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Abstract: An algorithm is developed for the optimal location of a single centralized landing on a setting of arbitrary shape

under the following conditions: turns are uniformly distributed over a setting that is located on flat, uniform terrain; skidder

movement between landing and turn location follows a rectilinear pattern; variable cost of travel between landing and turn

location is proportional to the distance traveled. The design objective is to place the landing so that the yarding cost

is minimized. It is assumed that the facility may be located at any point on the horizontal plane of the setting and that there are

no barriers to travel. An example is given.

Résumé: Un algorithme servant à déterminer l’emplacement optimum d’une jetée à l’intérieur d’une aire de récolte est

développé. La méthodologie appliquée nécessite les conditions suivantes : les cycles de débusquage sont uniformément

distribués sur terrain plat et homogène; les trajets aller-retour sont rectilignes; les coûts variables imputables aux déplacements

sont proportionnels à la distance parcourue. On assume qu’il n’y a aucun obstacle à la traficabilité et que la jetée peut être

située n’importe où le long d’un plan horizontal à l’intérieur de l’aire de coupe. La méthode identifie l’emplacement pour

lequel le coût du débusquage est minimisé. Un exemple est présenté.

[Traduit par la Rédaction]

Introduction

In a technical note by Greulich (1994) a method was given for
the calculation of average yarding distance (AYD) on settings
that exhibit a rectilinear yarding pattern to a centralized land-
ing. The specification of setting boundaries and landing loca-
tion determine AYD. Since expected yarding cost for a setting
is a function of AYD, its measure serves as a very useful design
parameter. It is the purpose of this technical note to provide an
algorithm that optimizes landing placement for the most basic
case of rectilinear yarding to a single centralized landing. The
problem is first described and mathematically modeled. A nu-
merical algorithm that provides an easily applied and compu-
tationally efficient solution procedure is then developed. The
note concludes with a numerical example and brief discussion.

Optimal landing location

In this problem formulation it is assumed that all turns on a
setting that is located on flat, uniform terrain will be yarded to
a single centralized landing. The individual turns are inde-
pendently and uniformly distributed across the area, A, of the
setting. There are no restrictions on the shape of the setting,
which for modeling purposes is defined by one or more po-
lygonal regions. Beginning and ending coordinates for line

segments used to define the setting boundary are entered in the
conventional counterclockwise manner. Skidder movement
during the yarding operation follows a barrier-free rectilinear
pattern of travel. The two yarding directions, at right angles to
one another, are exogenously predetermined; an example
would be row thinning of plantations. The coordinate axes are
aligned with these yarding directions. During the inhaul
(outhaul) process the skidder always moves parallel to the axes
and skidder distance from the landing is always decreasing
(increasing). The variable cost component of skidder move-
ment during yarding is assumed proportional to the rectilinear
travel distance. The objective then is to find the location (x0, y0)
for the landing that minimizes the expected yarding cost. The
problem is stated mathematically as

[1] MIN
(x

0
,y
0
)

: Z(x0, y0) = C ∫∫
A

(|x − x0| + |y − y0|)
dx dy

A

The terms on the right side of the above equation may be
collected and described as follows. The term dx dy/A gives the
probability that a turn randomly located somewhere within the
total area, A, of the setting falls within the infinitesimally small
area dx dy. The terms |x – x0| and |y – y0| are the absolute values
of the distances parallel to the x-axis and y-axis, respectively,
that the skidder must travel to reach the landing if a turn is
found and retrieved from location (x, y) within the setting. The
constant C is the cost per unit distance associated with yarding
a turn. The indicated integration over the area A gives the
expected rectilinear travel distance to the landing, which, when
multiplied by the cost per unit distance traveled, C, yields the
expected yarding cost per turn. To minimize this expected cost
the partial derivatives of Z(x0, y0) with respect to x0 and y0 are
taken and set equal to zero. These first-order necessary condi-
tions for a minimum with respect to x0 and y0 are thereby de-
termined to be
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[2a] ∫∫sgn

A

(x − x0)dx dy = 0

[2b] ∫∫sgn

A

(y − y0)dx dy = 0

where sgn(⋅) is the signum function; defined equal to 1 if the
value within parentheses is greater than zero, equal to –1 if less
than zero, and equal to zero if zero.

The interpretation of these two necessary conditions is
straightforward. The first integral equation states that for x0 to
be the optimal x-coordinate of the landing the vertical line
x = x0 must halve area A. In a similar fashion the second inte-
gral indicates that the optimal value for y0 must establish a
horizontal line y = y0 that divides A into upper and lower parts
of equal area. These two area halving requirements form the
basis for the optimization procedure that follows. The two
equations are not only similar but functionally independent of
one another. Thus the general optimization procedure that will
be developed for x0 based upon eq. 2a may be immediately
extended to eq. 2b and optimization with respect to y0. These
necessary conditions for optimality and recognition of their
separability have been somewhat less clearly stated elsewhere
(Love et al. 1988).

Preliminary results
To begin the analysis the boundary curve of region A is defined
by a finite sequence of straight line segments. The usual
mathematical convention with respect to the orientation of
closed curves is followed: line segments are sequentially num-
bered 1 through N always keeping the region A to the left as
numbering proceeds. The next step in the development is to
examine in detail one of the line segments composing the
boundary.

A trapezoid may be formed by extending vertical lines to
the horizontal axis from the beginning (xi, yi) and end (xi+1, yi+1)

points of any line segment i (Fig. 1). The signed-area of this
trapezoid may be calculated from the coordinate area formula as

[3] Ai = 



1

2




[(yi + yi+1)(xi − xi+1)]

and the total area of the region enclosed by the N line segments
is given by summing respective trapezoidal areas for all N line
segments

[4a] A = ∑
i=1

N

Ai

where, because it is a closed traverse of the area boundary,
(xN+1, yN+1) ≡ (x1, y1). Substitute eq. 3 into eq. 4a and simplify
to obtain

[4b] A = 



1

2



∑
i=1

N

(xiyi+1 − xi+1yi)

The total area of the setting as calculated by this latter formula
will have a positive sign automatically attached to it if the
counterclockwise traversing convention is followed.

Within the algorithm, to be presented below, sequential trial
values of x0, denoted nx0, n = 0, 1, 2, ... will be evaluated with
respect to this total area A. Any value nx0 that is found to
vertically divide the region A into equal left and right areas
(i.e., AL = AR; with AL + AR = A) is called a median x value
of A. It is also an optimal value for x0 and as such will be
denoted *x0. There may be more than one median (optimal)
value of x, an example of which is provided by a disjoint region
consisting of two polygons of equal area, A/2. Perpendicular
projections of these two areas onto the x-axis define two line
segments on that axis. If these two line segments do not over-
lap then all points within the separating closed interval provide
equally good (optimal) x-coordinate values for the landing
location.

Arbitrary line segment i (Fig. 1) is examined again. If nx0

falls between xi and xi+1 for line segment i then the intercept
point nyi (when it exists; i.e., xi ≠ xi+1) of the vertical line x =
nx0 and line segment i may be calculated as

[5] nyi = Si
nx0 + Ii

where the slope of the line segment is given by

[6] Si =
yi − yi+1

xi − xi+1

and its intercept with the y axis is

[7] Ii =
xiyi+1 − xi+1yi

xi − xi+1

The portion of the total area A that lies to the left and to the
right of each trial value nx0 can now be calculated in the fol-
lowing fashion. Categorize each of the N line segments using
four mutually exclusive and exhaustive sets based on the nu-
merical values of xi and xi+1 relative to that of nx0. Figure 2
illustrates these four sets. With reference to this figure, solid
and dotted lines for the boundaries of the regions indicate
closed and open regions, respectively; e.g., the boundary for
C4 includes xi+1 = nx0 for xi ≥ nx0, while the boundary of C2 does
not. Also note that both axes are broken and pulled apart in

n
0X

n
iY

XiXi+1

(x ,yi+1 i+1)

(x ,yi i)

S EG
M

ENT
i

Y

X

Fig. 1. The trapezoidal area (shaded) associated with line segment i

and the intersection point of the vertical line x = nx0 with line

segment i.
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this figure in order to reveal the set relationships along the
horizontal and vertical set-interface lines. In using this figure it is
first noted that each line segment i has a beginning x-coordinate,
xi, and an ending x-coordinate, xi+1. These two values are com-
pared with the current value of nx0; a procedure that serves to
classify each of the N segments. The contribution that each line
segment makes to the area lying to the left of nx0 is calculated
using a formula that depends upon the specific set into which
the segment falls. In a similar fashion its contribution to the
area lying to the right of nx0 may also be calculated. The set-
specific formulas yielding these contributory, automatically
signed areas are listed immediately following each set defini-
tion given below. The standard set notation used here facili-
tates the writing of computerized sorting routines.

Set C1 : {[(xi ≤ nx0) ∩ (xi+1 < nx0)]

∪ [(xi < nx0) ∩ (xi+1 ≤ nx0)]}

[8a] ALi = 



1

2




[(yi + yi+l)(xi − xi+1)]

[8b] ARi = 0.0

Set C2 : {[(xi > nx0) ∩ (xi+1 < nx0)]}

[9a] ALi = 



1

2




[(nyi + yi+1)(nx0 − xi+1)]

[9b] ARi = 



1

2




[(yi + nyi)(xi − nx0)]

Set C3 : {[(xi < nx0) ∩ (xi+1 > nx0)]}

[10a] ALi = 



1

2




[(yi + nyi)(xi − nx0)]

[10b] ARi = 



1

2




[(nyi + yi+1)(nx0 − xi+1)]

Set C4 : {[(xi ≥ nx0) ∩ (xi+1 ≥ nx0)]}

[11a] ALi = 0.0

[11b] ARi = 



1

2




[(yi + yi+1)(xi − xi+1)]

Use of these sets and their signed-area formulas can be
clarified by the examples provided in Fig. 3. Line segment 1
shown in that figure falls in C4 and makes a positive contribu-
tion to the area falling to the right of nx0. This contribution is
calculated by formula [11b]. There is no contribution to the
area left of nx0, as shown by formula [11a]. Line segment 2
also falls in C4, with similar results. Line segment 3 falls in C1,
with a positive contribution to the area left of nx0 and no con-
tribution to the right. Line segment 4 also falls in C1, with a
negative contribution to the area left of nx0 and no contribution
to the right. Note that while line segments 3 and 4 both fall in
C1, formula [8a] will automatically attach positive and nega-
tive signs, respectively, to the calculated areas. Line segment
5 falls in C3 and contributes negative area to the left and right
of nx0. These two areas are calculated via formulas [10a] and
[10b]. These four sets and their corresponding eight signed-
area formulas are essential to the optimization process. In the
optimization algorithm a value of nx0 is sought that yields

[12] ∑
i=1

N

ALi = ∑
i=1

N

ARi

Before developing that algorithm, however, a new and essen-
tial formula must be derived.

Assume for the moment that the values, x1, x2, ..., xN, of the
N coordinate pairs, (xi, yi), have been ranked in order of as-
cending value (e.g., for the area shown in Fig. 3 this ranked
sequence would be x4, x5, x3, x2, x1). Assume also that it has

xi

C3

C1 C2

C4

xi+1

>

>

<

n
0x

n
0x

> n
0x

n
0x

n
0x

< n
0x

}

=

n
0x=

{

Fig. 2. Partition of the (xi, xi+1) plane into four mutually exclusive

regions.
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Fig. 3. Illustrative division of an area A into left and right sides by a

trial vertical line at x = nx0.
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been determined that the optimal value *x0 falls somewhere
between two adjacently ranked coordinate values xr and xs in
this sequence. For optimality it must hold that

[13] ∑
j=1

4

∑
i[C

j

ALi = ∑
j=i

4

∑
i[C

j

ARi

To obtain a calculating formula for *x0 this fundamental
requirement for optimality is expanded and examined. For pur-
poses of identifying the appropriate set Cj for each of the N
line segments nx0 is assumed to be any point in the open inter-
val (xr, xs), where xr and xs are two adjacently ranked x-coordinate
values as previously described. Expand eq. 13 by substituting
eqs. 8–11 and eliminate nyi using eq. 5. Algebraic simplifica-
tion leads to the following quadratic equation in nx0

[14] β1
nx0

2 + β2
nx0 + β3 = 0

where

[15] β1 = 2


∑

i[C
2

Si − ∑Si

i[C
3





[16] β2 = 4


∑

i[C
2

Ii − ∑
i[C

3

Ii




and

[17] β3 = 2


∑

i[C
1

Ai − ∑
i[C

4

Ai




+ 2


∑

i[C
2

xixi+1Si − ∑
i[C

3

xixi+1Si




− ∑[

i[C
2

(yi+1 + yi)(xi+1 + xi)] + ∑
i[C

3

[(yi+1 + yi)(xi+1 + xi)]

In general β1 of eq. 15 will not equal zero and there will be
two real roots to the quadratic equation. Only one of these two
values will fall in the interval (xr, xs) and that is the optimal
value for the x-coordinate of the landing location. This optimal
value for nx0 is then denoted *x0. If β1 equals zero the solution
to the resulting linear equation is the optimal value.

The division of the setting area into equal portions is the
almost trivial requirement for optimal placement of the land-
ing. Finding the exact halving point for complex polygonal
regions is not, however, a trivial exercise. The application of
the coordinate area formula has provided a convenient equa-
tion (eq. 14) for the efficient calculation of that point for a
planar polygonal region of any shape no matter how complex.
It only remains to provide an algorithm for identifying either
the two points xr and xs that *x0 lies between or the one point
xi upon which it falls exactly.

The optimization algorithm
Area to the left of nx0 is a monotonic nondecreasing function
of nx0; i.e., as the value of nx0 increases the portion of the total
area A lying to the left of the vertical line determined by nx0

stays constant or increases; it never decreases. This charac-
teristic and the results of the preceding section suggest a very
straightforward ranking algorithm analogous to that employed
by Wesolowsky and Love (1971) with the singular difference
of eq. 14 presented above that dramatically increases both
model scope and ease of application.
Step 1. Rank the values of xi for all N line segments and spec-

ify an initial starting point 0x0 for the algorithm.

Step 2. Using eqs. 8–11 calculate Σ ALi and Σ ARi at the point
0x0; if the two areas are equal set *x0 equal to 0x0 and
exit, otherwise determine whether the next trial point
1x0 should be based upon movement along the x-axis
to the left or right of 0x0 given the objective of more
nearly equating the two areas left and right of the to-
be-selected point. Record the direction of movement
either left or right along the axis. (Note here that n still
equals 0 in going to the next step.)

Step 3. Find the rank location of nx0 among the rank-ordered
xi coordinates; moving in the determined direction
along the axis set n+1x0 equal to the neighboring left or
right xi value as appropriate.

Step 4. Calculate Σ ALi and Σ ARi at the point n+1x0; if the two
areas are equal set *x0 equal to n+1x0 and exit, otherwise
determine whether n+2x0 should be based upon move-
ment to the left or right given the ultimate objective of
equating the two areas.

Step 5. If the direction of movement for n+2x0 is different from
that for n+1x0 continue to step 6, otherwise set n equal
to n + 1 and return to step 3.

Step 6. The optimal value *x0 falls between n+1x0 and n+2x0.
Use eq. 14 to solve for *x0 (for computerized set clas-
sification of the N line segments the midpoint value
0.5(n+1x0 + n+2x0) may be used). Exit the algorithm.

This same general iterative process can also be used to find *y0,
thereby simplifying and shortening the computer code.

An excellent initial point for the algorithm is quickly pro-
vided by the following calculating formulas for the centroid of
a planar polygonal region (Greulich 1995):

[18a] 0x0 = 



1

6A










∑(
i=1

N

xi+1 + xi)(xiyi+1 − xi+1yi)







[18b] 0y0 = 



1

6A










∑(
i=1

N

yi+1 + yi)(xiyi+1 − xi+1yi)







The use of this centroidal location for default starting coor-
dinates (0x0,

0y0) is recommended. Solutions are typically ob-
tained with very few iterations of the algorithm when it is
initiated at the centroid.

Having obtained the optimal facility location, the corre-
sponding rectilinear AYD may be quickly determined using
the previously published calculating procedure for that pa-
rameter (Greulich 1994). A numerical example will illustrate
the application and results that can be obtained.

Numerical example

The above formulas and algorithm provide the basis for a com-
puter program. A FORTRAN 77 program was written in ac-
cordance with ANSI standard X3.9-1978. The program was
compiled using the Microsoft compiler (version 5.0) and run
on a 12-MHz Intel 80286/287 Zenith personal computer. An
example and the associated computational results are now
examined.

The shaded region shown in Fig. 4 represents a hypothetical
setting meeting the assumptions of the rectilinear yarding
model. It has an area of 18 units2. The boundary of the region
has been delineated (traversed) with 20 line segments
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(courses). The 20 coordinate pairs (turning points) that define
these connected line segments are easily entered as one con-
tinuous sequence from an arbitrary starting point. One possible
starting point and coordinate pair entry sequence are shown in
Table 1. The optimal location for the landing, (*x0,

*y0), is
found to be at (3.282, 3.352) and the rectilinear AYD is 2.722
units. By way of comparison the landing location that offers
the minimal straight-line AYD for this region can be found
using a previously published algorithm (Greulich 1991). This
latter model places the landing at (3.290, 3.449) with an ex-
pected yarding distance of 2.156 units. In this particular exam-
ple the yarding pattern, rectilinear versus straight line, is found
to make only a relatively minor difference in optimal landing
location. The difference between expected rectilinear and
straight-line yarding distances is, however, substantial and
clearly has the potential to significantly change the expected
cost of yarding this setting. It should not be concluded that the
small difference in the two landing locations observed here is
typical. Examples can easily be generated that show substan-
tial differences in optimal landing placement as alternately
determined by the rectilinear and straight-line yarding models.

The computer program found the optimal landing coordi-
nates and its corresponding rectilinear AYD in 0.22 s of exe-
cution time. In larger problems the availability of a good initial
point for the algorithm should significantly reduce computa-
tional effort. In this example the centroid, located at (3.231,
3.370), was used as the starting point for the algorithm.

Discussion

Application of location optimization models for single central-
ized landings on settings of irregular shape is greatly facilitated
by use of the coordinate area formula (Greulich 1991). The

coordinate area formula and its application are well known to
forest engineers. This note has shown how its incorporation
into the analysis of the rectilinear yarding distance model can
provide an optimization algorithm that is easily understood
and programmed. Previous optimization models for area des-
tinations with rectilinear distance are very restrictive in the
shape of the area that can be accommodated (Wesolowsky and
Love 1971) or are not amenable to generalized computational
solution procedures (Larson and Odoni 1981). There are, how-
ever, some notable limitations to the utility of the present
model.

For expository clarity the development has been limited to
a setting area that has only one turn density. The extension of
the model to include multiple partitions of the setting, each
with different turn density, does not present any conceptual
difficulty but does require modification of the algorithm. The
practical utility of the model would be enhanced by this addi-
tional capability.

Another limitation of the current model is the absence of
truck road construction and use costs. The consequent assump-
tion in application must be that truck haul related cost per unit
distance between spur take-off point and landing is minor
compared with yarding cost. More precisely, if marginal cost
of truck spur construction and use were to be equated with
marginal yarding cost, only an insignificant minor shift of the
landing from its now “optimal” location toward the spur road
take-off point would occur. Inclusion of these truck road costs
is a natural, if somewhat more involved extension of the
model.

Development of a constrained optimization model would
be of considerable practical advantage. Barriers to direct skidder
movement between some locations on the setting and the landing

Point No.

(i)

Coordinate pair

(xi, yi)

1 (2, 0)

2 (6, 2)

3 (5, 2)

4 (3, 2)

5 (2, 1)

6 (1, 1)

7 (2, 3)

8 (5, 3)

9 (5, 2)

10 (6, 2)

11 (5, 6)

12 (5, 7)

13 (3, 7)

14 (2, 6)

15 (4, 5)

16 (5, 7)

17 (5, 6)

18 (4, 4)

19 (2, 5)

20 (0, 1)

21 ≡ 1 (2, 0)

Table 1. (xi, yi) coordinates for the

boundary line segments of the example area.
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Fig. 4. Plotted area of a setting used as an illustrative example. The

coordinate axes have been aligned with pre-established directions

of travel.
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are frequently encountered. In a similar vein user-definable
constraints on landing location would also be advantageous.
Development of such constrained optimization models would
appear to be a promising area for future research.
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