Constants

Magnitude of electron charge	$e = 1.60 \times 10^{-19} \mathrm{C}$	
Coulomb's constant	$k = 8.99 \times 10^9 \mathrm{N.m^2 C^{-2}}$	E from thin spherical shell
Permittivity of free space	$\epsilon_0 = \frac{1}{4\pi k}$ $\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{N}^{-1} \mathrm{m}^{-2}$	E outside conductor
Permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H.m^{-1}}$	E inside conductor
Mass of electron	$m_e = 9.11 \times 10^{-31} \mathrm{kg}$	V from point charge
		V from system of point charges

rom thin spherical shell

E from infinite plane of charge

V from thin spherical shell

Energy stored in a capacitor

 $E_r = \begin{cases} \frac{Q}{4\pi\epsilon_0 r^2}, & \text{if } r > R \\ \\ 0, & \text{if } r < R \end{cases}$

 $E = \sigma/\epsilon_0$ (perp. to surface)

 $E = \sigma/2\epsilon_0$

C = Q/V

 $C = \epsilon_0 A/d$

 $C = \frac{2\pi\epsilon_0 L}{\ln\left(\frac{R_2}{R_1}\right)}$

 $U = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2$

E = 0 $V = \frac{kq}{r}$ $V = \sum_{i} \frac{kq_i}{r_i}$ $V = \begin{cases} \frac{kQ}{r}, & \text{if } r > R \\ \\ \frac{kQ}{R}, & \text{if } r < R \end{cases}$

Equations from 121

Kinematics (1-dim)

	$v = v_0 x + at$	
	$v^2 = v_0^2 + 2a\Delta x$	Capacitance
Kinetic energy	$K = \frac{1}{2}mv^2$	Capacitance
Newton's 2nd law	$\vec{F}_{net} = m\vec{a}$	Parallel plate capacitor
Newton's 3rd law	$\vec{F}_{12}=-\vec{F}_{21}$	Cylindrical capacitor

 $x = x_0 + v_0 t + at^2/2$

Electrostatics

$\frac{q_1q_2}{r_{12}^2}\hat{r}_{12}$	Energy density of an E field	$u_e = \frac{1}{2}\epsilon_0 E^2$
12	Parallel capacitors	$C_{eq} = C_1 + C_2 + \ldots$
	Series capacitors	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
$ec{E}$	Electric field inside dielectric	$E = \frac{E_0}{\kappa}$
$\cdot \vec{E}$	Capacitance with dielectric	$C = \kappa C_0$
$ec{z}\cdotec{dA}$	Resistance and current	
$4\cos\theta$	Electric current	I = dQ/dt
$\oint \vec{E} \cdot \vec{dA} = Q_{enc}/\epsilon_0$	Current density	J = I/A
$\frac{\Delta U}{q_0} = -\int_a^b \vec{E} \cdot d\vec{L}$	Current microscopic view	$I = qn_e A v_d$
$\dot{V}V$ (magnitude $=$ slope	^{e)} Resistance	R = V/I
$_{ m airs}kq_iq_j/r_{ij}$	Resistivity, $ ho$	$R = \rho L/A$
ŕ	Power loss in resistor	$P = IV = \frac{V^2}{R} = I^2 R$
$ec{E_i}$	Series resistors	$R_{eq} = R_1 + R_2 + \dots$
$k\lambda/R$	Parallel resistors	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
	$\frac{l_{1}q_{2}}{c_{12}^{2}}\hat{r}_{12}$ \vec{E} \vec{E} \vec{E} $\vec{\delta} \cdot \vec{dA}$ $4\cos\theta$ $\vec{b} \vec{E} \cdot \vec{dA} = Q_{enc}/\epsilon_{0}$ $\frac{\Delta U}{l_{0}} = -\int_{a}^{b} \vec{E} \cdot d\vec{L}$ $V \text{ (magnitude = slope)}$ $airs kq_{i}q_{j}/r_{ij}$ \vec{E}_{i} $E\lambda/R$	$\frac{l_1q_2}{2}$ \hat{r}_{12} Energy density of an E field l_1 Parallel capacitors l_1 Parallel capacitors l_2 Series capacitors \vec{E} Electric field inside dielectric \vec{E} Capacitance with dielectric \vec{E} Capacitance and current \vec{b} \vec{C} \vec{b} \vec{d} $A \cos \theta$ Electric current \vec{b} $\vec{E} \cdot d\vec{A} = Q_{enc}/\epsilon_0$ $\Delta cos \theta$ Current density Δl_0 $= -\int_a^b \vec{E} \cdot d\vec{L}$ Δl_0 Current microscopic view V (magnitude = slope) Resistance $airs kq_iq_j/r_{ij}$ Resistivity, ρ \vec{E}_i Series resistors \vec{E}_i Series resistors \vec{E}_i Parallel resistors

Power output of battery	P = IV	Inductors in series	$L_{\rm eq} = L_1 + L_2$
Discharging a capacitor	$Q(t) = Q_0 e^{-t/\tau}$	Mutual inductance	$M = \phi_{m21}/I_1 = \phi_{m12}/I_2$
Charging a capacitor	$Q(t) = C\mathcal{E}(1 - e^{-t/\tau})$	Energy stored in inductor	$U = \frac{1}{2}LI^2$
Time constant	$\tau = RC$	Magnetic field energy density	$u_m = \frac{B^2}{2\mu_0}$
Current in a capacitor	$I(t) = I_0 e^{-t/\tau}$	EMF across inductor	$\mathcal{E} = -L \frac{dI}{dt}$
Kirchhoff's laws for circu	its	Energizing an inductor	$I(t) = I_f(1 - e^{-t/\tau})$
	-	De-energizing an inductor	$I(t) = I_0 e^{-t/\tau}$

Loop rule	$\sum_{i} \Delta V_i = 0$
Junction rule	$\sum I_{\rm in} = \sum I_{\rm out}$

Magnetic Fields

Force on moving charge	$\vec{F} = q\vec{v} \times \vec{B}$
Force on current element	$d\vec{F}=Id\vec{l}\times\vec{B}$
Force on current in wire	$\vec{F} = I \vec{L} \times \vec{B}$
Circular motion	$R = \frac{mv}{qB}$
Circular motion period	$T = \frac{2\pi m}{qB}$
Magnetic dipole moment	$\vec{\mu} = N I \vec{A}$
Torque on magnetic dipole	$\vec{\tau}=\vec{\mu}\times\vec{B}$
Mag. dipole potential energy	$U=-\vec{\mu}\cdot\vec{B}$
Hall effect	$V_H = E_H w = v_d B w = \frac{IB}{nte}$
Biot-Savart law	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{s} \times \hat{r}}{r^2}$
B inside long solenoid	$B = \mu_0 n I$
B from long straight wire	$B = \frac{\mu_0}{2\pi} \frac{I}{R}$
Magnetic flux	$\phi_m = \int \vec{B} \cdot \vec{dA}$
Magnetic flux, for uniform field	$\phi_m = NBA\cos\theta$
Gauss's law for magnetism	$\phi_{mnet} = \oint \vec{B} \cdot \vec{dA} = 0$
Ampere's law	$\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I_{enc}$
Faraday's law	$\mathcal{E} = -rac{d\phi_m}{dt}$
Rod moving in B field EMF	$ \mathcal{E} = Blv$
Self inductance	$L = rac{\phi_m}{I}$
Self inductance of solenoid	$L = \mu_0 n^2 A l$

AC circuits

Time constant

Generated EMF	ε
RMS voltage	V
Inductor (V leads I by 90°)	V
Capacitor (V lags I by 90°)	V
Inductive reactance	λ
Capacitive reactance	2
LC circuit natural frequency	μ
LC charge	ζ
Impedance	Z
Phase angle	t
Q factor	Ģ

Electromagnetism

Displacement current	
Generalized Ampere's law	
EM wave in z-direction	

EM wave propagation direction Wavelength and frequency EM wave speed

$$\mathcal{E} = \mathcal{E}_{\text{peak}} \cos \omega t$$
$$V_{RMS} = V_{\text{peak}} / \sqrt{2}$$
$$V_{L,\text{peak}} = I_{\text{peak}} X_L$$
$$V_{C,\text{peak}} = I_{\text{peak}} X_C$$
$$X_L = \omega L$$
$$X_C = 1 / (\omega C)$$
$$\omega_0 = 1 / \sqrt{LC}$$
$$Q = Q_m \cos(\omega_0 t + \phi)$$
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
$$\tan(\delta) = (X_L - X_C) / R$$
$$Q = \frac{\omega_0 L}{R} = \sqrt{\frac{L}{CR^2}} \approx \frac{\omega_0}{\Delta \omega}$$

 $\tau = L/R$

$$I_{d} = \epsilon_{0} \frac{d\phi_{e}}{dt}$$

$$\oint \vec{B} \cdot d\vec{L} = \mu_{0}(I_{enc} + I_{d})$$

$$E_{x} = E_{0} \cos(kz - \omega t)$$

$$B_{y} = B_{0} \cos(kz - \omega t), E_{0} = cB_{0}$$

$$\vec{E} \times \vec{B}$$

$$\lambda = 2\pi/k, f = \omega/(2\pi)$$

$$c = \frac{\omega}{k} = \lambda f = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

 $c=3.0\times 10^8\,{\rm m/s}$