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1. (4 points). 3 white balls and 3 black balls are distributed in two urns in such a way that each urn

contains 3 balls. At each step we draw one ball from each urn and exchange them. Let Xn be the

number of white balls in the left urn at time n. (a) Compute the transition probability matrix and

its stationary distribution.

(b) Verify whether the Markov chain is reversible.

Solution

The transition matrix is 

0 1 2 3

0 0 1 0 0

1 1/9 4/9 4/9 0

2 0 4/9 4/9 1/9

3 0 0 1 0


(1)

The Markov chain is reversible because the graph of it has p(j, i) 6= 0 whenever p(i, j) 6= 0 and

there are no loops other than the parallel edges. Therefore one could start from state 0 assigning it

some value, then assigning some value to 1 etc till state 3. There can be no contradiction because

there are no other edges where we could have π(i)p(i, j) different from π(j)p(j, i).

2. (4 points). A certain Markov chain has transition matrix
1/3 1/3 1/3

0 1/3 2/3

1/3 1/3 1/3

 (2)

(a) Compute the stationary distribution.

(b) Verify whether the Markov chain is reversible.

Solution

(a) Let πT , the stationary distribution be the vector (a, b, c). Since πTP = πT , we have the following

linear equations, after simplification:

−2a+ c = 0; a− 2b+ c = 0; a+ 2b− 2c = 0.

This is a set of dependent equations and the solution has the form λx, for arbitrary λ. This Markov

chain is irreducible. So every entry of πT is non zero. So we could set c say, to 1 and find a, b by
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solving the equations. We then get a = 1/2, b = 3/4, c = 1. The sum is 9/4. Normalizing we get

πT = (2/9, 1/3, 4/9).

It can be verified that πTP = πT .

(b) We have the entries p(1, 2) 6= 0 and p(2, 1) = 0. So π(1)× p(1, 2) 6= π(2)× p(2, 1). Therefore the

Markov chain is not reversible.

3. (4 points). The transition matrix of a certain Markov chain on states A,B,C,D, is given below.

A B C D

A 1/2 1/3 1/6 0

B 1/3 1/3 1/3 0

C 1/3 1/3 1/3 0

D 0 0 1 0


(3)

(a) Which states are recurrent and which, transient? (b) Compute the stationary distribution for

the Markov chain.

Solution

(a)The state D is transient since we cannot return to it from any other state. So π(D) = 0. All the

other states are recurrent since from them we can only reach nodes from which we can return to

the starting point and therefore these states have positive π value.

(b) Let πT , the stationary distribution be the vector (e, f, g, h). Since πTP = πT , we have the

following linear equations, after simplification:

−3e+ 2f + 2g = 0; e− f + g = 0; e+ 4f − 4g = 0.

This is a set of dependent equations and the solution has the form λx, for arbitrary λ. We set g = 1

to begin with. Solving the linear equations we get e = 3/2, f = 5/4, g = 1. Normalizing to make

the sum equal to 1, we get π(A) = 2/5, π(B) = 1/3, π(C) = 4/15.

4. (4 points) Consider the Markov chains in Figure 1

(a) compute stationary distributions for the first two chains on A,B,C and A′, B′, C ′, D′

(b) For the third Markov chain on A,B,C,D,A′, B′, C ′, D′ find a stationary distribution π(·) which

takes value 1/12 on A. Which states are recurrent and which transient?

Solution

The first Markov chain has transition matrix shown below:
A B C

A 0 1/3 2/3

B 1/3 0 2/3

C 2/3 1/3 0

 (4)

This Markov chain is irreducible since we can reach from any state to any other state. So all

states are recurrent and their π value positive. As in previous problems we solve the equation
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Figure 1: Markov Chains

πTP = πT , setting say π(A) = 1. Taking columns in the order A,B,C, we get π′T = (1, 5/7, 8/7).

After normalizing this becomes πT = (7/20, 1/4, 2/5).

The second Markov chain has, as far as A′, B′, C ′ are concerned, the same transition matrix as

A,B,C in the previous case. The state D′ is transient since you can go from D′ to A′ but not

return. So π(D′) = 0. As in the previous case replacing A by A′ etc taking columns in the order

A′, B′, C ′, D′, we get πT = (7/20, 1/4, 2/5, 0).

The third Markov chain has two transient states D,D′ from which we can reach A,A′ respectively
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but not return. For the rest, going as in the previous chains, there are two primitive stationary

distributions (column order A,B,C,D,A′, B′, C ′, D′):

πT = (7/20, 1/4, 2/5, 0, 0, 0, 0, 0) and πT = (0, 0, 0, 0, 7/20, 1/4, 2/5, 0). Every stationary distribution

is a convex combination of these two primitive distributions. We need π(A) = 1/12. So we multiply

the first distribution by 1/12 × 1/(7/20) = 5/21. Since we have to perform a convex combination

this means the second distribution should be multiplied by (1−5/21) = 16/21. The resulting convex

combination is

πT = (1/12, 5/84, 2/21, 0, 4/15, 4/21, 32/105, 0).

This is the desired stationary distribution.

5. (4 points) In each of the following cases examine whether the random variable T is a ‘stopping time’

by

(i) precisely describing the set of sequences of states which determines whether T = n or not and

(ii) justifying your conclusion about T being a stopping time.

(iii) Given that the initial state is chosen according to a probability distribution π(·), how would

you determine Pr{T = n}?

(a) T = n if Xn = y;

(b) T = n if Xn = y and for 0 ≤ i ≤ n,Xi = y exactly five times;

(c) T = n if for n ≤ i ≤ n+ 10, Xi = y exactly five times;

(d) T = n if Xn = a state y such that Pr{Xn+10 = z | Xn = y} is 1/3. Here z is defined but y is

specified only through the probability condition.

Solution

(a) Here we will assume that Xn = y for the first time. We could also have taken it for the kth

time, for a fixed k and the solution is similar. Otherwise the condition is ambiguous. Set

of all sequences of states X0 = x0, X1 = x1, · · · , Xn = xn = y, where p(xi, xi + 1) 6= 0 for

0 ≤ i ≤ (n− 1). T is a stopping time because whether T = n or not requires us to check only

values of Xi upto i = n.

(b) Set of all sequences of states X0 = x0, X1 = x1, · · · , Xn = xn = y, where p(xi, xi + 1) 6= 0 for

0 ≤ i ≤ (n − 1) and for exactly five of the is we have xi = y. T is a stopping time because

whether T = n or not requires us to check only values of Xi upto i = n.

(c) Set of all sequences of states X0 = x0, X1 = x1, · · · , Xn+10 = xn+10, where p(xi, xi + 1) 6= 0

for 0 ≤ i ≤ (n + 9) and for exactly five of the i’s upto n + 10 we have xi = y. T is not a

stopping time because by time n we do not know if we are going to get five y’s upto n+ 10.

(d) Let y1, · · · , yk be the states for which Pr{Xn+10 = z | Xn = yi} is 1/3. The set that determines

whether T = n is the set of all sequences X0 = x0, X1 = x1, · · · , Xn = xn = yi, where

i = 1, · · · k. Here T is a stopping time, because at time n the permitted sequences tell us

whether we should stop or not.
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To compute the probability of T = n when T is a stopping time, we compute for each permis-

sible sequence (i.e., a sequence in the set we defined above) the product p(x0)× p(x0, x1) · · · ×
p(xn−1, xn) and sum over all such sequences.
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