Constants

Magnitude of electron charge
Coulomb's constant
Permittivity of free space

Permeability of free space
Mass of electron

Equations from 121

Kinetic energy
Newton's 2nd law
Newton's 3rd law

Electrostatics

Coulomb's Law
Electric field
Dipole moment
Torque on a dipole
Potential energy of a dipole
Electric flux
Electric flux for uniform field
Gauss's law
Potential difference
Electric field from potential
Pot. energy of point charges
E from point charge
E from system of charges
E from infinite line of charge
$e=1.60 \times 10^{-19} \mathrm{C}$
$k=8.99 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} \mathrm{C}^{-2} \quad \mathrm{E}$ from thin spherical shell
$\epsilon_{0}=\frac{1}{4 \pi k}$
$\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
$x=x_{0}+v_{0} t+a t^{2} / 2 \quad \mathrm{~V}$ from thin spherical shell
$v=v_{0} x+a t$
$v^{2}=v_{0}^{2}+2 a \Delta x \quad$ Capacitance
$K=\frac{1}{2} m v^{2}$
$\vec{F}_{n e t}=m \vec{a}$
$\vec{F}_{12}=-\vec{F}_{21}$
$\vec{F}_{12}=\frac{k q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{E}=\vec{F} / q$
$\vec{p}=q \vec{L}$
$\vec{\tau}=\vec{p} \times \vec{E}$
$U=-\vec{p} \cdot \vec{E}$
$\phi=\int \vec{E} \cdot \overrightarrow{d A}$
$\phi=|\vec{E}| A \cos \theta$
$\phi_{n e t}=\oint \vec{E} \cdot \overrightarrow{d A}=Q_{e n c} / \epsilon_{0}$
$\Delta V=\frac{\Delta U}{q_{0}}=-\int_{a}^{b} \vec{E} \cdot d \vec{L}$
$\vec{E}=-\vec{\nabla} V(\text { magnitude }=\text { slope })_{\text {Resistance }}$
$U=\sum_{\text {pairs }} k q_{i} q_{j} / r_{i j}$
$\vec{E}=\frac{k q}{r^{2}} \hat{r}$
$\vec{E}=\sum_{i} \vec{E}_{i}$
$E_{R}=2 k \lambda / R$

E outside conductor
E inside conductor
V from point charge
V from system of point charges $\quad V=\sum_{i} \frac{k q_{i}}{r_{i}}$
E from infinite plane of charge $\quad E=\sigma / 2 \epsilon_{0}$
E from thin spherical shell $\quad E_{r}= \begin{cases}\frac{Q}{4 \pi \epsilon_{0} r^{2}}, & \text { if } r>R \\ 0, & \text { if } r<R\end{cases}$
$E=\sigma / \epsilon_{0}$ (perp. to surface)
$E=0$
$V=\frac{k q}{r}$
$V= \begin{cases}\frac{k Q}{r}, & \text { if } r>R \\ \frac{k Q}{R}, & \text { if } r<R\end{cases}$
$C=Q / V$
$C=\epsilon_{0} A / d$
$C=\frac{2 \pi \epsilon_{0} L}{\ln \left(R_{2} / R_{1}\right)}$
$U=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} C V^{2}$
$u_{e}=\frac{1}{2} \epsilon_{0} E^{2}$
$C_{e q}=C_{1}+C_{2}+\ldots$
$\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots$
$E=\frac{E_{0}}{\kappa}$
$C=\kappa C_{0}$

Resistance and current

Electric current $\quad I=d Q / d t$
$J=I / A$
$I=q n_{e} A v_{d}$
$R=V / I$
$R=\rho L / A$
$P=I V=\frac{V^{2}}{R}=I^{2} R$
$R_{e q}=R_{1}+R_{2}+\ldots$
$\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$

Power output of battery	$P=I V$
Discharging a capacitor	$Q(t)=Q_{0} e^{-t / \tau}$
Charging a capacitor	$Q(t)=C \mathcal{E}\left(1-e^{-t / \tau}\right)$
Time constant	$\tau=R C$
Current in a capacitor	$I(t)=I_{0} e^{-t / \tau}$

Kirchhoff's laws for circuits

Loop rule
Junction rule
Magnetic Fields

Force on moving charge	$\vec{F}=q \vec{v} \times \vec{B}$
Force on current element	$d \vec{F}=I d \vec{l} \times \vec{B}$
Force on current in wire	$\vec{F}=I \vec{L} \times \vec{B}$
Circular motion	$R=\frac{m v}{q B}$
Circular motion period	$T=\frac{2 \pi m}{q B}$
Magnetic dipole moment	$\vec{\mu}=N I \vec{A}$
Torque on magnetic dipole	$\vec{\tau}=\vec{\mu} \times \vec{B}$
Mag. dipole potential energy	$U=-\vec{\mu} \cdot \vec{B}$
Hall effect	$V_{H}=E_{H} w=v_{d} B w=\frac{I B}{n t e}$
Biot-Savart law	$d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{s} \times \hat{r}}{r^{2}}$
B inside long solenoid	$B=\mu_{0} n I$
B from long straight wire	$B=\frac{\mu_{0}}{2 \pi} \frac{I}{R}$
Magnetic flux	$\phi_{m}=\int \vec{B} \cdot \overrightarrow{d A}$
Magnetic flux, for uniform field	$\phi_{m}=N B A \cos \theta$
Gauss's law for magnetism	$\phi_{m \text { net }}=\oint \vec{B} \cdot \overrightarrow{d A}=0$
Ampere's law	$\oint \vec{B} \cdot d \vec{\ell}=\mu_{0} I_{e n c}$
Faraday's law	$\mathcal{E}=-\frac{d \phi_{m}}{d t}$
Rod moving in B field EMF	$\|\mathcal{E}\|=B l v$
Self inductance	$L=\frac{\phi_{m}}{I}$
Self inductance of solenoid	$L=\mu_{0} n^{2} A l$

Inductors in series	$L_{\mathrm{eq}}=L_{1}+L_{2}$
Mutual inductance	$M=\phi_{m 21} / I_{1}=\phi_{m 12} / I_{2}$
Energy stored in inductor	$U=\frac{1}{2} L I^{2}$
Magnetic field energy density	$u_{m}=\frac{B^{2}}{2 \mu_{0}}$
EMF across inductor	$\mathcal{E}=-L \frac{d I}{d t}$
Energizing an inductor	$I(t)=I_{f}\left(1-e^{-t / \tau}\right)$
De-energizing an inductor	$I(t)=I_{0} e^{-t / \tau}$
Time constant	$\tau=L / R$

AC circuits

Generated EMF	$\mathcal{E}=\mathcal{E}_{\text {peak }} \cos \omega t$
RMS voltage	$V_{R M S}=V_{\text {peak }} / \sqrt{2}$
Inductor $\left(V\right.$ leads I by $\left.90^{\circ}\right)$	$V_{L, \text { peak }}=I_{\text {peak }} X_{L}$
Capacitor $\left(V\right.$ lags I by $\left.90^{\circ}\right)$	$V_{C, \text { peak }}=I_{\text {peak }} X_{C}$
Inductive reactance	$X_{L}=\omega L$
Capacitive reactance	$X_{C}=1 /(\omega C)$
LC circuit natural frequency	$\omega_{0}=1 / \sqrt{L C}$
LC charge	$Q=Q_{m} \cos \left(\omega_{0} t+\phi\right)$
Impedance	$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
Phase angle	$\tan (\delta)=\left(X_{L}-X_{C}\right) / R$
Q factor	$Q=\frac{\omega_{0} L}{R}=\sqrt{\frac{L}{C R^{2}}} \approx \frac{\omega_{0}}{\Delta \omega}$

Electromagnetism

Displacement current	$I_{d}=\epsilon_{0} \frac{d \phi_{e}}{d t}$
Generalized Ampere's law	$\oint \vec{B} \cdot d \vec{L}=\mu_{0}\left(I_{e n c}+I_{d}\right)$
EM wave in z-direction	$E_{x}=E_{0} \cos (k z-\omega t)$
	$B_{y}=B_{0} \cos (k z-\omega t), E_{0}=c B_{0}$
EM wave propagation direction	$\vec{E} \times \vec{B}$
Wavelength and frequency	$\lambda=2 \pi / k, f=\omega /(2 \pi)$
EM wave speed	$c=\frac{\omega}{k}=\lambda f=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}$
	$c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

