Stat-491-Fall2014-Assignment-V

Hariharan Narayanan

November 25, 2014

Note: This assignment is due on 3 December 2014.

1 Martingales

In what follows take \mathcal{F}_n to be the sequence of random variables X_0, \dots, X_n . As usual all random variables are taken to be integrable with respect to the relevant σ - algebras.

- 1. Let M_n be a martingale with respect to \mathcal{F}_n . Prove that $M'_n \equiv M_{m+n} M_m, n \ge 1$, is a martingale with respect to $\mathcal{F}'_n \equiv X_0, \cdots X_{m+n-1}$.
- 2. Let Z be a random variable and let $M_n \equiv E[Z \mid \mathcal{F}_n]$. Prove that M_n , is a martingale with respect to \mathcal{F}_n .
- 3. Let Y_1, \dots, Y_n , be iid random variables with mean μ and let X_0, \dots, X_n be random variables such that $X_{n+1} = \sum_{i=1}^{X_n} Y_i$. Prove
 - (a) $E[X_{n+1} \mid X_n] = \mu X_n.$
 - (b) $M_n \equiv \mu^{-n} X_n$ is a martingale relative to \mathcal{F}_n .
- 4. Let Y_1, Y_2, \cdots be a sequence of independent random variables with zero mean and common variance σ^2 . If $X_n = Y_1 + \cdots + Y_n$, then show that $X_n^2 n\sigma^2$ is a martingale.
- 5. Let X_0, \dots, X_n, \dots be a sequence of independent random variables taking values 0, 1, 2 with probabilities respectively, p_0, p_1, p_2 . The process stops when a subsequence s' appears for the first time. Find the expected stopping time E[T] in each of the following cases:
 - (a) $s' \equiv 1, 2, 3.$
 - (b) $s' \equiv 2, 2, 2.$
 - (c) $s' \equiv 1, 2, 1.$
 - (d) $s' \equiv 2, 1, 1.$
- 6. How would you solve the previous problem using the Markov chain ideas discussed in class?