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Abstract: This paper presents a solution to the general transportation problem of optimally locating two facilities in the
plane with the objective of minimizing expected straight-line travel cost from the facilities to demand points that are contin-
uously distributed in probability across a complex polygonal region. Using this procedure, two landings can be optimally lo-
cated on a harvest unit with respect to yarding costs; however, the cost of building roads to and hauling logs from the two
landings must be optimized separately. In this respect, the present model does not optimize the trade-off between yarding
and trucking of logs. Two examples are presented and analyzed. Future research opportunities are identified.

Résumé : Cet article présente une solution au problème général de transport qui consiste à localiser de façon optimale deux
installations dans le plan avec l’objectif de minimiser le coût attendu du transport en ligne droite à partir de points de de-
mande qui ont une distribution continue de probabilité à travers une région polygonale complexe. À l’aide de cette procé-
dure, deux jetées peuvent être localisées de façon optimale dans une unité de récolte en fonction des coûts de débusquage.
Cependant, le coût associé à la construction des chemins vers les deux jetées et au transport des billes à partir de ces jetées
doit être optimisé séparément. À cet égard, le modèle actuel n’optimise pas le compromis entre le débusquage et le transport
des billes par camion. Deux exemples sont présentés et analysés. Des occasions futures de recherche sont identifiées.

[Traduit par la Rédaction]

Introduction

The purpose of this paper is to extend the range of appli-
cation of the traditional harvesting cost minimization model.
The traditional model is based on fundamental concepts de-
veloped during the course of more than 150 years of trans-
portation studies. Its earliest applications in forestry date to
the late 1920s. This early transportation research has been
described by Greulich (2003) but some more recent transpor-
tation research of relevance to the present work must be in-
troduced. A brief review of this pertinent research will open
the paper. Particular attention is given to a relatively un-
known optimization procedure and its application to transpor-
tation systems. Modifications to this procedure, required for
the current application, are then presented. Applications and
verification of this modified procedure follow and constitute
the body of the paper. A discussion of current model defi-
ciencies and future research directions concludes the paper.

Previous work

A previous paper in the Canadian Journal of Forest Re-
search presented an optimal location model for a single cen-
tral landing (Greulich 1991). The harvesting conditions being
modeled in the current paper are the same as those previ-
ously described. The primary focus of this paper is to extend
the single landing location optimization process to two land-
ings under similar modeling assumptions and harvesting unit
conditions.

Included in this previous publication were reviews of re-
lated work both in and outside of forestry. A search through
the recent transportation science literature suggests that there
has been no interim advance in location optimization theory
applicable to the above-described location problem in for-
estry. A recent paper by Valero Franco et al. (2008) exam-
ined the general location problem, cited old and current
publications from the transportation science and operations
research literature, and confirmed that treatment of the spe-
cific problem of interest to foresters has not progressed be-
yond that of the papers cited in 1991.
In this paper, the cost-minimizing simultaneous placement

of two landings will be investigated. A concept, fundamental
to the development that follows, is described in the seminal
papers of Cooper (1963, 1964). Leon Cooper is generally ac-
knowledged to be the originator of the alternate location and
allocation algorithm, hereafter referred to as the location–al-
location algorithm (LAA). Cooper’s applications of the LAA
primarily focused on discrete demand points. He did, how-
ever, address continuous demand regions in several publica-
tions (Cooper 1974; Katz and Cooper 1974, 1976; Cooper
1978a, 1978b). In their 1974 publication, Katz and Cooper
showed that the expected value of the distance from a point
to a random location described by any probability distribu-
tion defined over a planar region is a strictly convex function.
Parenthetically, it is noted that this proof is more general and
predates a corresponding proof for the uniform distribution
taken over any polygonal region given by Greulich (1991).
Cooper did not, however, extend the LAA to multifacility op-
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timization with continuous demand. It was Leamer (1968),
and later Cavalier and Sherali (1986), who applied Cooper’s
algorithm to the optimal location of more than one facility
serving a single convex polygonal region of uniform demand.
The limitations of these procedures in the forestry yarding
application have been previously discussed. These limita-
tions, found too restrictive for the one-landing model, are
now to be removed for a two-landing model.
In forestry, Gibson and Egging (1973) and Gibson and Ro-

denberg (1975) presented two of the earliest applications of
LAA modeling for multiple-landing selection. In their proce-
dure, a list of possible landing locations is specified by the
analyst and the centroids of the areas to be yarded are calcu-
lated. The solution process looks for the optimal assignment
of yarded-area centroids to a set of landings selected from
among a limited number of candidate locations. This model-
ing approach is referred to as “site-selecting location–alloca-
tion” by Love et al. (1988). Other forestry researchers who,
early on, used similar site-selecting LAA models were Dyk-
stra and Riggs (1977) in harvest planning and Hodgson and
Newstead (1978, 1983) in airtanker system analysis. The re-
cent work by Chung et al. (2004) and Contreras and Chung
(2007) showed the high level of development that has been
attained in the application of site-selecting LAA modeling to
timber harvest planning. Increased computational power has
greatly expanded the number of candidate locations for land-
ings that can be examined using these models. Increased
computational speed also permits a finer division of the
yarded area so that many criticisms against the use of cent-
roids no longer apply.
A second type of model used in harvest planning is the

“site-generating location–allocation” model (Love et al.
1988). The defining characteristic of these models in their
harvest planning applications is the freedom to locate central
landings at an infinity of points across an area or along a line
rather than restricting their location to a finite set of candi-
date points. The earliest formal models of central landing lo-
cation optimization were of this type done in continuous
space (Matthews 1942). Peters (1978) later significantly im-
proved this type of model by deriving and employing the an-
alytically correct expected yarding distance formula. The
landing optimization model of this present paper falls within
this latter category of site-generating LAA models. Contem-
porary continuous space location optimization models in for-
estry can now apply computer-based numerical solution
procedures rather than attempting to determine solutions
through analytical or graphical methods.

The optimization process
This section provides a brief overview of the optimization

procedure to establish the context for the applications that
follow. It provides limited mathematical detail and the reader
interested in additional mathematical development is invited
to consult the cited references.
The optimization process used in this paper follows the

conceptual outline of the LAA described by Cooper (1963,
1964). It is a two-step process that is initiated with user-
specified trial locations for the two landings. In the first
step, the two current landing locations are used to divide the
total area to be yarded. The total area is divided into two mu-

tually exclusive divisions such that any infinitesimal area
within a given division is closer to its corresponding landing
than the other. This is the area allocation step of Cooper’s
procedure. The second step is to relocate each landing within
its newly defined division. This facility-location step of
Cooper’s procedure minimizes the expected cost of transport-
ing turns to their respective landings given the current divi-
sion of the total area between the two landings. This two-
step process is repeated until there is no significant improve-
ment (decrease) in the total expected transportation cost for
the two landings.
Cooper’s LAA is designed to find facility locations or cen-

ters (landings in this application) that simultaneously satisfy
two conditions. First, the planar demand region (the area to
be yarded) is optimally divided so that each center has allo-
cated to it all potential demand locations closer to it than the
other. Clearly, the perpendicular bisector of the line segment
connecting the pair of centers serves to define these two divi-
sions. Second, within each division, the associated center is
located such that the expected transportation cost across all
potential demand locations within the division is at a mini-
mum.
A key assumption is that the transportation cost function is

the same for each center; to wit, it depends fundamentally on
the distance to the center and, most importantly, it does not
otherwise depend on the specific center to which transporta-
tion is provided.
If both landing locations are to be optimally located, the

two initial locations, provided by the user, must be different
and belong to the convex hull of the polygonal region(s) that
define the harvest unit. If one of the landing locations is
fixed and the other is to be optimized, then the fixed landing
location can be any point in the plane, but the initial point for
the landing to be optimized must be different and belong to
the convex hull. If neither landing location is to be opti-
mized, then the two distinct points may be located anywhere
on the plane.
The procedure used to implement Cooper’s LAA employs

rather basic mathematical techniques and a well-known opti-
mization algorithm. Given two landing locations, the perpen-
dicular bisector of the line segment connecting them is easily
determined analytically to a degree of precision limited only
by the computational precision of the computer. Likewise,
the points at which this perpendicular bisector intersects line
segments defining a polygonal region’s boundary can be ana-
lytically determined with comparable precision. The areas of
the two divisions can also then be delineated to machine pre-
cision using closed-form analytical relationships. This com-
pletes the area allocation step of the process.
Once the area has been optimally allocated between the

two landings, the location of each landing within its division
is optimized. This optimization procedure uses a modified
Newton’s method as described in a previous publication
(Greulich 1991). The characteristics of this procedure are
well known and thoroughly described in the previously cited
literature. This location optimization step, by changing land-
ing locations, improves (reduces) the expected transportation
cost for each division but vitiates the division boundary-de-
fining results of the preceding area allocation step. Hence,
the area allocation step must now be repeated with these
new landing locations.
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Iterative application of this two-step process is continued
until there is no significant decrease in the total expected
transportation cost for the two landings. By the nature of the
algorithm being applied, convergence to either a relative min-
imum or a saddle point is assured. Unfortunately, however,
there is no guarantee that the landing locations that are
found, even if not saddle points, will provide the lowest pos-
sible transportation cost. The landing locations found by the
algorithm are only guaranteed to meet first-order local condi-
tions for optimality; there may be multiple centers meeting
these conditions, some of which may have higher expected
costs than the globally optimal location. Convergence to spe-
cific landing locations, when there are multiple locations
meeting the necessary conditions for optimality, is deter-
mined by the user-specified initial points. Good judgment
and the use of alternative initial landing locations should pro-
vide a high level of user confidence that the landing location
(s) with the lowest possible cost has (have) in fact been
found.

Applications and verification
A two-landing optimization model was written in Fortran

to demonstrate the optimization process and its practical fea-
sibility. Verification of the model with its Fortran coding was
conducted using a separate program.

An illustrative example
The optimization procedure suggested in this paper will be

constructively illustrated with a relatively simple example. A
polygonal region (Fig. 1) is defined by a sequence of vertices
that are entered following a counterclockwise orientation. The
starting point of the traversing set of generated line segments
may be any one of the four vertices, e.g., starting with point
(1,2), the following points are entered in sequence: (8,1),
(4,3), and (5,9). The traverse then closes back on the begin-
ning point (1,2). The linear measurement unit of this example
and the following is the hectometre (hm).
The polygonal region in this example is not partitioned but

consists of one area of uniform turn-building and yarding
conditions; to wit, all turns are assumed to be uniformly and
independently distributed in probability across this area. The
partitioning of a region into separate areas with differing turn
densities is easily accommodated and will be demonstrated
with another example to follow.
Two landings are to be located and all turns found across

the entire area will be yarded to these two landings. It is de-
sired to determine the location of the two landings such that
the expected cost of yarding all turns is minimized. It will be
assumed in this example that the yarding cost for any turn is
simply its distance to the landing. In general, it is assumed
that the yarding cost can be approximated by a quadratic
function of the yarding distance to a landing. The cost of har-
vesting the logs is assumed to be independent of all landing-
related factors other than straight-line distance to the landing.
A landing-independent wander factor may be incorporated if
deemed appropriate. In this example and the following, the
wander factor will be set to 1, i.e., the skidder follows a
straight-line path between landing and turn location.
To start the optimization algorithm, the analyst specifies

two different points as initial locations for the landings. If

the location of both landings is to be optimized, then these
two initial locations must both belong to the convex hull of
the polygonal region(s), in this case the closed triangular re-
gion defined by the vertices (1,2), (8,1), and (5,9). One or
both of the initial landing locations can be fixed in place by
the analyst, i.e., not optimized. In this latter case, the fixed
landing location(s) can be any point(s) on the plane. Any
landing location to be optimized must be given an initial
point belonging to the convex hull that is different from the
initial point of the other landing. In this example, both land-
ing locations are to be optimized and their starting locations
for the algorithm have been user-specified as (4,7) and (6,3)
for landings labeled A and B, respectively (Fig. 1). The cost
equation coefficients are entered as 0.0, 1.0, and 0.0 for the
constant, linear, and quadratic terms, respectively.
Once the initial locations have been user-specified, the

LAA continues by allocating yarded areas to each landing.
This area allocation process is done by dividing the polygo-
nal region into two parts using the perpendicular bisector of
the line connecting the two landing locations (Fig. 1). All
turns across the harvest unit are to be taken to the nearest
landing as determined by this area allocation process. In this
example, the midpoint between the two landings is located at
(5,5), and the perpendicular bisector is found to intersect the
lines-of-traverse of the polygonal region at (4.2727,4.6364)
and (1.8000,3.4000). Of the total area within the polygonal
region, 13.5000 ha, the areas yarded to landings A and B
are 4.9455 and 8.5545 ha, respectively. The corresponding
expected yarding distances are 1.6873 and 2.6740 hm. At
the end of this first area allocation step of the algorithm, the
area-weighted average yarding distance is 2.3126 hm. Area is
here serving as a proxy for turns, since there is only one turn
density in this simple example and the density constant, turns
per unit area, need not be treated explicitly.
The next step in the algorithm requires the optimal (re-)lo-

cation of the two landings within the area divisions that have
just been defined by the area allocation step. An illustratively
informative procedure will be done prior to executing the lo-
cation optimization step. This procedure involves translation
followed by rotation of the polygonal region together with
the two current landing locations. As a first step, the mid-
point, (5,5), of the perpendicular bisector is made the origin
of the coordinate system. Next, a counterclockwise rotation
of 1.1071 radians (63.4349 degrees) places the perpendicular
bisector on the y-axis and landing A on the negative x-axis
(Fig. 2). With this reorientation of the polygonal region and
landing locations, it is now easy to describe and carry out
precalculations needed for the optimal location step of the al-
gorithm. Parenthetically, it is noted that this translation–rota-
tion operation is not needed for vertex projection onto the
perpendicular bisector but it is done here for purposes of de-
scriptive clarity.
Those turns falling within that portion of the total area fall-

ing to the left of the y-axis should be taken to landing A and
those falling to the right of the y-axis to landing B. To use
the location optimization algorithm, the coordinates for the
polygonal region shown in Fig. 2 and listed in Table 1 are
divided into two parts. This division is illustrated in Fig. 3
and listed in Table 1. Note that specification of these two
separate parts of the total area is easily done. For example,
identification of the area from which turns will be sent to

Greulich 229

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

N
IV

 O
F 

W
A

SH
IN

G
T

O
N

 L
IB

R
A

R
IE

S 
on

 1
0/

07
/1

4
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



landing A proceeds as follows. Start with the original se-
quence of points around the polygon, including the intercepts
between the perpendicular bisector and the traverse line seg-
ments (Table 1; Fig. 2 coordinates). All coordinate pairs in
this sequence for which the x-coordinate is positive are pro-
jected onto the y-axis by setting the x-coordinate equal to

zero. A similar procedure defines the area sent to landing B.
These coordinates defining the two separately yarded areas
are plotted in Fig. 3.
The location optimization algorithm given by Greulich

(1991) can now be applied separately to these two areas us-
ing their redefined coordinates as listed in Table 1. Gorski et

Fig. 1. Reentrant quadrilateral showing user-selected starting points for landings A and B and the area-allocating perpendicular bisector.

Fig. 2. Initial configuration of landings and allocated areas for the reentrant quadrilateral after translation and rotation prior to landing loca-
tion optimization.
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al. (2007) have described and justified this general optimiza-
tion procedure and mentioned its use for similar transporta-
tion problems in the context of the LAA. The initial landing
locations and their newly optimized locations are listed in Ta-
ble 1 and shown in Fig. 3. The areas yarded to landings A
and B, respectively, have not changed in this step but the ex-
pected yarding distances to the newly optimized landing loca-
tions are 1.1895 and 1.4128 hm. The new weighted average
yarding distance is 1.3310 hm, a substantial improvement
over that calculated after the preceding area allocation step.
By inverting the rotation and translation process, these

newly optimized locations and the polygonal region can be
moved back to their original coordinate grid. The algorithm
now continues by (re-)allocating the polygonal region using
the perpendicular bisector of these two new locations. This
alternating LAA cycle continues until the difference in the
weighted average yarding distances calculated following each
of the two steps meets the convergence criterion. For this ex-
ample, and the stated initial coordinates, the optimal loca-
tions for landings A and B are found to be (3.7958,5.6648)
and (3.4402,2.6481), respectively. Their yarded areas and ex-
pected yarding distances are 4.6609 ha and 1.0989 hm for
landing A and 8.8391 ha and 1.4209 hm for landing B. For

the total harvest unit, these locations yield a weighted aver-
age yarding distance of 1.3097 hm.

A more complex example
The example that follows presents operational conditions

that are closer to those that might be encountered in practice
when designing a harvest unit layout. While the unit is lo-
cated on flat, uniform terrain, the example does have an un-
even distribution of turns. Both landing locations will be
optimized for the unit. The costs of spur road construction
and use are not integrated into the model, but they will be
addressed through a separate optimization model. In this sec-
tion of the paper, the objective function is specified for the
general case, the harvest unit described, the harvesting cost
structure explained, modeling results presented, and a com-
parison made with single landing location optimization.

The general objective function
The objective function for the two-landing model is the

same as that used to optimize the location of a single landing
except that a second landing is now included and optimiza-
tion of the truck road related costs are addressed in a separate

Table 1. Coordinates of the reoriented quadrilateral and the two landing locations during the first location–allocation
algorithm iteration.

Figure 2 coordinates Figure 3a coordinates Figure 3b coordinates

Sequence of
points x y x y x y
1 0.894 4 –4.919 3 0.000 0 –4.919 3 0.894 4 –4.919 3
2 4.919 3 0.894 4 0.000 0 0.894 4 4.919 3 0.894 4
3 1.341 6 –1.788 9 0.000 0 –1.788 9 1.341 6 –1.788 9
Intercept 0.000 0 –0.813 1 0.000 0 –0.813 1 0.000 0 –0.813 1
4 –3.577 7 1.788 9 –3.577 7 1.788 9 0.000 0 1.788 9
Intercept 0.000 0 –3.577 7 0.000 0 –3.577 7 0.000 0 –3.577 7
1 0.894 4 –4.919 3 0.000 0 –4.919 3 0.894 4 –4.919 3
Landing locations before optimization –2.236 1 0.000 0 2.236 1 0.000 0
Landing locations after optimization –1.095 0 –0.906 2 1.485 6 –2.388 4

Fig. 3. Movement of (a) landing A and (b) landing B to their new, independently optimized locations.
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analysis. The notation, while more detailed, is consistent with
that given by Greulich (1991). An index k is used to label the
partitions within the harvest unit and the two landing loca-
tions are identified as A and B. The proportion of all turns
on the harvest unit to be found within partition k is denoted
as pk. The number of turns on partition k is mk so that pk =
mk/Smk. Every turn on every partition will be yarded to one
of the two landings, but it is likely that there will be some
partitions where turns are sent to both landings depending
on which one is closer. Since turns are assumed to be uni-
formly distributed in probability over the area Ak of each par-
tition, the expected proportion of the turns sent from partition
k to landing A is given by AkA/(AkA + AkB) with a corre-
sponding form for landing B. The expected yarding distance
for turns sent from partition k to landing A is denoted E
{rkA} with a similar form for landing B. The expected square
of the distance follows a similar format for each landing. A
separate wander factor wk may also be applied to each parti-
tion. Following Greulich (1991), the expected cost of yarding
a randomly selected turn from those to be sent from partition
k to landing A is calculated by an equation of the following
form:

½1� EfYCkAg ¼ b0k þ b1kwkEfrkAg þ b2kw
2
kEfr2kAg

with a similar equation for landing B. The objective function
is then given by

½2� MINfxA;yA ;xB;yBg
Z ¼

X
8k

pk
AkA

AkAþAkB

� �
EfYCkAg þ AkB

AkAþAkB

� �
EfYCkBg

� �

where the expected yarding cost from each partition to a
landing is based on integrating over that portion of the parti-
tion spatially allocated to the specific landing. In this formu-
lation of the objective function, the expected cost per yarded
turn is to be minimized by selecting the coordinate location
of landings A and B, here specified as (xA,yA) and (xB,yB),
respectively.

Example harvest unit conditions
A plan view of the harvest unit is given in Fig. 4 and its

associated data listed in Table 2. Based on timber stand con-
ditions, this unit has been partitioned into four mutually ex-
clusive divisions. Each partition is defined by a traverse, the
turning point coordinates of which are listed in the table.
This unit has a small interior area that will not be harvested,
but it is assumed that the skidders can pass through it unhin-
dered. There is also another area to be concurrently yarded
that is somewhat separated from the main harvest area. The
total area to be yarded is 22.5 ha in extent but turns are not
uniformly distributed over the entire area; it is for this reason
that the harvest unit has been partitioned. Within each parti-
tion, those turns found therein are uniformly distributed in
probability over the area of the partition. The total volume to
be yarded in this unit is 6750 m3. There is an existing road
system terminating at (7,8). This takeoff point will be used

to provide road access to the landings, and its optimal con-
figuration, which is to be discussed later, is shown in Fig. 4.

Harvesting costs for the example
There are three major cost categories, roading, yarding,

and truck hauling, that vary according to landing locations
within the unit. For these cost categories, the recent work by
Contreras and Chung (2007) was used as a reference.
For skidder cycle time, Contreras and Chung (2007) ac-

knowledged the contribution of Han and Renzie (2005). The
downhill skidding cycle time equation of Contreras and
Chung, obtained by modifying a regression model developed
by Han and Renzie, is used in this paper. (No cycle time
equation was provided for skidding on level ground.) Their
cycle time equation is a linear function of only yarding dis-
tance; no other factors, such as turn volume, are identified as
being significant in either of the two papers. The cost coeffi-
cients used in eq. 3 are obtained upon conversion of meas-
urement units and application of the equipment rental cost
used by Contreras and Chung.
For each partition k, the expected yarding cost per turn

will be calculated as

½3� EfYCg ¼ 5:6þ 3:046Efrg

Fig. 4. Plan view of the harvest unit for the more complex example
with the optimal landing locations shown along with the indepen-
dently optimized connecting truck road system.
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where the expected value of r is evaluated by integrating
over that portion of partition k yarded to a specific landing,
i.e., either A or B. The notation follows that of Greulich
(1991) and the indices for the partition and landing have
been dropped to simplify notation. The one-way yarding dis-
tance r is measured in hectometres for this equation and the
cost is in dollars per yarded turn. This cost equation could be
unique for each partition, but here, it will be assumed to be
the same for all four partitions. It should be noted, as a gen-
eral modeling restriction, that the yarding cost equation can-
not differ by landing destination. Comparing this specific
expected cost equation with eq. 1, it is observed that there is
no quadratic component, i.e., b2k equals zero for all k for
both landings.
In the yarding operation, it was assumed, also following

Contreras and Chung (2007), that the skidder yards 1.5 m3

per turn regardless of the partition in which it is working.
The total number of turns on the unit is then 4500 and they
are distributed as shown in Table 2.
The truck haul rate calculation is based on the truck cost,

speed, and capacity used by Contreras and Chung (2007).
The number of truck loads taken from a landing is the vol-
ume yarded to that landing divided by the truck capacity.
The trucking cost is incurred while traveling (both ways)
over a spur road segment, measured in hectometres, of length
Si. The total volume in cubic metres hauled over spur road
segment i is denoted Vi.
The spur road construction cost, using the lower range

given by Contreras and Chung (2007), is assumed to be
$1000/hm. For each road segment i, the total road construc-
tion and truck hauling cost is then calculated as

½4� TRCi ¼ ð0:06Vi þ 1000ÞSi

There is but one road standard to be used for this particular
spur road system regardless of the volume hauled. It should
be noted, however, that different road construction standards
are typically determined by the haul volume over a segment;
higher haul volumes can justify higher road standards. Proce-
dures for the analytical determination of the economic road
standard are available for those situations (Greulich 1997).
Here, however, the total cost of constructing and using the
haul-road system is the sum over all road segments of this
single TRCi equation. The development of two landings im-
plies that there will be at least two, and possibly three, road
segments built for nonredundant truck road access to the har-
vest unit landings.
No sensitivity analysis of the cost coefficients of eqs. 3

and 4 was done, but clearly such an evaluation is possible.
Caution is warranted, however, in changing some parameters
that go into the calculation of the cost coefficients. For exam-
ple, if the yarded volume per turn is changed, it will change
the number of turns to be collected at a landing. A change in
turn volume will also change the yarding cycle time and that
relationship, which must be known for a valid sensitivity
analysis, is not specified in the cited references. Likewise,
changes in truck haul volumes will have an unspecified im-
pact on truck speeds, and hence the hauling cost. These inter-
related parameter values are exogenously determined and any
corresponding sensitivity analysis is outside the scope of this
presentation.

Modeling results for the example
Starting from a variety of different locations, there appears

to be only one point-pair [(xA,yA),(xB,yB)] of coordinates that
meets optimality conditions: [(1.2627,5.2406),
(5.4038,4.2688)]. An example of results typical of the itera-

Table 2. Boundary coordinates, area, proportion of all turns, and wander fac-
tor for each partition of the more complex example.

Coordinates

Partition
number k xki yki Area Ak (ha)

Proportion
of turns pk

Wander
factor wk

I 0 6 3.00 0.2 1.0
4 8
1 8

II 1 2 4.00 0.3 1.0
2 4
2 5
0 6

III 5 1 13.00 0.1 1.0
4 8
0 6
2 5
3 5
4 3
2 5
2 4

IV 6 2 2.50 0.4 1.0
6 4
5 7
5 4

Total 22.50 1.0
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tive optimization process is given in Table 3. The iterative
process was halted when the objective function failed to de-
crease by more than 1.0 × 10–10. A Microsoft Fortran com-
piler (version 5.0) was used and the double precision
program ran in under 0.01 s on an Intel Pentium 3.40 GHz
platform with a Microsoft XP version 2002 operating system.
The value of the objective function at this solution is
$9.7729/turn giving a total cost of $43 978 for yarding the
entire unit. The partition areas yarded to landing A are, in
numerical order, 3.0000, 4.0000, 7.3519, and 0.0000 ha. For
landing B, the respective partition areas are 0.0000, 0.0000,
5.6481, and 2.5000 ha. These yarded areas with their turn
counts, and associated volumes, provide an estimate of the
total truck haul volume coming off each landing, 3757 and
2993 m3 for landings A and B, respectively. Construction
and use cost for road segments originating at landings A and
B are, respectively, $1225.40 and $1179.60 per hectometre of
road. If the two haul volume streams coming off the two
landings are brought together and hauled over a common,
third road segment, the cost for that segment is $1405.00 per
hectometre of road. With this information, an optimal spur
road system that connects the takeoff point with the two
landings can be determined analytically (Greulich 1995,
1999). This independently run appended procedure deter-
mines that the construction of three road segments with a
junction point located at (5.0328,5.3106) will yield an opti-
mal estimated cost of constructing and using the spur road
system of $10 607. The total estimated cost for the harvest
unit of roading, yarding, and truck hauling under the given
conditions is then $54 585.

Comparative analysis
It is instructive to compare the foregoing results with those

obtained using an earlier program that finds the optimal loca-
tion for a single landing (Greulich 1991). Using the same
cost structure, the following results are obtained for this unit.
The optimal location of a single landing, considering only the
yarding cost, is at (3.1141,4.9782) and has a cost of $59 388.
Connecting this single landing with the road takeoff point
costs $6916, which gives a total roading, yarding, and truck
hauling cost of $66 304 for the harvest unit.
This earlier model permits the simultaneous optimization

of roading, yarding, and truck hauling costs. By recognizing
and accommodating the trade-off between moving logs via
skidder versus truck, it is possible to reduce the combined
cost of the two operations. This simultaneous optimization
process yields a total yarding and roading cost of $65 952
with the landing located at (3.6165,5.1417). It has been as-
sumed here that both roading and hauling costs and those of
yarding are incurred by a logger who is trying to minimize
the total cost of these three activities. The total savings due
to joint optimization is $352, less than one half of one per-
centage of the total cost. This gain is obtained by moving
the landing about 53 m. Its location is now closer to the
road takeoff point, a move that increases the average yarding
distance but reduces the truck haul distance for a net savings.
The current two-landing model is unable to simultaneously

optimize roading, yarding, and truck hauling operations. The
relatively small gain noted in the one-landing model due to
this trade-off would suggest that this issue may be of minor
financial importance, but it should be kept in mind when ex-T
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amining results provided by the two-landing model. Another
consideration would be an induced curvilinearity and shifting
of the dividing line between the two landings. This curvili-
nearity and shifting of the boundary is a consequence of dif-
ferent truck hauling costs for the two landings. These cost
differences arise from the different truck haul distances for
the two landings. Different road standards, when they exist,
would also impact the degree of departure from the bisecting
straight line that has been assumed to divide the yarded area
between the two landings. This topic will be explored in
more detail later in the paper.
A rather substantial reduction in total roading, yarding, and

truck hauling cost has been achieved through the use of two
rather than one landing on this particular unit. The total sav-
ings is $11 367, or a cost reduction of about 17%. This sav-
ings is gained through the reduced cost of yarding, which
drops from $59 729 to $43 978. The total road construction
and use cost increases from $6223 to $10 607 but this is
clearly a favorable trade-off.

Model verification
Using formulas provided by Jeffery and Dai (2008), a sec-

ond program1 was written to numerically estimate first- and
second-order optimality conditions at any point-pair. For the
reentrant quadrilateral, the usual first-order necessary condi-
tion was satisfied, i.e., the partial derivatives were found to
be equal to zero. Determinants of the principal minors of the
Hessian matrix were calculated and, using standard diagnos-
tic patterns (Taylor and Mann 1983), the definitive classifica-
tion of the point-pair as a cost minimizing location was
made. This test, as written for this application, only applies
when both landing locations are being optimized.
The complex example of the previous section also pro-

vided additional verification of the two-landing model results.
The positive sequence of determinant values for the four
principal minors of the Hessian matrix confirmed that it is in
fact a minimum point.

Discussion
The site-generating LAA model of this paper addresses the

landing location problem using continuous spatial definition
and numerical optimization techniques. There are deficiencies
in the model that may, under certain conditions, restrict its
value. A review of some of the more notable deficiencies
leads naturally into some final thoughts on future work with
models of this type.

Deficiencies of the current model
There are deficiencies in the current two-landing model

when compared with the one-landing model. Among the
more notable deficiencies are the failure to guarantee that a
global optimum will be found, the lack of simultaneous opti-
mization of the roading, yarding, and truck hauling proc-
esses, and, related to this second issue, the use of a
perpendicular bisector to divide the two yarding areas.

Global optimization
The search for optimization procedures that can guarantee

a global optimum for nonconvex problems is an area of ac-
tive theoretical research by mathematicians. Unlike the one-
landing optimization process, there is no current procedure
that can generally provide absolute assurance that a global
optimum has been found for the multiple-landing problem
described in this paper. Accordingly, recourse has been made
to a standard heuristic practice whereby the user is encour-
aged to use professional judgement in selecting a variety of
starting points for the optimization process. If more than one
local extreme point is found, the user can then select that one
for which the lowest value is attained. In most forestry appli-
cations, the user-directed selection of starting points by a pro-
fessional with knowledge of on-the-ground conditions is
likely to be preferable to an automated selection heuristic
such as that employed by Cavalier and Sherali (1986). While
global optimization of nonconvex problems is a formidable
theoretical problem, it seems doubtful that it will present a
serious impediment to finding solutions that are of practical
assistance in forestry applications.

Simultaneous yarding and trucking optimization
In the one-landing optimization procedure, the cost of

building and using a truck road may be simultaneously opti-
mized in conjunction with the cost of yarding. An explicit
economic trade-off can be made between moving the logs by
skidder and truck. The two-landing model does not currently
permit this economic trade-off between the two modes of
transportation; each phase of the transportation process must
be optimized separately. Determining the optimal nonredun-
dant road network for multiple landing locations is, itself, a
challenging problem; integrating the two issues into a simul-
taneous optimization process is an even more ambitious task.
In the case of the takeoff and two-landing truck road problem
of this paper, well-established optimization procedures are
available (Greulich 1995, 1997, 1999). This understanding of
the road network optimization process makes its eventual
successful merger with the yarding optimization process ap-
pear quite promising in the two-landing case. The relative
importance of this integrated approach to the optimal landing
and road location decision is unclear, however. The compara-
tive analysis of this paper done with the more complex, and
realistic, cost inputs of Contreras and Chung (2007) seems to
suggest the likelihood of a relatively significant movement of
landing placement due to this trade-off with, albeit, only a
minor reduction in cost. In this one-landing case, a displace-
ment of 53 m was observed with a cost reduction of less than
one half of one percentage of the total. It is speculated, how-
ever, that when optimizing the location of multiple landings,
the individual landing displacements may not be quite this
large. Only future research will provide a definitive answer
to this issue.

Curvilinear division of yarding areas
The perpendicular bisector unambiguously defines the

optimal allocation of the total area between the two landings,
i.e., minimization of the yarding cost for both landings re-
quires that turns be taken to the nearest landing in all cases.
In fact, the transportation cost function can be any analytic
function and, as long as it is the same cost function for both

1Executable files of this program and the optimization program itself may be downloaded from the following Web site: http://faculty.washing-
ton.edu/greulich/Research.htm.
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landings, the perpendicular bisector defines the two separate
yarding areas. The relevant conditions, for the purposes of
this paper, are that the cost of yarding, after perhaps taking
into account local turn-building conditions, is only a function
of the distance to a landing and that it is the same function
for each landing. If, however, the cost equations for trans-
porting any specific turn from its location in the harvest unit
to the mill differs for the two landing destinations, then the
area-dividing curve departs from this straight line and a cur-
vilinear partition boundary may be indicated for total cost
minimization. Returning to the more complex example of
this paper, it is observed that the assumptions for the use of
the perpendicular bisector have been violated. At the identi-
fied “optimal point”, the truck haul distance from landing A
to the road-bifurcating junction point is greater than from
landing B to that point. One cubic metre of wood taken
from landing A incurs a higher roading and hauling charge
than wood from landing B. This roading and hauling cost dif-
ferential means that the boundary line between the yarding
areas should be curved and also offset from the bisecting
point on the connecting line between landings A and B.
Early work addressing a similar issue was done by Launhardt
(1885) and Cheysson (1887).
Design of the transportation system should be guided by

how roading, yarding, and hauling costs will be paid. It has
been generally assumed in this presentation that all of these
costs will be borne by a vertically integrated cost-minimizing
harvesting operation. Very specifically, amortized haul-road
design and construction costs, as well as road maintenance
costs, are applied against the volume hauled over each road
segment. If these haul-road costs are otherwise assigned, in
whole or part, then operational behavior, and hence related
transportation system design decisions, will depart from
those generally envisioned in this paper. The reassignment of
truck hauling costs would have a similar, if generally more
moderate, impact on design of the transportation system.

Future directions in model development
A high research priority is the extension of the current

model to handle the optimization of more than two landings.
The large cost reduction seen with the use of two landings
rather than one in the cost-realistic example of this paper
suggests that determining the optimal number of landings for
a harvest unit should be a major research priority. By con-
trast, the same example suggests that determining the precise
optimal location of landings provides a relatively small total
cost reduction. Spatial relocation of a single landing in re-
sponse to a trade-off with roading and hauling costs was
quite large but it did not give a significant reduction in total
cost. It appears that the harvesting cost function may be rela-
tively flat around the optimal point and that landing location
(s) need not be precisely determined to realize near-optimal
costs.
If the above conclusions based on the very limited results

of this paper are essentially correct, it would suggest that a
somewhat lower priority might be given to developments
that impact optimal landing placement, especially if that spa-
tial impact is limited. Included among these model develop-
ments of lower priority might be inclusion of minor barriers
to skidder movement, the trade-off between skidding versus
truck hauling, curvilinear boundaries between yarded areas,

and minor constraints on landing and (or) road locations.
Harvest unit conditions can certainly be envisioned where
these particular elements will have a significant impact on to-
tal cost as well as optimal landing location, but how preva-
lent are these conditions within the collection of likely real-
world harvest areas for which this model might be applied?
That determination should help establish future research pri-
orities.
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