Stat-491-Fall2014-Assignment-IV

Hariharan Narayanan

November 10, 2014

Note: This assignment is due on 17 November 2014.

1. (a) Suppose one of the states of an irreducible Markov chain has a self loop. Show that the chain has period 1 .
(b) Let N be a collection of integers closed under addition. Let 100 be the first integer in N for which the immediate successor is also in N. Find an integer after which every integer is present in N.
(c) Using Euclid's Algorithm, find a, b such that $100 a+81 b=1$.
2. At a local 2 year college, $2 / 3$ of freshmen become sophomores, $1 / 4$ remain freshmen, and $1 / 12$ drop out. Two thirds of sophomores graduate, $1 / 4$ remain as sophomores and $1 / 12$ dropout. Take the states to be ' F ' for freshmen,' S ' for sophomore, ' D ' for dropout and ' G ' for graduate. Let $q(i, R)$ denote the probability that from state i, we will eventually reach the absorbing state R. Let $l(i, R)$ denote the expected time to reach absorbing state R from state i.
(a) Write the transition matrix for the Markov chain with rows and columns in the order F, S, G, D.
(b) Write the set of equations for $q(i, G), q(i, D)$.
(c) Write the set of equations for $l(i, G \cup D)$.
(d) What fraction of new students eventually graduate?
(e) What is the expected time of graduation or dropout for a sophomore student?
3. A certain Markov chain has transition matrix

$$
\left(\begin{array}{cccccc}
& A & B & C & D & E \tag{1}\\
A & 0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 \\
B & 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
C & 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \\
D & 0 & 0 & 0 & 0 & 1 \\
E & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Which are the transient and which, the recurrent states? Are there any absorbing states?
(b) Write linear equations for $q(i, k), l(i, k)$, where k is an absorbing state.
4. A certain Markov chain has its states partitioned into T, R_{1}, R_{2}, R_{3}. Let $x \in T$.
(a) How will you compute the probability of starting from x and reaching either R_{1} or R_{2} ?
(b) Let $r \in R_{1}$. How will you compute the probability of starting from x and reaching r before any other recurrent state?
5. Let P be a square matrix with nonegative entries. Suppose all rows of P have row sum strictly less than 1. Show that $I-P$ is invertible.
6. A certain branching process has the following one step probability for number of progeny: $p_{0}=a, p_{1}=b, p_{2}=c$. For the following cases

- $a=1 / 2, b=1 / 4, c=1 / 4$;
- $a=1 / 4, b=1 / 4, c=1 / 2$;
(a) Write down the equation the probability of extinction satisfies;
(b) Examine the probability of extinction.

