Name		Student ID	
last	first		

Questions 1 - 3 concern the circuit shown at right that contains a resistor ($R = 200 \Omega$) and a capacitor (C = 240 nF) and an ideal 12 V batter.

- 1. **Immediately after** the switch is closed, what is the potential difference across the capacitor?
 - A. $V_{\rm C} = 0 \, {\rm V}$.
 - B. $V_{\rm C} = 2.40 \text{ x } 10^{-9} \text{ V}.$
 - C. $V_{\rm C} = 6 \, {\rm V}$.
 - D. $V_{\rm C} = 12$ V.
- 2. **Immediately after** the switch is closed, what is the current through the resistor?
 - A. $I_{\rm R} = 0$ A.
 - B. $I_{\rm R} = 27 \text{ mA}$.
 - C. $I_{\rm R} = 60 \text{ mA}$.
 - D. $I_{\rm R} = 200 \text{ mA}$.
- 3. A long time after the switch has been closed, what is the charge on the capacitor?
 - A. $Q_C = 2.88 \times 10^{-6} C.$
 - B. $Q_{\rm C} = 2.40 \text{ x } 10^{-7} \text{ C}.$
 - C. $Q_C = 2.00 \times 10^{-8} C.$
 - D. $Q_{\rm C} = 0$.
- 4. A positively charged particle has an initial velocity of unknown magnitude and direction when it enters a region in which there is a uniform electric field E = 2000 V/m in the -z direction and a uniform magnetic field B = 0.2 T in the -y direction. The particle's velocity is **not affected** by the fields. What is its velocity?
 - A. 1.0×10^4 m/s in the +y direction
 - B. $1.0 \ge 10^4$ m/s in the -x direction
 - C. 1.0×10^{-4} m/s in the +x direction
 - D. 1.0×10^{-4} m/s in the -x direction
 - E. 1.0×10^{-4} m/s in the +z direction

Questions 5 and 6 concern the current-carrying wires shown at right. Wire A carries current I_A out of the page; wire B carries current I_B into the page. $I_A = 2I_B$.

first

5. Which arrow below best represents the direction of the magnetic field at point X?

6. Which arrow below best represents the direction of the force exerted on wire B by wire A?

	Student ID	
first		
	first	Student ID first

Questions 7 - 9 concern a conducting loop in a uniform magnetic field directed along the +x-axis, as shown in the side-view diagram at right. At the instant shown the loop is rotating with a constant angular velocity ω about an axis along the z-axis through the loop's center.

For question 7, the loop is carrying a current (produced by a battery) in the direction indicated (out of the page at the top of the loop). For questions 8 and 9, the loop is not carrying a current produced by a battery.

- 7. (With current from a battery.) At the instant shown is potential energy U increasing, decreasing or remaining constant?
 - A. U is increasing.
 - B. U is decreasing.
 - C. U is not zero, and remaining constant.
 - D. U is zero, and remaining constant.
- 8. (Without current from a battery.) At the instant shown, is the absolute value of the rate of change of the magnetic flux through the loop $\left|\frac{d\Phi}{dt}\right|$ increasing, decreasing, or constant?

A.
$$\frac{d\Phi}{dt}$$
 is increasing.

- B. $\left| \frac{d\Phi}{dt} \right|$ is decreasing.
- C. $\left|\frac{d\Phi}{dt}\right|$ is not zero, and remaining constant.
- D. $\left|\frac{d\Phi}{dt}\right|$ is zero, and remaining constant.
- 9. (Without current from a battery.) Assuming the loop has a single turn, area A and total resistance R, the B-field has magnitude B_0 and at the instant shown the angle between the loop and the B-field is 45°, what is the magnitude of the induced current i?
 - A. $\frac{BA\omega}{\sqrt{2}R}$
 - B. $\frac{BA}{\sqrt{2}R}$

 - C. $\frac{BA\omega}{\sqrt{2}}$
 - D. There is no induced current.

Name		Student ID
last	first	

III. [25 pts] Parts A and B are independent.

PART A: An infinitely long cylindrical shell with inner radius **a** and outer radius **b** carries a uniformly distributed current **I** out of the page.

Determine **B** in the three regions listed below and explain or support your reasoning with words or calculation.

1. r < a

2. a < r < b

- - -

3. r > b

4. Sketch $|\mathbf{B}|$ as a function of \mathbf{r} .

PART B: See sketch. A beam of electrons passes undeflected through the a region which contains a uniform electric field of 10 N/C into the page and a uniform magnetic field of 2×10^{-4} T perpendicular to its path and to the electric field orientation.

What is the speed of the electrons through this region and which way does the B field point?

E is into page			
B: up or down?			
e	x x x x x x x x x x x x x x x x x x x		
<u> </u>	*****		

v _e = m/s			
B is (circle one):	UP	DOWN	