Waveguide Bends for the Pedantic

A Background in Integrated Photonics and a Method to Reduce Loss

Ian Christen November 7, 2016 Part 1: Background

Photonics Now

(a) Computing/Communication (e.g. Internet)¹

¹Luxtera ²D. Duvall

Highlight: Quantum

We can do cool stuff with integrated photonics...

Important: Loss Is Bad

- In computing and communication, need stronger signal
 - More heat generated
 - More energy used
- ▶ In quantum, working in single-photon level
 - Photon loss implies, for instance, reduced entanglement efficiency.
 - 'Every photon counts'

Part 1a: History

Snell's Law (1630)

Daniel Colladon (1842)

Conducting Waveguides (1930s-40s, e.g. radar)

Crystal Mount DB-453

Rotating Joint DB-446

1 DB-446 90

90° Elbow (H Plane) DB-433

Pressurizing Unit DB-452 Miter

Mitered Elbow (H Plane) DB-439

Uni-directional Broad Band Coupler D8-442

Bi-directional Narrow Band Coupler DB-441

Bulkhead Flange DB-451

Uni-directional Narrow Band Coupler DB-440

90° Twist DB-435

Part 1b: Maxwell's Equations

CONDUCTINUS b a 60,07 - × Z

Maxwell's Equations

$$\begin{aligned} \nabla \cdot E &= \rho/\epsilon & \nabla \cdot H &= 0(?) \\ \nabla \times E &= -\mu \frac{\partial H}{\partial t} & \nabla \times H &= \epsilon \frac{\partial E}{\partial t} \end{aligned}$$

Remember: General Solution

$$E = E(x, y)e^{i(k_z z - \omega t)}$$

E(x, y) is the mode profile.

Remember: TE_{nm} (Transverse Electric) Modes

$$E_x(x,y) = A_{nm} \sin\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi y}{b}\right)$$
$$E_y(x,y) = A_{nm} \cos\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi y}{b}\right)$$
$$E_z(x,y) = 0$$

Plots of TE_{nm}

Orthonormality Condition

$$\int \int E_i(x,y) E_j(x,y) \, dA = \delta_{ij}$$

 $(E_i, E_j \text{ normalized})$

Remember: Cutoff Frequency

$$\omega_c = c\sqrt{\frac{n\pi}{a} + \frac{m\pi}{b}}$$

Assume $a = 2b$		
	nm	$\omega_c(\sqrt{a}/\pi c)$
	10	$1/\sqrt{2}$
	01	1
	11	$\sqrt{3/2}$
	20	1

We Consider TE_{10} Solutions

$$E_x = A \sin\left(\frac{n\pi x}{a}\right)$$
$$E_y = 0$$
$$E_z = 0$$

TE_{10} From Center of Waveguide

$$E_x = A \cos\left(\frac{n\pi x}{a}\right)$$
$$E_y = 0$$
$$E_z = 0$$

Also Want TE_{10} Solution for Waveguide Bend

Cylindrical TE_{10} Solution

$$\begin{split} E_x &= A J_0 \left(\alpha (r-R) \right) + B K_0 \left(\alpha (r-R) \right) \\ E_y &= 0 \\ E_z &= 0 \end{split}$$

Where J_0 and K_0 are Bessel Functions of the 1st and 2nd kind. A, B, and α satisfy BCs:

•
$$E_x(\pm a/2) = 0$$
,

• One anti-node.

Plots of Cylindrical TE₁₀ Solutions

Part 2: Waveguide Bends

$Mode\ Mismatch\ \Longrightarrow\ Loss$

$$\iint E_{10}^{k_1}(x,y)E_{10}^{k_2}(x,y)\,dA \neq 1$$

(For $k_1 \neq k_2$)

Where Do the Photons Go?

Frenet Notation

Way to define space curves. $N(s) = k(s)\hat{n}(s)$.

Loss From Circular Bend

Idea: 'Smooth' Curvature

Idea: Continuously 'Smooth' Curvature

Fundamental Theorem of Space Curves

Curve is completely determined (up to rigid transformation) by choice of k(s) and b(s).

 $b(s) = \hat{y} \implies k(s)$ fully determines curve.

Constraint: Begin and End Directions Same

$$\Theta = \int_{-\infty}^{\infty} k(s) \, ds$$

(Θ is the angle between the beginning and ending directions. This works because $k = d\theta/ds$.)

Constraint: Should Be Symmetric

Constraint: Begin and End Locations Same

$$k_{new}(s) = k_{old}(x * s)/x$$

There exists an x such that the beginning and end are at the original vectors. Symmetry and begin-end directions are preserved.

Constraint: Begin and End Locations Same

Future: Actually Calculate it

Have not finished analytic (if possible) computation of optimal curve.

Future: Change Width of Waveguide Too

Future: Dielectric Waveguide Instead of Conducting

