Stat-491-Fall2014-Assignment-V

Hariharan Narayanan

November 25, 2014

Note: This assignment is due on 3 December 2014.

1 Martingales

In what follows take \mathcal{F}_{n} to be the sequence of random variables $X_{0}, \cdots X_{n}$. As usual all random variables are taken to be integrable with respect to the relevant σ - algebras.

1. Let M_{n} be a martingale with respect to \mathcal{F}_{n}. Prove that $M_{n}^{\prime} \equiv M_{m+n}-M_{m}, n \geq 1$, is a martingale with respect to $\mathcal{F}_{n}^{\prime} \equiv X_{0}, \cdots X_{m+n-1}$.
2. Let Z be a random variable and let $M_{n} \equiv E\left[Z \mid \mathcal{F}_{n}\right]$. Prove that M_{n}, is a martingale with respect to \mathcal{F}_{n}.
3. Let Y_{1}, \cdots, Y_{n}, be iid random variables with mean μ and let X_{0}, \cdots, X_{n} be random variables such that $X_{n+1}=\Sigma_{1}^{X_{n}} Y_{i}$. Prove
(a) $E\left[X_{n+1} \mid X_{n}\right]=\mu X_{n}$.
(b) $M_{n} \equiv \mu^{-n} X_{n}$ is a martingale relative to \mathcal{F}_{n}.
4. Let Y_{1}, Y_{2}, \cdots be a sequence of independent random variables with zero mean and common variance σ^{2}. If $X_{n}=Y_{1}+\cdots+Y_{n}$, then show that $X_{n}^{2}-n \sigma^{2}$ is a martingale.
5. Let $X_{0}, \cdots X_{n}, \cdots$ be a sequence of independent random variables taking values $0,1,2$ with probabilities respectively, p_{0}, p_{1}, p_{2}. The process stops when a subsequence s^{\prime} appears for the first time. Find the expected stopping time $E[T]$ in each of the following cases:
(a) $s^{\prime} \equiv 1,2,3$.
(b) $s^{\prime} \equiv 2,2,2$.
(c) $s^{\prime} \equiv 1,2,1$.
(d) $s^{\prime} \equiv 2,1,1$.
6. How would you solve the previous problem using the Markov chain ideas discussed in class?
