Stat-491-Fall2014-Assignment-V

Hariharan Narayanan

December 4, 2014

Note: This assignment is due on 3 December 2014.

1 Martingales

In what follows take \mathcal{F}_{n} to be the sequence of random variables $X_{0}, \cdots X_{n}$. As usual all random variables are taken to be integrable with respect to the relevant σ - algebras.

1. Let M_{n} be a martingale with respect to \mathcal{F}_{n}. Prove that $M_{n}^{\prime} \equiv M_{m+n}-M_{m}, n \geq 1$, is a martingale with respect to $\mathcal{F}_{n}^{\prime} \equiv X_{0}, \cdots X_{m+n}$.

Solution

We need to prove that $E\left[M_{n}^{\prime} \mid \mathcal{F}_{n-1}^{\prime}\right]=M_{n-1}^{\prime}$. Now $E\left[M_{m+n} \mid \mathcal{F}_{n-1}^{\prime}\right]=M_{m+n-1}$. Further, $E\left[M_{m} \mid\right.$ $\left.\mathcal{F}_{n-1}^{\prime}\right]=M_{m}$. Therefore, $E\left[M_{n}^{\prime} \mid \mathcal{F}_{n-1}^{\prime}\right]=E\left[M_{m+n}-M_{m} \mid \mathcal{F}_{n-1}^{\prime}\right]=M_{m+n-1}-M_{m}=M_{n-1}^{\prime}$.
2. Let Z be a random variable and let $M_{n} \equiv E\left[Z \mid \mathcal{F}_{n}\right]$. Prove that M_{n} is a martingale with respect to \mathcal{F}_{n}.

Solution

We need to prove that $E\left[M_{n} \mid \mathcal{F}_{n-1}\right]=M_{n-1}$. We have,

$$
E\left[M_{n} \mid \mathcal{F}_{n-1}\right]=E\left[E\left[Z \mid \mathcal{F}_{n}\right] \mid \mathcal{F}_{n-1}\right]
$$

$=E\left[Z \mid \mathcal{F}_{n-1}\right]$ (by second form of law of total probability) $=M_{n-1}$.
3. Let Y_{1}, \cdots, Y_{n}, be iid random variables with mean μ and let X_{0}, \cdots, X_{n} be random variables such that $X_{n+1}=\Sigma_{1}^{X_{n}} Y_{i}$. Prove
(a) $E\left[X_{n+1} \mid X_{n}\right]=\mu X_{n}$.
(b) $M_{n} \equiv \mu^{-n} X_{n}$ is a martingale relative to \mathcal{F}_{n}.

Solution

(a) We have

$$
E\left[X_{n+1} \mid X_{n}=k\right]=E\left[\Sigma_{1}^{X_{n}} Y_{i} \mid X_{n}=k\right]=E\left[\Sigma_{1}^{k} Y_{i} \mid X_{n}=k\right]=E\left[k Y_{i}\right]=k E\left[Y_{i}\right]=k \mu
$$

We know that $E\left[X_{n+1} \mid X_{n}\right]$ is defined to be that random variable which when $X_{n}=k$, takes value $E\left[X_{n+1} \mid X_{n}=k\right]=\mu k$. Now $\mu X_{n}=\mu k$, when $X_{n}=k$. So $E\left[X_{n+1} \mid X_{n}\right]=\mu X_{n}$.
(b) We have

$$
E\left[M_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\mu^{-(n+1)} X_{n+1} \mid X_{n}\right]=\mu^{-(n+1)} E\left[X_{n+1} \mid X_{n}\right]=\mu^{-(n+1)}\left[\mu X_{n}\right]=M_{n}
$$

4. Let Y_{1}, Y_{2}, \cdots be a sequence of independent random variables with zero mean and common variance σ^{2}. If $X_{n}=Y_{1}+\cdots+Y_{n}$, then show that $X_{n}^{2}-n \sigma^{2}$ is a martingale.

Solution

Let $M_{n} \equiv X_{n}^{2}-n \sigma^{2}$. We have

$$
\begin{gathered}
X_{n+1}^{2}-(n+1) \sigma^{2}=\left(Y_{1}+\cdots Y_{n}+Y_{n+1}\right)^{2}-(n+1) \sigma^{2} \\
=\left(X_{n}+Y_{n+1}\right)^{2}-n \sigma^{2}-\sigma^{2}=M_{n}+2 X_{n} Y_{n+1}+Y_{n+1}^{2}-\sigma^{2} .
\end{gathered}
$$

So

$$
\begin{gathered}
E\left[M_{n+1} \mid \mathcal{F}_{n}\right]=E\left[M_{n+1} \mid X_{n}\right]=E\left[M_{n}+2 X_{n} Y_{n+1}+Y_{n+1}^{2}-\sigma^{2} \mid X_{n}\right] \\
=E\left[M_{n} \mid X_{n}\right]+E\left[2 X_{n} Y_{n+1}+Y_{n+1}^{2}-\sigma^{2} \mid X_{n}\right]
\end{gathered}
$$

Now X_{n}, Y_{n+1} are independent and further Y_{n+1} has zero mean and variance σ^{2}. So $E\left[2 X_{n} Y_{n+1} \mid X_{n}\right]=2 E\left[X_{n}\right]\left[Y_{n+1}\right]=0$, and $E\left[2 X_{n} Y_{n+1}+Y_{n+1}^{2}-\sigma^{2} \mid X_{n}\right]=0$. Therefore, $E\left[M_{n+1} \mid \mathcal{F}_{n}\right]=E\left[M_{n} \mid X_{n}\right]=M_{n}$.
5. Let $X_{0}, \cdots X_{n}, \cdots$ be a sequence of independent random variables taking values $0,1,2$ with probabilities respectively, p_{0}, p_{1}, p_{2}. The process stops when a subsequence s^{\prime} appears for the first time. Find the expected stopping time $E[T]$ in each of the following cases:
(a) $s^{\prime} \equiv 1,2,3$.
(b) $s^{\prime} \equiv 2,2,2$.
(c) $s^{\prime} \equiv 1,2,1$.
(d) $s^{\prime} \equiv 2,1,1$.

Solution

The betting scheme is as follows. Bet $\$ 1$ for the first element. If it comes out right put the payoff on the second element and if that also succeeds put the payoff on the third element. If the first element is wrong you lose your dollar. There are bettors $0,1,2, \cdots$ who come into action at the $0^{t h}$ place, first place, second place etc respectively. The martingale M_{n} is the sum of the profit of all the bettors at time n. Further $M_{0}=0$. It can be shown that the OST is applicable in this case because $E[T]$ can be shown to be finite and $E\left[\left|M_{n+1}-M_{n}\right| \mid \mathcal{F}_{n}\right]$ is bounded.

At stopping time T the situation is as follows: All T bettors have lost 1, and some have gained.
(a) The $(T-2)^{t h}$ bettor has had payoff, in the case of end sequence $1,2,3$, equal to $1 / p(1) \times$ $1 / p(2) \times 1 / p(3)$. In this case $(T-1)^{t h}$ and $T^{t h}$ bettors, since they bet on the first element 1 and the outcome is not equal to 1 do not get any payoff. Therefore $E\left[M_{T}\right]=1 / p(1) \times 1 / p(2) \times$ $1 / p(3)-E[T]=M_{0}=0$. So $E[T]=1 / p(1) \times 1 / p(2) \times 1 / p(3)$.
(b) The $(T-2)^{t h}$ bettor has had payoff, in the case of end sequence $2,2,2$ equal to $1 / p(2) \times 1 / p(2) \times$ $1 / p(2)$. In this case $(T-1)^{t h}$ and $T^{t h}$ bettors, since they bet on the first element 2 and the pair 2,2 and the outcome is equal to 2 , and 2,2 get payoffs $1 / p(2),(1 / p(2))^{2}$ respectively. So $0=$ $E\left[M_{T}\right]=E[T]-1 / p(2)-(1 / p(2))^{2}-(1 / p(2))^{3}$. Therefore $E[T]=1 / p(2)+(1 / p(2))^{2}+(1 / p(2))^{3}$.
(c) $E[T]=(1 / p(1))^{2} \times 1 / p(2)+1 / p(1)$.
(d) $E[T]=(1 / p(1))^{2} \times 1 / p(2)$.
6. How would you solve the previous problem using the Markov chain ideas discussed in class?

Solution

We could build a markov chain with states which are three element sequences- in this case sequences of the kind $(0,0,0),(0,1,0)$ etc. and in general (a, b, c) where a, b, c take values $0,1,2$. There will be 27 such states.
From the state (i, b, c), we can only go to a state of the kind (b, c, j), and the probability of transition would be $p((i, b, c),(b, c, j))=p(j)$.

In this Markov chain we can make the end sequence an absorbing state by removing all outgoing edges and putting a self loop of value 1 on it. Now we could find the hitting time from every state to the end state by writing linear equations for $l(i, R)$. The average of these times , i.e., $1 /($ number of states -1$) \times \Sigma h i t t i n g$ times $=1 / 27 \times \Sigma h i t t i n g$ times, is the answer.

