The next two questions pertain to the situation described below.

A charged particle is accelerated through a potential difference from a to b. The particle then enters a uniform magnetic field B directed into the plane of the paper. While in this magnetic field, the particle travels in a semicircle of diameter d.

1. If we were to double the magnitude of the potential difference between a and b, what would happen to the diameter d ?

Double potential difference
a. d would double
b. d would increase by a factor of $\sqrt{2}$
c. d would stay the same
d. d would decrease by a factor of $\sqrt{2}$
e. d would decrease by a factor of 2
\Rightarrow Double Kinetic energy ($\left(\frac{1}{2} m v^{2}\right)$
\Rightarrow Increase velocity by factor of $\sqrt{2}$
$\left|\vec{F}_{\text {mag }}\right|=q|\vec{v}||\vec{B}|=\frac{m}{v^{2}} \frac{r}{r} \Rightarrow r=\frac{m v}{q B}$ $\Rightarrow d=2 r o f v \Rightarrow d$ increase by
2. Let T be the amount of time the particle is in the shaded region that contains the magnetic factor of field. If we were to double the particle velocity as it enters the field, what would happen to T ?
a. T would double

$$
\begin{aligned}
& \text { Path length: } \\
& \frac{\pi d}{2}=\pi r=\frac{\pi m v}{q B} \\
& T=\frac{\text { Path length }}{\text { speed }}=\frac{\pi m}{q B}=\text { constant }
\end{aligned}
$$

b. T would increase by a factor of $\sqrt{2}$
(c. T would stay the same
d. T would decrease by a factor of $\sqrt{2}$
e. T would decrease by a factor of 2
3. A long straight wire carrying current out of the page (along $+\hat{x}$) is sitting in a uniform external magnetic field $B=B_{0} \hat{z}$. At what point could the total magnetic field equal 0 ?
a. a
b. b
c. c
(d. d
e. There is no possible location where the field could be zero

Point d is the only place where
 the wire's \vec{B} points downward (RHR) and thus could cancel some or all of the external field.

The next two questions pertain to the situation described below.

A square loop carries a current I and pivots without friction about the z-axis. A uniform magnetic field $B=2.4$ T points in the $+x$ direction, and the loop initially makes an angle $\theta=70^{\circ}$ with the $x-z$ plane.

top view of loop

$$
\begin{aligned}
& B=2.4 \mathrm{~T} \\
& d=0.2 \mathrm{~m} \\
& \theta=70^{\circ}
\end{aligned}
$$

4. What is the direction of the torque on the loop at the time shown?
a. $-\sin \theta \hat{x}+\cos \theta \hat{y} \quad$ Forces are as shown in red (from $I \vec{\ell} \times \vec{B}$)
b. $+\sin \theta \hat{x}-\cos \theta \hat{y}$
(c. $-\hat{z}$
d. $+x$
e. $+y$
\rightarrow loop. rotates clockwise (from top view) \rightarrow torque is into the page in accordance w/RHR
5. The magnitude of the torque on the loop exerted by the magnetic field at the time shown is measured to be $\mathrm{r}=1.2 \mathrm{~N} \mathrm{~m}$. What is the magnitude of the current I in the loop?
a. $\mathrm{I}=12.5 \mathrm{~A}$

$$
\vec{r}=2 \vec{r} \times \vec{F}=2 \frac{d}{2}|\vec{F}| \sin (90-\theta)
$$

b. $\mathrm{I}=0.5 \mathrm{~A}$
c. $\mathrm{I}=1.3 \mathrm{~A}$

$$
=d \times(d I B) \sin \left(20^{\circ}\right)
$$

d. $\mathrm{I}=36.5 \mathrm{~A}$
e. $\mathrm{I}=2.9 \mathrm{~A}$

$$
\Rightarrow I=\frac{\tau}{d^{2} B \sin \left(20^{\circ}\right)}=\frac{1.2 \mathrm{~N} \cdot \mathrm{~m}}{(0.2 \mathrm{~m})^{2} \cdot 2.4 \mathrm{~T} \cdot \sin \left(20^{\circ}\right)}
$$

6. An electron has a velocity in the negative Z direction at point P.

The magnetic force on the electron at this point has a component in the negative Y direction. Which one of the following statements about the magnetic field at point P can be determined from this information?
a. Bx is positive
b. By is negative
(c) Bx is negative
d. Bz is positive
e. By is positive

$$
\vec{F}=q \vec{V} \times \vec{B}
$$

electron is negatively
charged, so (\hat{q}) points \hat{q} in positive z-direction.

$$
\hat{z} \times(-\hat{x}) \text { yields }-\hat{y} \text { by RHR. }
$$

7. Three long wires carrying current I out of the page are placed at three corners of a square of radius a, as shown. Determine the magnitude and direction of the current in a wire placed at the fourth corner of the square, such that the total force on wire 1 vanishes.
a. I into the page Need $\vec{B}_{\text {tot }}=0$ at wire 1,
b. $\sqrt{2}$ I into the page so $\vec{B}_{3}=-\vec{B}_{1}-\vec{B}_{2}$.
c. $\sqrt{2}$ I out of the page
$\Rightarrow\left|\vec{B}_{3}\right|=\sqrt{2}\left|\vec{B}_{1}\right|$
e. 2I out of the page $\quad \Rightarrow \frac{\mu_{0} I_{3}}{2 \pi(\sqrt{2} a)}=\sqrt{2} \frac{\mu_{0} I}{2 \pi a} \quad \Rightarrow \quad I_{3}=2 I$

Into the
(d. $2 I$ into the page $\Rightarrow\left|\vec{B}_{3}\right|=\sqrt{2}\left|\vec{B}_{1}\right|$

The following two questions concern the two circuits shown below.
The two circuits contain identical capacitors that hold the same charge at $\mathrm{t}=0$. Circuit 2 has correct direction. twice as much resistance as circuit 1.

Circuit 1

Circuit 2
8. Which circuit has a larger power dissipation at $t=0$?
a. Circuit 1
b. Circuit 2
c. They have the same nonzero power dissipation
d. They both have zero power dissipation

$$
\begin{aligned}
& I=-\frac{d Q}{d t}=\frac{Q_{0}}{\tau} e^{-t / \tau} \\
& \text { at } t=0, I_{0}=\frac{Q_{0}}{\tau} \\
& P_{0}=I_{0}^{2} R=\frac{Q_{0}^{2}}{R C^{2}} \quad \begin{array}{ll}
R_{2}>R_{1} \\
P_{2}<P_{1}
\end{array}
\end{aligned}
$$

9. Which of the following statements best describes the charge remaining on each of the the two capacitors for any time after $t=0$?
(a. $\mathrm{Q} 1<\mathrm{Q} 2$
b. $\mathrm{Q} 1>\mathrm{Q} 2$

$$
Q(t)=Q_{0} e^{-t / \tau}
$$

c. $\mathrm{Q} 1=\mathrm{Q} 2$
d. $\mathrm{Q} 1<\mathrm{Q} 2$ at first, then $\mathrm{Q} 1>\mathrm{Q} 2$ after a long time
e. $\mathrm{Q} 1>\mathrm{Q} 2$ at first, then $\mathrm{Q} 1<\mathrm{Q} 2$ after a long time

Higher $T \rightarrow$ Charge
dissipates more slowly

$$
\rightarrow \text { more charge }
$$

remains on capacitor
\qquad Student ID \qquad
\qquad
II. Lab questions [12 pts] ANSWER THESE ON YOUR SCANTRON SHEET.
10. [4 pts] An $R C$ circuit is connected as shown in the diagram below. The switch is originally left in position 2 for a long time, and then at $t=0.2 \mathrm{~s}$ it is flipped to position 1 while the voltage across the $1.0 \mu \mathrm{~F}$ capacitor C_{1} is measured and plotted as a function of time (also shown). The resistance R_{1} is not known prior to this measurement. From the information given in the circuit diagram and the graph, what is the resistance R_{1} ?

(A) 0.2Ω
(B) 0.3Ω
(C) $20 \mathrm{k} \Omega$
(D) $40 \mathrm{k} \Omega$

11. [4 pts] An 8 -turn coil (like that used in the lab) is lyi flowing through it in the direction which picture shows the direction of the compass needles? The held directly above the coil wires, tip. Assume that the earth's field is negligible.

12. [4pts] A coil is held directly above a bar magnet as shown at right. Current is flowing through the coil in the direction indicated. Which of the following is experienced by the magnet due to this current?

Current direction
(A) A force directly toward the center of the coil (up).
(B) A force directly away from the center of the coil (down).
(D) A force toward the left or right, but not up or down.
(D) There is no net force, but the magnet experiences a torque about its center.
(E) There is no net force or torque on the magnet from this coil.

Last Name, First Name Key, Answer student id \qquad score \qquad
III [25 points] A square loop of wire of side a and electrical resistance R lies in a plane perpendicular to a magnetic field as shown at right. The field is given by $\vec{B}(t)=-\widehat{k} B_{0} \sin \omega t$. Calculate the following in terms of the variables given and explain your results.
i. [4 points] At what time does the induced EMF become zero for the first time after $t=0$ (that is for $t>0$)?

EMF is zero when magnetic flux isnt changing,

$$
\text { i.e. when } \frac{d \vec{B}}{d t}=0 \text {. This first occurs when } \omega t=\frac{\pi}{2} \quad \Rightarrow t=\frac{\pi}{2 \omega}
$$

ii. [4 points] What is the direction of the EMF at time $t=0$ (clockwise, cow, zero)? At $t=0$, magnetic flux increasing into the page. According to Lens's law, induced EMF counteracts this by generating an induced field out of the field. This is achieved by cow current.
iii. [4 points] Give an expression for the EMF as a function of time. (Use clockwise as positive).
$\bar{I}_{B}=a^{2} B_{0} \sin (\omega t)$

$$
\varepsilon=-\frac{d \Phi_{t}}{d t}=-\omega a^{2} B_{0} \cos (\omega t)
$$

iv. [5 points] Assume the answer to part iii is given by $\mathcal{E}(\mathrm{t})$. Give expressions for the current, net force, and net torque on the square loop.

Current: $\varepsilon(t) / R$
$\left.\begin{array}{l}\text { Net Force: } \\ \text { Net Torque: }\end{array}\right\}$ zero
For the next two parts the field is constant in time, $B(t)=-\widehat{k} B_{0}$ and the square is moving to the right with constant velocity v_{0} at a time when half of the square has left the region with magnetic field.
v. [4 points] Deduce an expression for the force on the square. Give the direction of the force as well.
$\Phi_{r}=B_{0} \times$ Area of field through loop. $d I_{0} / d t=B_{0} \frac{d A}{d t}=B_{0} a V_{0} \Rightarrow I=\frac{B_{0} a V_{0}}{R}$ clockurise. Force on left $\vec{F}=I \vec{l} \times \vec{B}=\frac{B_{0}^{2} a^{2} V_{0}}{R}$ left
side of loop: (Forces on top/ bottom $\begin{gathered}\text { Sides cancel }\end{gathered}$
vi. [4 points] Give an expression for the power dissipation in the square and explain where
this energy comes from.
$P=I^{2} R=\frac{B_{0}^{2} a^{2} V_{0}^{2}}{R}$

Exam 3, Phys 122
This energy comes. from
Whatever agent is applying
the rightward force to the
loop to keep it moving at a constant velocity.

2
Thursday, May 26th, 2016
\qquad
\qquad last first
IV. [20 points total] Tutorial questions.

A circular loop carrying a current I_{o} is placed near the end of a solenoid as shown in the cross-sectional view at right. The field lines shown indicate the magnetic field of the solenoid only.
Note: The symbol \otimes indicates current going into the page and the symbol \odot indicates current coming out of the page.
A. [6 pts] Suppose a compass were placed below the current loop as shown at right. In the space provided, draw the most stable orientation of the compass needle. Explain your reasoning.

The compass needle will be stable when its poles are aligned from south to north along the net magnetic field direction, the sum of the fields from the loop and solenoid. The contribution from $\vec{B}_{\text {sol }}$ is tangent to the field line at that

Field lines of solenoid (solenoid not shown) point. From the RHR we developed in tutorial to treat the current loop like a small bar magnet, field lines for the loop will come out of the left side and go into the right side. This means the contribution for the loop will be directly to the right at this point, so the compass needle will be angled between the field line and the horizontal.
B. The circular current loop and compass are removed. The magnetic field around the solenoid is shown at right.
i. [7 pts] On the diagram at right, draw and label a closed path for which the line integral of the magnetic field along that path is zero (i.e., $\oint_{\text {path }} \vec{B} \cdot \mathrm{~d} \vec{l}=0$). Explain.

There are many correct answers to this question. Two examples requiring different reasoning are the dashed ellipse and rectangle at right.
Closed 1: From Ampère's law, the line integral of magnetic field along any closed path that encircles net
 zero current will be zero.
Closed 2: The magnetic field lines show an approximately uniform field in the center of the solenoid. Choosing the counterclockwise path, the dot product $\vec{B} \cdot \mathrm{~d} l$ is zero where the vectors are perpendicular (left and right sides), $B \mathrm{~d} l$ when they are parallel (bottom), and $-B \mathrm{~d} l$ when they are antiparallel (top). Since B has the same magnitude everywhere in this region and the top and bottom segments are equal length, the line integral along the entire path will sum to zero.
ii. [7 pts] On the diagram at right, draw and label an open path for which the line integral of the magnetic field along that path is zero (i.e., $\int_{\text {path }} \vec{B} \bullet \mathrm{~d} \vec{l}=0$). Explain your reasoning.

As with the previous question, there are many possible correct answers. The straight and curved open paths on the diagram are two examples requiring the same reasoning.
Ampère's law only applies to closed paths, so we can't use it directly here. Instead, the simplest path we can choose is one where $\vec{B} \cdot \mathrm{~d} l$ is zero at every point on the path, so $\vec{B}_{\text {sol }}$ and $\mathrm{d} l$ need to be perpendicular for the entire path.

