Name \qquad Student ID Number \qquad

Part I. Lecture Multiple Choice (43 points total)

1. (5 pts.) The voltage between the cathode and the screen of a television set is 22 kV . If we assume a speed of zero for an electron as it leaves the cathode, what is its speed just before it hits the screen? $\left(m_{e}=9.1 \times 10^{-31} \mathrm{~kg} ; \mathrm{q}_{\mathrm{e}}=1.6 \times 10^{-19} \mathrm{C}\right.$)
A. $8.8 \times 10^{7} \mathrm{~m} / \mathrm{s}$
B. $2.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $\quad 6.2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $7.7 \times 10^{15} \mathrm{~m} / \mathrm{s}$
E. $\quad 5.3 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2. (3 pts.) Which points in the diagram are at the same potential?
A. 2 and 5
B. 2,3 , and 5
C. 2 and 4
D. 1 and 5
E. 1 and 4

3. (5 pts.) You assemble the system of point charges $q_{1}=1 \mu \mathrm{C}, q_{2}=2 \mu \mathrm{C}$, and $q_{3}=3 \mu \mathrm{C}$ at the corners of an equilateral triangle whose side $s=30 \mathrm{~cm}$. What is the electrostatic potential energy of the system? (assume $U=0$ at infinity)
A. 1.10 J
B. 0.990 J
C. 0.631 J
D. 0.330 J
E. 0.123 J

4. (4 pts.) A parallel plate capacitor filled with air is connected to a battery. When a dielectric is inserted between the plates of the capacitor
A. only the capacitance changes.
B. only the voltage across the capacitor changes.
C. only the charge on the capacitor changes.
D. both the capacitance and the voltage change.
E. both the capacitance and the charge change.
\qquad
\qquad

Diagram pertains to the next two questions:
A solid conducting sphere of radius a is centered on the origin, and carries a total charge Q_{1}. Concentric with this sphere is a conducting spherical shell of inner radius b and outer radius c, which carries a total charge Q_{2}. The value of parameters are given in the figure.

$Q_{1}=-4 \mu \mathrm{C}$
$Q_{2}=+5 \mu \mathrm{C}$
$a=2 \mathrm{~cm}$
$b=6 \mathrm{~cm}$
5. (5 pts.) Calculate the magnitude of the electric potential difference between the radius $\mathbf{r}=\mathbf{b}$ (the inner surface of the conducting shell) and the origin.
A. $\left|V_{b}-V_{o}\right|=1.50 \times 10^{5} \mathrm{~V}$
B. $\left|V_{b}-V_{o}\right|=4.50 \times 10^{5} \mathrm{~V}$
C. $\left|V_{b}-V_{0}\right|=6.00 \times 10^{5} \mathrm{~V}$
D. $\left|V_{b}-V_{o}\right|=12.0 \times 10^{5} \mathrm{~V}$
E. $\left|V_{b}-V_{o}\right|=18.0 \times 10^{5} \mathrm{~V}$
6. (3 pts.) If the inner conducting sphere were replaced with an insulating sphere having the same total charge Q_{1} distributed uniformly throughout its volume, the magnitude of the potential difference $\left|V_{b}-V_{0}\right|$ would
A. increase
B. decrease
C. stay the same
7. (5 pts.) All four capacitors have equal values of $50 \mu \mathrm{~F}$. Calculate the equivalent capacitance of this network of capacitors.
A. $50 \mu \mathrm{~F}$
B. $30 \mu \mathrm{~F}$
C. $75 \mu \mathrm{~F}$
D. $100 \mu \mathrm{~F}$

E. $83 \mu \mathrm{~F}$
8. (5 pts.) A current of 1.2 A flows from A to B . Therefore, the magnitude of the potential difference between points A and B is approximately
A. 1.0 V
B. 4.2 V
C. 4.6 V

D. 6.0 V
E. 20 V
\qquad
\qquad
9. (4 pts) A metal ball of charge $+Q$ is lowered into an uncharged metal shell and allowed to rest on the bottom of the shell. When the charges reach equilibrium,

A. the outside of the shell has a charge of $-Q$ and the ball has a charge of $+Q$.
B. the outside of the shell has a charge of $+Q$ and the ball has a charge of $+Q$.
C. the outside of the shell has a charge of zero and the ball has a charge of $+Q$.
D. the outside of the shell has a charge of $+Q$ and the ball has zero charge.
E. the ouside of the shell has a charge of $+Q$ and the ball has a charge of $-Q$.
10. (4 pts) Parallel plate capacitor C_{1} has plate area A and separation distance d. Capacitor C_{2} is made by starting with C_{1} and first reducing the plate separation to $\mathrm{d} / 2$. Next, a dielectric with $\kappa=3$ and plate area $\mathrm{A} / 2$ is inserted into the middle, as shown. What is C_{2} in terms of C_{1} ?
A. $\mathrm{C}_{2}=\mathrm{C}_{1} / 4$
B. $\mathrm{C}_{2}=\mathrm{C}_{1}$
C. $\mathrm{C}_{2}=2 \mathrm{C}_{1}$
D. $\mathrm{C}_{2}=3 \mathrm{C}_{1}$
E. $C_{2}=4 C_{1}$

Name \qquad
\qquad Score \qquad
last first
II. Lab questions [12 pts]

For problems 10-12, assume that the battery and ammeter are ideal and that all bulbs are identical.
11. [4 pts] In which circuit below is bulb A brightest?

12. [4 pts] In which circuit above is the power delivered by the battery the lowest?
13. [4 pts] An ammeter is to be added to the circuit at right in order to measure the current through the bulb labeled 1 . Which placement of the ammeter will correctly measure the current through bulb 1 ?

Name \qquad Student ID Number \qquad

The next four problems are related.
Kirchhoff Laws. Study the circuit and answer the following questions.
X. (3 pts) Use the Kirchhoff Current Law to relate the three currents at point P.

P:

X. (6 pts) Use the Kirchhoff Voltage Law to write equations for the sum of the voltage drops around loops L1 and L2. Express all equations in terms of the parameters defined in the figure above.

L1:

L2:
X. (9 pts) Assume that all emf sources supply 5 V and all resistors have a resistance of 100 Ohms. I_{1} is found to be 0.03 A . What are the remaining currents?
X. (7 pts) Wheatstone Bridge: Measuring the resistance. The variable resistor is adjusted by moving the contact position $a . a$ is the position relative to the total length of the resistor such that the resistance from the LHS of the resistor to the contact point is $\mathrm{R}_{1}=a R_{\text {Tot }}$ and resistance from the contact point to the RHS of the resistor is $\mathrm{R}_{2}=(1-a) R_{\text {Tot }}$.

The contact position a is varied until there is no current flowing through the ammeter (A). What is the resistance of R_{X} as a function of R_{0}, a, and $R_{\text {Tot }}$?

Name \qquad
\qquad
\qquad last first
V. [20 points total] Two experiments are conducted with two identical positively charged spheres and two different test charges. $Q_{\mathrm{A}}=-1.5 \mathrm{nC}, Q_{\mathrm{B}}=+3 \mathrm{nC}$.
Experiment A: Q_{A} is released from rest at point P, and moves toward the sphere. When it reaches the surface of the sphere it has 8 J of kinetic energy.
Experiment B: A hand moves Q_{B} from rest at point P to rest at the surface of the sphere.

In each experiment, consider the system of the sphere and test charge.
A. [4 pts] In Experiment A, does the potential energy of the system increase, decrease, or remain the same as Q_{A} moves toward the sphere? Explain.

Q_{A} is released at point P.

to the sphere.
B. Let ΔU_{A} and ΔU_{B} represent the changes in electric potential energy in Experiments A and B , respectively.
i. [3 pts] Is the magnitude of ΔU_{A} greater than, less than, or equal to the magnitude of ΔU_{B} ? Explain.
ii. [3 pts] Is the sign of ΔU_{A} the same as or different from the sign of ΔU_{B} ? Explain.
C. [4 pts] If the reference point for the electric potential is at the surface of the sphere, is the electric potential at point P in Experiment A positive, negative, or zero? Explain.
D. Let ΔV_{A} and ΔV_{B} represent the electric potential differences from point P to the surface of the sphere in Experiments A and B, respectively.
i. [3 pts] Is the magnitude of ΔV_{A} greater than, less than, or equal to the magnitude of ΔV_{B} ? Explain.
ii. [3 pts] Is the sign of ΔV_{A} the same as or different from the sign of ΔV_{B} ? Explain.

