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Part 1: Background

V]



Photonics Now
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Highlight: Quantum
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We can do cool stuff with integrated photonics...
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Important: Loss Is Bad
» In computing and communication, need stronger signal
» More heat generated
» More energy used
» In quantum, working in single-photon level

» Photon loss implies, for instance, reduced entanglement
efficiency.
» ‘Every photon counts’



Part 1a: History



Snell’s Law (1630)




Daniel Colladon (1842)
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Conducting Waveguides (1930s-40s, e.g. radar)
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Fiber Optics (1960s-1970s)
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Part 1b: Maxwell’s Equations



Consider a Conducting Waveguide
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Maxwell’s Equations

p/€ V-H=0(0)
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Remember: General Solution

E = E((E, y)ei(kzszt)

E(xz,y) is the mode profile.



Remember: TE,,, (Transverse Electric) Modes

E,(z,y) = Apm sin (?) cos (%)
Ey(z,y) = Anp cos (?) sin ?)



Plots of TE,,,,
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Orthonormality Condition

JJEﬁ(m’y)Ej(w,y) dA = 5

(E;, E; normalized)



Remember: Cutoff Frequency

Assume a = 2b...
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‘We Comnsider TE;; Solutions

E, = Asin <@>
a

E,=0
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TE,y From Center of Waveguide
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Also Want TE;; Solution for Waveguide Bend
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Cylindrical TE;y Solution

E, = AJy(a(r — R)) + BKq (a(r — R))
E,=0
E,=0
Where Jy and K are Bessel Functions of the 1st and 2nd kind.
A, B, and « satisfy BCs:
» Ey(£a/2) =0,

» One anti-node.
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Plots of Cylindrical TE;; Solutions
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Part 2: Waveguide Bends
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Mode Mismatch = Loss

JJE x yEfS (x,y)dA # 1

(FOI‘ k1 # kg)
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Where Do the Photons Go?
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Frenet Notation

B

Way to define space curves. N(s) = k(s)n(s).
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Loss From Circular Bend
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Idea: ‘Smooth’ Curvature
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Idea: Continuously ‘Smooth’ Curvature
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Fundamental Theorem of Space Curves

Curve is completely determined (up to rigid transformation) by
choice of k(s) and b(s).

b(s) =9y = k(s) fully determines curve.



Constraint: Begin and End Directions Same

(O is the angle between the beginning and ending directions.

This works because k = df/ds.)
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Constraint: Should Be Symmetric
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Constraint: Begin and End Locations Same

knew(s) = kojg(x = s)/x

There exists an z such that the beginning and end are at the
original vectors. Symmetry and begin-end directions are
preserved.



Constraint: Begin and End Locations Same
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Future: Actually Calculate it

Have not finished analytic (if possible) computation of optimal
curve.



Future: Change Width of Waveguide Too
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Future: Dielectric Waveguide Instead of Conducting
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