Constants

Magnitude of electron charge	$e = 1.60 \times 10^{-19} \mathrm{C}$	
Coulomb's constant	$k = 8.99 \times 10^9 \mathrm{N.m^2 C^{-2}}$	E from thin spherical shell
Permittivity of free space	$\epsilon_0 = \frac{1}{4\pi k}$	E outside conductor
	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C^2 N^{-1} m^{-2}}$	E inside conductor
Permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H.m^{-1}}$	
Mass of electron	$m_e=9.11\times 10^{-31}\rm kg$	V from point charge
		V from system of point charges

rom thin spherical shell

E from infinite plane of charge

V from thin spherical shell

Energy stored in a capacitor

 $E_r = \begin{cases} \frac{Q}{4\pi\epsilon_0 r^2}, & \text{if } r > R \\ \\ 0, & \text{if } r < R \end{cases}$

 $E = \sigma/\epsilon_0$ (perp. to surface)

 $E = \sigma/2\epsilon_0$

C = Q/V

 $C = \epsilon_0 A/d$

 $C = \frac{2\pi\epsilon_0 L}{\ln\left(\frac{R_2}{R_1}\right)}$

 $U = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}CV^2$

E = 0 $V = \frac{kq}{r}$ $V = \sum_{i} \frac{kq_i}{r_i}$ $V = \begin{cases} \frac{kQ}{r}, & \text{if } r > R \\ \\ \frac{kQ}{R}, & \text{if } r < R \end{cases}$

Equations from 121

Kinematics (1-dim)

	$v = v_0 x + at$	
	$v^2 = v_0^2 + 2a\Delta x$	Capacitance
Kinetic energy	$K = \frac{1}{2}mv^2$	Capacitance
Newton's 2nd law	$\vec{F}_{net} = m\vec{a}$	Parallel plate capacitor
Newton's 3rd law	$\vec{F}_{12}=-\vec{F}_{21}$	Cylindrical capacitor

 $x = x_0 + v_0 t + a t^2 / 2$

Electrostatics

Coulomb's Law	$\vec{F}_{12} = \frac{kq_1q_2}{r_{12}^2}\hat{r}_{12}$	Energy density of an E field	$u_e = \frac{1}{2}\epsilon_0 E^2$
Electric field	$ec{E}=ec{F}/q$	Parallel capacitors	$C_{eq} = C_1 + C_2 + \dots$
Dipole moment	$\vec{p} = q \vec{L}$	Series capacitors	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
Torque on a dipole	$\vec{\tau}=\vec{p}\times\vec{E}$	Electric field inside dielectric	$E = \frac{E_0}{\kappa}$
Potential energy of a dipole	$U=-\vec{p}\cdot\vec{E}$	Capacitance with dielectric	$C = \kappa C_0$
Electric flux	$\phi = \int ec{E} \cdot ec{dA}$	Resistance and current	
Electric flux for uniform field	$\phi = \vec{E} A \cos \theta$	Electric current	I = dQ/dt
Gauss's law	$\phi_{net} = \oint \vec{E} \cdot \vec{dA} = Q_{enc}/\epsilon_0$	Current density	J = I/A
Potential difference	$\Delta V = \frac{\Delta U}{q_0} = -\int_a^b \vec{E} \cdot d\vec{L}$	Current microscopic view	$I = qn_e A v_d$
Electric field from potential	$ec{E}=-ec{ abla}V$ (magnitude = slope	e)Resistance	R = V/I
Pot. energy of point charges	$U = \sum_{\text{pairs}} k q_i q_j / r_{ij}$	Resistivity, $ ho$	$R = \rho L/A$
E from point charge	$ec{E} = rac{kq}{r^2}\hat{r}$	Power loss in resistor	$P = IV = \frac{V^2}{R} = I^2 R$
E from system of charges	$ec{E} = \sum_i ec{E_i}$	Series resistors	$R_{eq} = R_1 + R_2 + \dots$
E from infinite line of charge	$E_R = 2k\lambda/R$	Parallel resistors	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

Power output of battery	P = IV	Inductors in series	$L_{\rm eq} = L_1 + L_2$
Discharging a capacitor	$Q(t) = Q_0 e^{-t/\tau}$	Mutual inductance	$M = \phi_{m21}/I_1 = \phi_{m12}/I_2$
Charging a capacitor	$Q(t) = C\mathcal{E}(1 - e^{-t/\tau})$	Energy stored in inductor	$U = \frac{1}{2}LI^2$
Time constant	au = RC	Magnetic field energy density	$u_m = \frac{B^2}{2\mu_0}$
Current in a capacitor	$I(t) = I_0 e^{-t/\tau}$	EMF across inductor	$\mathcal{E} = -L \frac{dI}{dt}$
Kirchhoff's laws for circu	its	Energizing an inductor	$I(t) = I_f(1 - e^{-t/\tau})$
Loop rule	$\sum_{i} \Delta V_i = 0$	De-energizing an inductor	$I(t) = I_0 e^{-t/\tau}$
	\angle_i \rightarrow $i = 0$	<u> </u>	

Time constant

Junction rule	$\sum I_{\rm in} = \sum I_{\rm out}$
Junction rule	$\sum I_{in} = \sum I_{out}$

 $\tau = L/R$

Magnetic Fields

$\vec{F}=q\vec{v}\times\vec{B}$
$d\vec{F} = Id\vec{l}\times\vec{B}$
$\vec{F} = I \vec{L} \times \vec{B}$
$R = \frac{mv}{qB}$
$T = \frac{2\pi m}{qB}$
$\vec{\mu} = N I \vec{A}$
$ec{ au} = ec{\mu} imes ec{B}$
$U=-\vec{\mu}\cdot\vec{B}$
$V_H = E_H w = v_d B w = \frac{IB}{nte}$
$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{s} \times \hat{r}}{r^2}$
$B = \mu_0 n I$
$B = \frac{\mu_0}{2\pi} \frac{I}{R}$
$\phi_m = \int \vec{B} \cdot \vec{dA}$
$\phi_m = NBA\cos\theta$
$\phi_{mnet} = \oint \vec{B} \cdot \vec{dA} = 0$
$\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I_{enc}$
${\cal E}=-{d\phi_m\over dt}$
$ \mathcal{E} = Blv$
$L = \frac{\phi_m}{I}$
$L = \mu_0 n^2 A l$