
one K 01 of the samevolume with base area equal to fK(0). Repla
e K2 by a trun
ated 
one K 02 of height y�, top areafK(0) and base area fK(y�). Finally repla
e K3 by a 
one K 03 of base area f(y�) and vol(K 03) =vol(K3) + vol(K2)� vol(K 02). Let K 0 = K 01 [K 02 [K 03 be the new 
onvex set.After the �rst step, the new 
enter of gravity along a 
an only move to the left. Thus the nexttwo steps also move mass away from the 
enter of gravity. So at the end,I(K 0) � I(K); vol(K) = vol(K 0); max fK(y) = max fK0(y):Now a simple 
omputation shows that a 
one of the same volume as K 0 and base area fK(y�) has alarger moment of inertia than K 0, unless K 0 itself is a 
one. However, if I(K 0) > I(K), then we 
ans
ale down K 0 along a and s
ale it up perpendi
ular to a, in su
h a way as to maintain the volume,a
hieve I(K 0) = I(K), and have max fK0(y) > max fK(y). This 
ontradi
ts the 
hoi
e of K.An isotropi
 
one has height n+ 1qn+2n and so maxy f(y) � nn+1q nn+2 .
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2.2 A better bound for linear programmingFor the 
ase of linear programming, when the target 
onvex set K is a polyhedron de�ned by mlinear inequalities, a smaller number of samples 
an be used in ea
h iteration. The next lemma isthe basis of the improved sample 
omplexity.Lemma 4. Let K be a 
onvex set and z be the average of N random samples from K. Let a be a�xed unit ve
tor. Then the probability that the halfspa
e aTx � aT z 
uts o� at least 13 of K is atleast 1� 2�
pN for some 
onstant 
.Proof. Assume without loss of generality that P is in isotropi
 position. Let Yi = aT yi for i =1; : : : ; N . Then, Yi's are independent random variables with distribution given by the log-
on
avefun
tion f(y) = 1vol(K) Zx2K;aT x=y dx:We have E(Yi) = 0 and E(Y 2i ) = 1:Let Z = aT z = 1N NXi=1 Yi:Then, E(Z) = 0 and E(Z2) = 1N :Now the distribution of Z is the 
onvolution of the distributions of the Yi's and is also log-
on
ave[19℄. Thus, there are 
onstants C > 1;D su
h that for any t � C,P �jZj > tpN� � e�Dt:As a 
onsequen
e, for N > C2=
2, Pr(jaT zj > 
) � e�
DpN :By 
hoosing 
 small enough, we get that the half-spa
e aTx � aT z 
uts o� at least 13 of the volumeof P with probability at least 1� e�
0pN for some absolute 
onstant 
0.Corollary 5. Let the target 
onvex set be the interse
tion of m half-spa
es. Then with N =O(log2m) the volume of P drops by a fa
tor of 23 in ea
h iteration with high probability.Proof. As in the proof of Theorem 1, let y1; : : : ; yN be random variables denoting the samples fromthe 
urrent polytope P and let z be their average. In Theorem 1, we showed that for any unit ve
tora, the hyperplane normal to a and passing through z is likely to 
ut o� at least 13 of the volume ofP . Suppose that the target set K is the interse
tion of m half-spa
es de�ned by hyperplanes withnormal ve
tors a1; : : : ; am (with jjaijj = 1). Then we only need to show that ea
h of the hyperplanesaTi x = aTi z 
uts o� at least 13 of P . This is be
ause the separation ora
le for the target 
onvex set(whi
h simply 
he
ks the m half-spa
es and reports one that is violated) will return a hyperplaneparallel to one of these.By Lemma 4, any single hyperplane aTx = aT z 
uts o� 13 of P with probability at least 1�2�
pNfor some 
onstant 
. Setting N = O(log2m) implies that with high probability any one of m half-spa
es will 
ut o� a 
onstant fra
tion of P .
7



3 Sampling and IsotropyIn ea
h iteration, we need to sample the 
urrent polytope. For this we take a random walk. Thereare many ways to walk randomly but the two ways with the best bounds on the mixing time are theball walk and hit-and-run. They are both easy to des
ribe.Ball walk1. Choose y uniformly at random from the ball of radius Æ 
entered at the 
urrent point x.2. If y is in the 
onvex set then move to y; if not, try again.Hit-and-run1. Choose a line ` through the 
urrent point x uniformly at random.2. Move to a point y 
hosen uniformly from K \ `.The mixing time of the walk depends on how 
lose the 
onvex set is to being in isotropi
 position.We say that a 
onvex set K is in near-isotropi
 position if for any unit ve
tor v,12 � 1vol(K) ZK(vT (x� �x))2dx � 2:Equivalently, the varian
e-
ovarian
e matrix (also 
alled the matrix of inertia) of the uniform dis-tribution over K has eigenvalues between 12 and 2. In addition to isotropy, the starting point (ordistribution) of a random walk plays a role in the bounds on the mixing time. The best boundsavailable are for a warm start { a starting distribution with the property that the density at anypoint in K is at most a 
onstant times the uniform density, �. The following result is paraphrasedfrom [16℄.Theorem 6. [16℄ Let K be a near-isotropi
 
onvex set, � be any distribution on it with the propertythat �(x) � 10�(x) and �0 be the distribution obtained after O(n3�2 log 1� ) steps of hit-and-run startingat �. Then �0 has total variation distan
e less than � from the uniform distribution.A similar statement holds for ball walk with step size Æ = �( 1pn) (see [9℄). One advantage ofhit-and-run is that there is no need to 
hoose the \step size" Æ.The problem with applying this dire
tly in our algorithm to the 
urrent polytope P is that aftersome iterations P may not be in near-isotropi
 position. One way to maintain isotropi
 positionis by using random samples to 
al
ulate an aÆne transformation. It was proven in [11℄ that forany 
onvex set, O(n2) samples allow us to �nd an aÆne transformation that brings the set intonear-isotropi
 position. This was subsequently improved to O(n log2 n) [2, 20℄. The pro
edure for ageneral 
onvex set K is straightforward:1. Let y1; y2; : : : ; yN be random samples from K.2. Compute �y = 1N NXi=1 yi and Y = 1N NXi=1(yi � �y)(yi � �y)T :
The analysis of this pro
edure rests on the following 
onsequen
e of a more general lemma due toRudelson [20℄. 8



Lemma 7. [20℄ Let K be a 
onvex body in R n in isotropi
 position and � > 0. Let y1; : : : ; ym beindependent random points uniformly distributed in K, withm � C n�2 log n�2 (p+ logn):for an absolute 
onstant C and any positive integer p between 1 and n. ThenEjj 1m Xi=1m yiyTi � Ijjp � �p
Corollary 8. There is an absolute 
onstant C su
h that su
h that for any integer t � 1, andN � Ctn log2 n, with probability at least 1 � 1nt , the set K 0 = Y � 12 (K � �y) is in near-isotropi
position.Proof. Without loss of generality, we 
an assume that K is in isotropi
 position. LetY = 1m Xi=1m yiyTi � I:
Then applying Lemma 7 we have EjjY � Ijjp � �p:Hen
e, Pr[jjY � Ijj > 2�℄ = Pr[jjY � Ijjp > (2�)p℄� E[jjY � Ijjp℄(2�)p� 12pUsing p = t logn and � = 14 , we get that with N � Ctn log2 n points (this is a di�erent 
onstant Cfrom that in Lemma 7), Pr[jjY � Ijj > 12℄ � 1nt :Next we evaluate max vTY v and min vTY v over unit ve
tors v.vTY v = vT Iv + vT (Y � I)v� 1 + jjY � Ijj

vTY v = vT Iv + vT (Y � I)v� 1� jjY � IjjThus with probability 1� 1nt , vTY v is between 12 and 32 for any unit ve
tor v, and so K 0 is in nearisotropi
 position.In fa
t, using N = O�(n) points, the probability of failure in ea
h iteration 
an be made so low(inverse polynomial) that the probability of failure over the entire 
ourse of the algorithm is smallerthan than any �xed 
onstant. In order to keep the sampling eÆ
ient, we 
al
ulate su
h an aÆnetransformation in ea
h iteration, using samples from the previous iteration. However we do not needto apply the transformation to the 
urrent polytope P . Instead, we 
ould keep P as it is and usethe following modi�ed random walk: From a point x,9



1. Choose a point y uniformly at random from x+ ÆY 12Bn.2. If y is in the 
onvex set then move to y; if not, try again.A similar modi�
ation (
hoose the line ` from Y 12Bn rather than Bn) 
an be made to hit-and-runalso.Theorem 9. Ea
h iteration of the algorithm 
an be implemented in O�(n4) steps of a random walkin P .Proof. Our initial 
onvex set, the 
ube, is in isotropi
 position and it is easy to sample from it.Given a warm start in a 
urrent polytope P in near-isotropi
 position, we take O�(n3N) steps of arandom walk to get 2N nearly random samples (using Theorem 6). We 
ompute the average z ofN of these, and if z is not in the target 
onvex set, then we re�ne P with a new half-spa
e H to getP 0. Of the remaining N points, at least a 
onstant fra
tion (say 14) are in P 0 with high probability.Further, their distribution is nearly uniform over P 0. Using these points, we estimate Y 12 by theformula of Corollary 8. With high probability this is a nonsingular matrix. By Corollary 8, we onlyneed N = O�(n) samples in ea
h iteration. The reason for dis
arding the subset of samples used in
omputing the average is to avoid 
orrelations with future samples.
3.1 An isotropi
 variantHere we des
ribe an alternative method whi
h impli
itly maintains isotropy. It has the advantageof 
ompletely avoiding the 
omputation of the linear transformation Y 12 .Instead of walking with a single point, we maintain m points v1; v2; : : : ; vm.For ea
h j = 1; : : : ;m,1. Choose a dire
tion ` =Pmi=1 �ivi where �1; : : : ; �m are drawn independently from the standardnormal distribution.2. Move vj to a random point in K along `.Theorem 10. Suppose the multi-point walk is started with m = 
(n log2 n) points drawn from adistribution � that satis�es �(x) � 10�(x). Then the distribution of ea
h point after a total ofO(mn3�2 log 1� ) steps has total variation distan
e less than � from the stationary distribution.Proof. The random walk des
ribed above is invariant under aÆne transformations, meaning thereis a one-to-one map betweeen a walk in K and a walk in an aÆne transformation of K; hen
e we
an assume that K is isotropi
. Now 
onsider a slightly di�erent walk where we keep m points, pi
kone and make a standard hit-and-run step, i.e. the dire
tion is 
hosen uniformly. The 
orrespond-ing Markov 
hain has states for ea
h m-tuple of points from K, and sin
e ea
h point is walkingindependently, it follows from Theorem 6 that the 
hain has the bound des
ribed above.Compare this to the Markov 
hain for our random walk. The stationary distribution is the same(our Markov 
hain is symmetri
). The main observation is that for v1; : : : ; vm pi
ked at random andm = 
(n log2 n), the matrix of inertia is very likely to have eigenvalues bounded by 
onstants fromabove and below. Using Corollary 8, we 
an 
hoose m so that this probability is 1 � 1n10 . Thus,for all but a 1n10 fra
tion of states, the probability of ea
h single transition of our Markov 
hain iswithin a 
onstant fa
tor of the �rst Markov 
hain. So the 
ondu
tan
e of any subset of probabilitygreater than 1n8 (say) is within a 
onstant fa
tor of its 
ondu
tan
e in the �rst 
hain. Sin
e we startout with a warm distribution (i.e., a large subset), this implies the bound on the mixing time.10



Thus the entire 
onvex programming algorithm now 
onsists of the following: We maintain 2Nrandom points in the 
urrent polytope P . We use N of them to generate the query point and re�neP . Among the rest, we keep those that remain in P , and 
ontinue to walk randomly as des
ribedabove till we have 2N random points again.
4 A generalizationIn this se
tion we 
onsider the problem of optimization over a 
onvex set given by a weaker ora
le,namely a membership ora
le. In [5℄, it is shown that this is indeed possible using a sophisti
atedvariant of the ellipsoid algorithm, provided we have a 
entered 
onvex set K. That is, in addition tothe membership ora
le, we are given a point y 2 K, and a guarantee that a ball of radius r aroundy is 
ontained in K. The algorithm and proof there are quite ni
e but intri
ate2.Our algorithm provides a solution for a more general problem: K is the interse
tion of two 
onvexsets K1 and K2. We are given a separation ora
le for K1, a membership ora
le for K2 and a pointin K2. The problem is to minimize a 
onvex fun
tion over K.Theorem 11. Let K = K1 \K2 where K1 is given by a separation ora
le and K2 by a membershipora
le. Let R be the radius of an origin-
entered ball 
ontaining K. Then, given a point y 2 K2 su
hthat the ball of radius r around y is 
ontained in K2 (i.e., K2 is 
entered), the optimization problemover K 
an be solved in time polynomial in n and log Rr .Proof. It is 
lear that optimization is redu
ible to feasibility, i.e., we just need to �nd a point x inK or de
lare that K is empty. We start with P as K2 interse
ted with the ball of radius 2R with
enter y and apply our algorithm. The key pro
edure, a random walk in P , needs a point in P and amembership ora
le for P , both of whi
h we have initially and at ea
h iteration. Using O�(n) sampleswe 
an bring P into near-isotropi
 position. Also, ea
h subsequent query point z is guaranteed tobe in K2, sin
e it is the average of points from K2. Thus the algorithm needs at most O(n log Rr )iterations and O(n log Rr ) 
alls to the separation ora
le for K1. Ea
h iteration (after the �rst) makesO�(n4) 
alls to the membership ora
le for K2.To bring the initial set P into isotropi
 position, we 
an adapt the \
hain of bodies" pro
edureof [11℄. Sin
e K2 is 
entered, it 
ontains a ball of radius r around y. S
ale up so that y + rBn is inisotropi
 position and 
all it Q (just for 
onvenien
e; this has the e�e
t of s
aling up R also). Now
onsider Q0 = P \y+2 1n rBn, i.e., K2 interse
ted with the ball of radius 21=nr around y. The volumeof Q0 is at most twi
e the volume of Q and so a uniform sample from Q provides a warm start forsampling from Q0. Sample from Q0, drawing ea
h sample in poly(n) time and use the samples to
al
ulate an aÆne transformation that would put Q0 in isotropi
 position. Apply the transformationto P . Reset Q to be the transformed Q0, y to be its 
enter of gravity and r to be the radius ofthe ball around y 
ontaining Q. Again let Q0 be the interse
tion of P with the ball of radius 21=nraround y. After at most O(n log Rr ) su
h phases, P will be in near-isotropi
 position.
5 ExtensionsThe methods of this paper suggest the following interior point algorithm for optimization. Supposewe want to maximize 
Tx over a full-dimensional 
onvex set K. We start with a feasible solution z1in K. Then add the 
onstraint 
Tx � 
T z1 and let K := K \ fx j 
Tx � 
T z1g. Next we generate2It is not known whether Vaidya's algorithm 
an be extended to solve this problem.
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N random points yi in the set K and let z2 be their average. If 
T z2 � 
T z1 < � we stop; otherwisewe set K := K \ fx j 
Tx > 
T z2g, and 
ontinue.The algorithms seems to merit empiri
al evaluation; in pra
ti
e, it might be possible to samplemore eÆ
iently than the known worst-
ase bounds. In any 
ase, the algorithm presents a strongmotivation to �nd geometri
 random walks that mix faster.A
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