Name \qquad
last first
Questions 1-3 concern the circuit shown at right that contains a resistor ($R=200 \Omega$) and a capacitor ($C=240 \mathrm{nF}$) and an ideal 12 V batter.

1. Immediately after the switch is closed, what is the potential difference across the capacitor?
A. $V_{\mathrm{C}}=0 \mathrm{~V}$.
B. $V_{\mathrm{C}}=2.40 \times 10^{-9} \mathrm{~V}$.
C. $V_{\mathrm{C}}=6 \mathrm{~V}$.
D. $V_{\mathrm{C}}=12 \mathrm{~V}$.

2. Immediately after the switch is closed, what is the current through the resistor?
A. $I_{\mathrm{R}}=0 \mathrm{~A}$.
B. $I_{\mathrm{R}}=27 \mathrm{~mA}$.
C. $I_{\mathrm{R}}=60 \mathrm{~mA}$.
D. $I_{\mathrm{R}}=200 \mathrm{~mA}$.
3. A long time after the switch has been closed, what is the charge on the capacitor?
A. $\mathrm{Q}_{\mathrm{C}}=2.88 \times 10^{-6} \mathrm{C}$.
B. $Q_{C}=2.40 \times 10^{-7} \mathrm{C}$.
C. $\mathrm{Q}_{\mathrm{C}}=2.00 \times 10^{-8} \mathrm{C}$.
D. $Q_{C}=0$.
4. A positively charged particle has an initial velocity of unknown magnitude and direction when it enters a region in which there is a uniform electric field $E=2000 \mathrm{~V} / \mathrm{m}$ in the -z direction and a uniform magnetic field $B=0.2 \mathrm{~T}$ in the -y direction. The particle's velocity is not affected by the fields. What is its velocity?
A. $1.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$ in the +y direction
B. $1.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$ in the -x direction
C. $1.0 \times 10^{-4} \mathrm{~m} / \mathrm{s}$ in the +x direction
D. $1.0 \times 10^{-4} \mathrm{~m} / \mathrm{s}$ in the -x direction
E. $1.0 \times 10^{-4} \mathrm{~m} / \mathrm{s}$ in the +z direction

Name \qquad
\qquad
last
first
Questions 5 and 6 concern the current-carrying wires shown at right. Wire A carries current I_{A} out of the page; wire B carries current I_{B} into the page. $I_{\mathrm{A}}=2 I_{\mathrm{B}}$.
5. Which arrow below best represents the direction of the magnetic field at point X ?
$1 \downarrow$
(X)
$\odot \quad$ other
A B \quad C \quad D \quad E

6. Which arrow below best represents the direction of the force exerted on wire B by wire A?

A
B
C
D
E

Name \qquad
\qquad last first

Questions 7-9 concern a conducting loop in a uniform magnetic field directed along the $+x$-axis, as shown in the side-view diagram at right. At the instant shown the loop is rotating with a constant angular velocity ω about an axis along the z-axis through the loop's center.

For question 7, the loop is carrying a current (produced by a battery) in the direction indicated (out of the page at the top of the loop). For questions 8 and 9 , the loop is not carrying a current produced by a battery.

Side-view diagram
7. (With current from a battery.) At the instant shown is potential energy U increasing, decreasing or remaining constant?
A. U is increasing.
B. U is decreasing.
C. U is not zero, and remaining constant.
D. U is zero, and remaining constant.
8. (Without current from a battery.) At the instant shown, is the absolute value of the rate of change of the magnetic flux through the loop $\left|\frac{d \Phi}{d t}\right|$ increasing, decreasing, or constant?
A. $\left|\frac{d \Phi}{d t}\right|$ is increasing.
B. $\left|\frac{d \Phi}{d t}\right|$ is decreasing.
C. $\left|\frac{d \Phi}{d t}\right|$ is not zero, and remaining constant.
D. $\left|\frac{d \Phi}{d t}\right|$ is zero, and remaining constant.
9. (Without current from a battery.) Assuming the loop has a single turn, area A and total resistance R, the B -field has magnitude B_{0} and at the instant shown the angle between the loop and the B -field is 45°, what is the magnitude of the induced current i ?
A. $\frac{B A \omega}{\sqrt{2} R}$
B. $\frac{B A}{\sqrt{2} R}$
C. $\frac{B A \omega}{\sqrt{2}}$
D. There is no induced current.

Name \qquad
\qquad last first
III. [25 pts] Parts A and B are independent.

PART A: An infinitely long cylindrical shell with inner radius a and outer radius \mathbf{b} carries a uniformly distributed current \mathbf{I} out of the page.
Determine \mathbf{B} in the three regions listed below and explain or support your reasoning with words or calculation.

1. $\mathbf{r}<\mathrm{a}$

2. $\mathbf{a}<\mathbf{r}<$ b
3. $r>b$

4. Sketch $|B|$ as a function of \mathbf{r}.

PART B: See sketch. A beam of electrons passes undeflected through the a region which contains a uniform electric field of $10 \mathrm{~N} / \mathrm{C}$ into the page and a uniform magnetic field of $2 \times 10^{-4} \mathrm{~T}$ perpendicular to its path and to the electric field orientation.

What is the speed of the electrons through this region and which way does the B field point?

| $\mathrm{v}_{\mathrm{e}}=$ | |
| :--- | :--- | :--- |
| B is (circle one): | m / s |
| UP DOWN | |

