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Timber harvesting operations often employ continuous landings on or along truck road right-of-ways. During
the harvest-unit design process forest engineers describe the spatial distribution of turns with respect to a proposed
landing by distribution parameters such as average yarding distance and average yarding slope. In this two-part
paper these parameters and others are derived for a continuous landing model. In this first paper, parameters are derived
and applied to a continuous landing located on or along a road center-line tangent. In the second paper, a similar devel-
opment is applied to a continuous landing located on or along the circular curve of a road.

GreuLicH, F.E. 1994. Turn-location parameters for a continuous landing model. I. Road tangents. Can. J. For. Res.
24 : 1503-15009.

Les opérations de récolte de bois d’oeuvre utilisent souvent des jetées continues sur les emprises de chemins de
camionnage ou le long de celles-ci. Durant le processus de conception de I'unité de récolte, les ingénieurs forestiers
décrivent la distribution spatiale des virées relativement a une jetée proposée par des parametres de distribution
tels que la distance moyenne et la pente moyenne de débardage. Dans cette communication en deux parties, ces
parametres ainsi que d’autres sont dérivés pour un modele de jetée continue. Dans cette premilre partie, les paramétres
furent dérivés puis appliqués a une jetée continue située sur une tangente 2 la ligne centrale d’une route ou le long
de cette tangente. Dans la seconde partie, un développement similaire est appliqué a une jetée continue située sur la
courbe circulaire d’une route ou le long de cette courbe.
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Introduction

A landing is a collection point to which logs are yarded
pending secondary transportation (McCulloch 1958). Most
landings can be classified as either centralized or continuous
depending upon their spatial configuration (McGonagill 1978).
As the names imply, centralized landings are relatively small,
compact areas when compared with continuous landings.
Centralized landings are spaced at intervals along the length
of a truck road passing through a cutting unit. Continuous
landings, however, may extend along the entire length of
the road as it passes through the cutting unit.

The accurate appraisal of primary transportation costs for
a cutting unit depends in part upon the identification and
accurate evaluation of relevant physical factors. Innovative
research begun during the 1920s in the western United States
led to landmark publications in American forest engineering
(Krueger 1929; Bradner et al. 1933; Brandstrom 1933;
Brundage et al. 1933). These studies confirmed distance
and slope from stump to landing as key determinants of
yarding productivity. Methods by which these factors could
be estimated and employed in cost estimation and subsequent
optimization of logging operations were developed and pub-
lished by these early researchers. The development and pub-
lication of a rigorous theoretical basis for these procedures
was to come later. Matthews (1942) served as a focal point
for development of the theory. This readily available textbook
contained formally developed models and served to stimu-
late research. Suddarth and Herrick (1964) published an
alternative average yarding distance model for centralized
landings. Subsequent research then led to the development
and application of some very general and practical models.
The current status of this work on centralized landings has
recently been described elsewhere (Greulich 1992).

The analysis of continuous landings has not received a
comparable level of critical examination nor has its devel-
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opment proceeded apace of that for centralized landings.
Unlike Matthews’ treatment of centralized landings, there
appears to be general agreement that the analytical proce-
dures collected and presented in his textbook for continuous
landings are generally correct. Over the past 50 years, how-
ever, logging and its operational environment have changed,;
so also has the planning technology available to the forest
engineer. The assumptions and procedures of Matthews’
textbook are now too restrictive.

The purpose here is to extend the scope of timber har-
vesting theory as it pertains to the evaluation of continu-
ous landings. Previous assumptions will be relaxed, new param-
eters and their calculating formulas will be given, and new
procedures will be presented for faster as well as more accu-
rate evaluation of settings with continuous landings. In this
paper the case of a continuous landing located along a road
tangent will be examined. In a companion paper the case
of a continuous landing located on a curve is considered.

Road tangents and continuous landings

After presentation of definitions, assumptions, and some
minor preliminary analysis, a single geometric element (the
trapezium) will be examined. Results obtained from this
elemental analysis and the engineer’s coordinate area for-
mula are then combined. The result is a very general and
efficient procedure for the calculation of average yarding
distance and other turn-location parameters. Average yard-
ing slope and the impact of adjustments to straight-line
yarding distance are subsequently examined. This first paper
concludes with two examples.

Preliminaries

Model definition is best provided within the context of
on-the-ground operational conditions that the model attempts
to describe. The appropriateness of the model’s application
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FiG. 1. Plan view of a portion of the cutting unit as delineated by a sequence of directed line segments. The correct orientation

of the road center-line tangent vector is also illustrated.

to any specific operation should be judged by the degree

to which the following assumptions are approximated:

(1) The ground surface of the cutting unit is described by a
well defined region on a plane. The road tangent also lies
within this same plane. (The plane need not be horizontal.)

(2) Turn locations are described by points on the planar
region. These points are uniformly and independently
distributed across the projected horizontal area of the
region.

(3) For any selected turn a straight line describes the route
followed during the yarding cycle. The yarding cycle
starts and ends at the point on the road nearest the turn
location.

The region representing the harvest cut area is “traversed”
by a sequence of straight line segments (Fig. 1). The polyg-
onal region thus defined may be both complex and non-
connected. The coordinates of the ith turning point of this
boundary traverse are given by the position vectors B,

(1] B, = i=12..,N

If coordinates of two arbitrary points on the road center line
are given by position vectors T, and T,, then a road tan-
gent vector, T, may be calculated
[2] T=T,—-T,

The polygonal region must lie on or to the left of the road
center line. Subscripting of the two road center line posi-
tion vectors is to be determined by this criterion. Left and
right sides of center line are here defined by occupying
centerline position one while facing position 2.! If a road
tangent passes through a cutting unit it effectively divides that
area into two parts. The two parts are analyzed separately

exchanging subscripts on the road center line position vec-
tors as required.

For each of the N courses of the boundary point traverse
calculate the corresponding course vector C;:

[3] C,=B,, — B fori=1,2,..,Nand By, = B,
Calculate the unit normal vector of the plane, Uy, by select-
ing from the set {C;li = 1, 2, ..., N} any two noncollinear
course vectors C, and C; then
C, x C,

IC, x C}

where the cross product indicates the vector product opera-
tion. Orient this normal vector so that it points upward; i.e.,
if the z component is negative change the sign on the vector.

The cosine of the angle between the plane of the ground
surface and the horizontal plane is given by

[5] cos() = Up-e4

where the dot product indicates the scalar product opera-
tion, and by definition

0
6] e =10
1

The percent slope, S, of the plane is calculated as

[4]  Up=

7 S =100 tan[cos™ (Up-e3)]

Having obtained these preliminary results the development
will now focus on a single geometric element. One line seg-
ment of the traverse is isolated for examination. The imme-

'Note the unavoidable departure from the usual road engi-
neering convention with regard to left and right of center line.
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Fig. 2. The geometric element (trapezium) used for turn location parameter estimation. The view is perpendicular to the ground

surface.

diate goal is to obtain a general formula for the expected
value of the yarding distance raised to any positive integer.

The trapezium
Consider the single, arbitrarily selected traverse course
extending from boundary point i to point i + 1 (Fig. 2).
The boundary points are projected on the road tangent. The
location of projected boundary point i is given by a posi-
tion vector B; calculated as
X
(8] B, = B, + 3U, = |3,
2
where U, the unit vector perpendicular to the line, is
given by
x T
9 U =Xl
1Up x Tl
and
[1o0] %,=(T, — B)-U_

Similar calculations yield B, , as the position vector of pro-
jected boundary point i + 1. The position vector for any
point along the course from i to { + 1 may be written as

[11] B =B, + )\(BH-I - B)

for some 0 < A < 1.
with the position vector for the corresponding projected
point on the road tangent written as

[12] B =B, + \(B,, - B)

Define the vector P(\) as

(13 PN\ =B -B

After substitution, and some minor algebra,
[(14]  P(\) = D(MU,

where the scalar function D(\) is given by
(151 D) =[AC; + B, — T,]-U.

then

[16] NIPOW)II = D(M\)

It may be shown without difficulty that the projected
horizontal area, A, of the trapezium (element i in Fig. 2) is
given by

1
[171 A =B, — Bllcos() [DO\) dr
0

Evaluation of eq. 17 yields

D(1)? - D(0)?
2C;-U,

Consider now a random uniform distribution of points over
the horizontal region A. Each random point will be pro-
jected vertically onto the plane surface and the minimum
straight-line slope distance, 3, to the road tangent calcu-
lated. The expected value of this random distance raised to
the ath power is given by

[18] A =[IB,, — B, cos(¥)] [

a__l a
[19] E{B}—A /{8 dA

The differential horizontal area by which 8“ is weighted
[20] dA = 1IB,, — B, cos() d& d

is substituted into eq. 19 and the following expected value
formula is obtained

10Oy _

[ | 1By = Bill cos(y)3® d3 dr

21  EpY =22

A
Evaluation of this formula yields

r o) D(l)a+2 _ D(O)a+2
(@ + D@+ 2| D*- DO

In the case where D(0) = D(1) an examination of the limit

yields
la +1

[22a] EP*} =

[22b]

Defining the counterclockwise direction to be positive the
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signed area of the horizontal region A of the projected trapez-
ium is calculated by the coordinate area formula as

(= X i1 = i) + iy = %)y — 3]
2

This formula may be derived from Green’s theorem for the
calculation of the area of a plane region as a line integral over
the boundary. In this case the boundary consists of straight
line segments. The use of this formula facilitates the evaluation
of complex nonconnected polygonal regions (Greulich 1992).

Using eqs. 22 and 23 a procedure for the analysis of com-
posite regions can now be developed.

[23] A=

Composite regions

For each traverse line segment a value may be calculated
from egs. 22 for E(8“), hereafter also denoted EDa,. Likewise
the signed horizontal area, A;, may be calculated from eq. 23.
Applying the composite area rule (Suddarth and Herrick
1964) the expected value based on the entire region enclosed
by the traverse is then computed as

4] Epa= 24 EP%
P

The average yarding distance may be found from this formula
by setting @ = 1 and the expected square of the yarding dis-
tance by setting a = 2. The variance of the yarding distance
is then calculated as

[25]  Var(8) = ED2 — EDI1?

This last result is of considerable practical interest in the
quantification of the uncertainty surrounding predicted
values. The use of pertinent engineering techniques such as
the first-order second-moment method assumes that such
variances or their estimates are available.’

Higher powers of yarding distance, such as its cube, ED3,
may also be needed upon occasion. When approximating
strongly nonlinear production or cost relationships using a
Taylor series, higher order terms may be statistically justified
during regression analysis (Neter et al. 1990). Under such cir-
cumstances, a forced linear approximation during develop-
ment of the equation, followed by use of only the average
yarding distance parameter, ED1, in the estimation of pro-
duction on a setting, may lead to serious prediction error.

Average yarding slope and distance adjustments

Because all turns face the same slope when yarded to the
road the average yarding slope, AYS, may be easily obtained
from the components of the vector U

xu

[26] UL =|y
Zu

that is

[27]  AYS = m;-l-og-f—"l,?
[x3y + vyl

It has been assumed in making this estimate that yarding
follows a straight line to the nearest point on the road tan-
gent. Experience has shown that in the case of tractive yard-
ing systems some adjustment of this straight line distance is

%A good description of the use of first and higher order moments
of random variables in conjunction with truncated Taylor series
expansions of functions is given by Ang and Tang (1975).
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FiG. 3. The ground profiles of the constant slope yarding path
before and after the incorporation of a wander factor. Variables
associated with profile components are given.

required (Hughes 1930; von Segebaden 1964). The usual
approach is to assume that the actual distance traveled is
proportional to the minimum straight line distance to the
road. The constant of proportionality, w, is sometimes referred
to as the wander factor and it is here assumed constant for
the given region

(28]  E{(wd)'} = wE{8"}

On steep ground a vehicle may follow a distinctly differ-

ent path when loaded versus unloaded. Under these cir-

cumstances outhaul and inhaul distances are treated sepa-
rately using different wander factors.

The impact of the wander factor on other turn-location
parameters must also be considered. Another parameter of
particular interest when evaluating tractive yarding systems
is the average yarding slope. The analytical treatment of
yarding slope is complicated by the introduction of a wan-
der factor. One promising approach involves modification
of the third assumption as given in the preliminary section.
The modified assumption is:

(3") For any selected turn paths of constant grade describe the
routes followed during outhaul and inhaul elements of
the yarding cycle. The yarding cycle starts and ends at
the point on the road nearest the turn location.

The slope distance traveled by a single randomly located

turn from its pickup location in the setting to the road is

given by

[29] & =wd

where 3 is, as previously defined, the straight line slope

distance to the nearest point on the road. If the difference in

elevation between the turn pick-up point in the cutting unit
and its drop-off point on the road is denoted , then the
percent slope faced in yarding this turn is

100 ¢

[(wo)? — (2]7?

Some algebraic manipulation using the variables defined in

Fig. 3 leads to the result

{311 100 tan(d’) = [100 tan(d))][ }

1
w

(]

It is noted that for small values of {/p (i.e., tan(¢)) and (or)
values of w close to 1, the following approximation may
be used

[32] 100 tan(¢’) = l: }[100 tan(¢)]

1
w

[30] 100 tan(d’) =
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FiG. 4. Plan view of the cutting unit for example 1.

This approximation is extremely good; for example, with
100 tan(d) = 30% and w = 1.5, the approximation yields an
estimate of 20.0 versus an exact value of 19.5 from eq. 31.
There seems little practical reason for not using this con-
venient, easily remembered approximation in most applications.
Finally then, by extension, the wander-factor-adjusted AYS
for the setting may be estimated by simply dividing the straight
line AYS of eq. 27 by the wander factor. As previously men-
tioned, the adjusted AYD and AYS may differ for outhaul and
inhaul because of different wander factors.

Examples

Two hypothetical examples are presented to illustrate the
general procedure and to provide test cases for use during
computer program development. The second example is
somewhat more complex than the first and touches on some
important ancillary issues relating to model application.

In the first example, a climbing road crosses a uniform side-
hill slope (Fig. 4). A cutting unit has been located below the
road. A length of road tangent will serve as a continuous land-
ing for a cable yarding operation. Input coordinates for the
continuous landing model are listed in Table 1. Based on these
coordinates, the road is estimated to have a grade of 7.45%, the
ground slope is estimated as 41.7%, and the cutting unit is
estimated to enclose an area of 390 000 square units.

The analytical procedures of this paper are used to provide
turn-location parameters for the model. Some of these param-
eters are:

ED1 (AYD) 3.58 X 10?
ED2 1.50 x 10°
ED3 6.96 X 107
ES1 (AYS)  4.08 x 10!

These model parameters represent estimates of the actual

TaBLE 1. Turning point coordinates of the polygonal region
and the coordinates for two points on the road tangent for
example 1

Coordinates

i X Yi Z;

300 1000 450
700 400 350
1300 100 400
1100 700 550
700 1000 550
800 1000 575
200 1300 525

Traverse turning point number

Road point number

B — B L) —

on-the-ground parameter values. No wander factor adjustment
of yarding distance and slope is indicated in the case of
most cable systems.

The second example consists of a contour road that has
been located along a break in the ground slope (Fig. 5).
Here the road passes through the cutting unit. The steeper
portion of the cutting unit lies above the road. A tractive
yarding operation uses the road right-of-way as a continuous
landing, decking logs above and below the road. Considera-
tion of factors such as stocking and silvicultural prescriptions,
log bucking rules, and tractive yarder capability leads to a
partitioning of the cutting unit into three homogeneous areas.
Partition boundaries are established such that other factors
known to significantly affect yarding productivity are kept
constant within each partition. As previously noted, parti-
tioning must also separate otherwise homogeneous areas lying
on opposite sides of the road center line.

Upon fitting the model, the spatial coordinates defining
cutting unit partitions and road location are obtained (Table 2).
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Fig. 5. Plan view of the cutting unit for example 2.

TaBLE 2. Turning point coordinates of the partitioned region
and the coordinates for two points on the road tangent for

example 2
Coordinates

i X Yi i
Partition 1: traverse turning 1 1000 200 580
point number 2 1200 800 560
3 1000 1200 580
3a 800 1200 600
8 800 400 600
9 800 200 600
Partition 2: traverse turning 8 800 400 600
point number 3a 800 1200 600
4 600 1200 680
5 200 1000 840
6 200 800 840
7 600 800 680
Partition 3: traverse turning 11 600 600 680
point number 12 200 600 840
13 400 200 760
10 600 200 680
Road point number 1 800 400 600
2 800 1400 600

For each partition, unadjusted turn location parameters are

calculated (Table 3).

INustrative ancillary data for this example are given in

TasLE 3. Selected turn location parameters for the model
of example 2

Partition
R, R, R,
ED1 (AYD) 1.56 X 10? 2.51 X 10° 3.83 X 10?
ED2 337 X 100 9.67 x 104 1.57 x 10*
ED3 839 x 10°  4.40 x 107 6.86 X 107
ES1 (AYS) 1.00 X 10! —4.00 x 10! —4.00 x 10!
TABLE 4. Ancillary data for example 2
Partition
R, R, R,
Area 300 000 240 000 120 000
Turns per unit area 0.001 0.002 0.003
Wander factor
Inhaul 1.25 1.50 1.50
Outhaul 1.25 1.75 1.75

Table 4. When appropriate, the parameters of Table 3 can be
combined to form a weighted average using these ancillary
data. For example, the wander factor adjusted outhaul AYD
for the cutting unit is 469 with an associated AYS
of —15.5%.
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Concluding statement

Yarding cost evaluation requires accurate information
about turn location. Distance and slope to the landing during
yarding are two random variables of particular interest.
Formulas yielding summary distribution parameters of these
two random variables and others have been developed for an
elemental geometric shape, the trapezium. These latter for-
mulas, when joined with the engineer’s coordinate area for-
mula, yield a very general procedure for the analysis of
continuous landings. Computer implementation and sub-
sequent user application are extremely easy. In this regard it
is anticipated that forest engineers, already familar with the
use of these contemporary evaluation techniques for cen-
tralized landings, will find the similar procedures of this
paper readily accessible and of immediate utility. Yarding
systems where a wander-factor adjustment is applied to the
straight line yarding distance have also been considered.
Under a uniform grade assumption, simply dividing aver-
age yarding slope by the wander factor provides a very
accurate adjustment. In the second of these two papers, con-
tinuous landings along circular curves are examined and
similar estimation procedures developed.
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Timber harvesting operations often employ continuous landings on or along truck road right-of-ways. During
the harvest-unit design process forest engineers describe the spatial distribution of turns with respect to a proposed
landing by distribution parameters such as average yarding distance and average yarding slope. In this two-part
paper these parameters and others are derived for a continuous landing model. In the first paper, parameters were derived
and applied to a continuous landing located on or along a road center-line tangent. In this second paper, a similar devel-
opment is applied to a continuous landing located on or along the circular curve of a road.

GREULICH, F.E. 1994. Turn-location parameters for a continuous landing model. II. Circular curves. Can. J. For.
Res. 24 : 1510-1515.

Les opérations de récolte de bois d’oeuvre utilisent souvent des jetées continues sur les emprises de chemins de
camionnage ou le long de celles-ci. Durant le processus de conception de I’unité de récolte, les ingénieurs forestiers
décrivent la distribution spatiale des virées relativement a une jetée proposée par des paramétres de distribution
tels que la distance moyenne et la pente moyenne de débardage. Dans cette communication en deux parties, ces
parameétres ainsi que d’autres sont dérivés pour un modéle de jetée continue. Dans la premicre partie, les parametres
furent dérivés puis appliqués a une jetée continue située sur une tangente a la ligne centrale d’une route ou le long
de cette tangente. Dans cette seconde partie, un développement similaire est appliqué & une jetée continue située sur
la courbe circulaire d’une route ou le long de cette courbe.

Introduction

In the first installment of this two-part paper a turn-location
model was developed for a continuous landing along a road
tangent. Turn-location parameters such as average yarding dis-
tance (AYD) were derived for continuous landings long a
road tangent. Modern estimation procedures for composite
areas were applied. These contemporary procedures, which
offer great flexibility and general application, have the addi-
tional advantage of being readily translatable into computer
programs. These programs are exceptionally easy for others
to understand and use. Theoretical development and practical
extension of the theory now turn to a continuous landing
along the circular curve of a road.

Circular curves and continuous landings

Within geometric road design practice, one of the sim-
plest descriptions of the horizontal projection of the road
center line is provided by using a sequence of tangents and
circular curves. Even roads of nongeometric design can be
approximated for evaluation purposes using these two design
elements. In point of fact, any road center line can be approx-
imated to an acceptable level of accuracy using only straight
line segments if they are appropriately spaced and of suffi-
cient number. However, during the development that fol-
lows it will become clear that two considerations motivate
the introduction of circular curves. First, there is the con-
ceptual advantage that comes from enhanced model simi-
larity to the actual road description. Second, and of more
practical importance, is the greater accuracy that is achieved
with far less effort.

The paper starts with a very simple and direct analytical
development for circular curves. Calculating formulas for
two specific geometric elements including computational
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procedures for their use in composite area evaluation fol-
low. Examples illustrating the use of these procedures and
some final thoughts on future research directions conclude
the paper.

General development

A more restrictive first assumption than previously stated
will be employed in the development that follows. Analytical
development and application of the model will now be
restricted to harvest areas and road design elements lying
in the horizontal plane. All other assumptions including the
third, as modified to allow circuitous yarding paths to the
nearest point on the road, will remain the same.

By assumption the harvest-area boundary is definable by
an oriented piecewise smooth closed curve. The orientation
is such that the harvest area is kept to the left of the line
of traverse along the curve. This region is partitioned as
necessary with subregions classified as either inside, R, ..
or outside, R 4 the circular curve (Figs. la, 1b, and 2).
Region boundaries lying either on or concentric with road
center lines are defined by circular arcs.

At this point a very different approach is taken to the
development of relevant equations and analytical proce-
dures. Much tedious developmental detail is avoided by
utilizing a geometric relationship that permits the use of
previously derived and published results.

In Figs. la and 15 a point selected at random within the
region of interest is shown. For points distributed with uni-
form probability over the region the expected shortest straight
line distance to the road center-line arc is one parameter of
particular interest. This key parameter is denoted E{8}; or,
in more specific notation, ED1,. Another parameter,
the expected straight line distance to the center of the
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FiG. 1. Cutting units for which turns will be yarded to a cir-
cular curve along a road. Regions wholly outside (a) and inside
(b) of the curve are shown.

circular curve, is denoted ED1_. The radius of the arc is
denoted R,.

Turning special consideration to Fig. la it is noted that
for any randomly selected point in the region R . the
distance to the center of the circular curve is the sum of
two parts, the shortest straight line distance to the arc and the
radius of the arc. Since this relationship holds for any point
within the region it follows that

(11 EDI_,=EDI, + R,
which, solving for ED1,, yields
[2a] EDI, = EDI_ —~ R,

For a region (R4 inside the curve (Fig. 1b) similar rea-
soning leads to the equation

[2b] EDI, = R, — EDI,

The two terms on the right-hand side of the last two equa-
tions are examined. The radius of the arc is assumed to be
known. If the expected distance from the region to the center
of the circular curve can be found, then, it follows that the
parameter of interest, average yarding distance to the cir-
cular arc, may be immediately calculated.

Proceeding along similar lines, and referring once again to
Fig. la, a formula for the expected square of the distance
from random points in the region to the arc can be deter-

&
/

Fic. 2. A cutting unit partitioned into inside and outside
regions of the circular curve to which the turns will be yarded.

mined. The expected square of the shortest straight line dis-
tance to the arc is denoted E{8%} or, more specifically, ED2,.
The expected square of the straight line distance to the cen-
ter of the circular curve is denoted ED2.. By geometry and
definition the following can be written

[3] ED2, = E{( + R)*}

Upon squaring the parentheses, taking the expectation term
by term, and then rearranging parameters the following
equation is obtained

[4a] ED2, = ED2, — 2R,EDI, — R?
Similarly, for regions inside the curve
[4b] ED2, = ED2_ + 2R_EDI, — R?

Consider now the parameters appearing on the right-hand
side of egs. 4a and 4b. The radius of the curve, R,, is known.
The expected distance to the arc, ED1,, may be found on
solution of egs. 2a and 2b. Only ED2, the expected square
of the distance from a randomly selected point in the region
to the center of the arc, remains to be found. If ED2, can be
calculated then eqgs. 4a and 44 will yield the desired param-
eter values.

In fact, the two missing parameters, ED1_ and ED2, are
readily calculated for any region and their computation is
now examined.

Computational procedure

The calculation of ED1, and ED2_ can be based on for-
mulas and procedures developed for the analysis of cen-
tralized landings (Greulich 1982, 1987). In general, the
boundary of the region may be completely and adequately
described by a sequence of connected line segments. The
computational formulas and procedures for ED1_ and ED2,
are well known in this case (Greulich 1992). However, when
the harvest area boundary is defined with respect to a circular
curve, it may on occasion be computationally or otherwise
expedient to use a circular sector. Calculating formulas for
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FiG. 3. A triangular element and associated variables.

both triangular and circular sector elements should there-
fore be available for use as required.

In general, the harvest area boundary is defined by a
piecewise smooth closed curve. The analyst then approxi-
mates this curve with a sequence of straight-line segments
(and possibly with circular arcs). The center of the circu-
lar curve and each line segment (and circular arc) define a
geometric element. These geometric elements are combined
and form a composite region for which ED1_ and ED2_ can
be estimated.

Geometric elements

For geometric elements that are triangular in shape (Fig. 3),
the following formulas are employed for the average yard-
ing distance and the expected square of the distance to an api-
cal location

2
(5 EDI = 2| Bt B2y [ Bu = h
l 3 4 Li,3

and
6] ED2, - 3L, + 3L, - L)

' 12
where

1
71 A= L = Ly - Li,z)z][L:i)-,:i - (Ly + Lip)"1)?
0,5 = 4
and
L

8] = ——

(Liy + Lip)

The terms L;,, L;,, and L;; in the above equations are the
three side lengths of triangular element i as shown in Fig. 3.
The signed area is calculated as

[ = x )1 = Ye) — (g — x)0; — YN
2

0l A=
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FiG. 4. A circular sector element and associated variables.

where the xs and ys are the coordinates of the vertices of
the triangular elements.

Circular sectors (Fig. 4) provide a more realistic descrip-
tion of that portion of the harvest area boundary defined by
the circular curve of the road. Consequently, the region
might be defined by a traverse consisting of both line seg-
ments and circular arcs.

The average yarding distance and the expected square of
the distance for any element, i, that is a circular sector are
given by

[10] EDI,; = 2R,
3
and

2
{11} ED2; = %

The area is calculated as
0,R;

2] 4= =4

where

2R

a

3] ©. = zsin—l{[(xm - )+ O — yi)z]”z}

The value for ®,, the central angle of the curve, is calcu-
lated in radians. Application is restricted to curves with
central angles falling in the interval (0,m).' Before insert-
ing @, into eq. 12 it must be given the correct sign. The
sign is either positive or negative, respectively indicating

either counterclockwise or clockwise movement around the
2
sector.

Composite region

The expected distance and the expected square of the dis-
tance to the center of the circular curve can now be calcu-
lated as area weighted means:

"This restriction rules out curves with central angles of 180° or
greater, e.g., a hairpin curve on a switchback.

*For computer programming purposes the appropriate sign
(but not the magnitude) may be most easily determined using
eq. 9.
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FiG. 5. A region inside a circular curve which is bounded by
that curve. That portion of the region defined by the circular
curve may be described by either a circular sector (a) or by one
or more triangular elements ().

N
> AEDI,
[14] EDI, = z_=1__A__

and

N
> AED2,

[15] ED2, = EL—Z-_

respectively, with
N

[16] A = ZA,.
i=1

Any portion of the boundary lying on the circular curve
may be analyzed using either a circular sector or triangle(s)
as illustrated in Figs. S5a and 5b. Which geometric elements
are most appropriate in any application may be decided by
the analyst.

Examples and commentary

Figure 6 shows a setting lying on both sides of a circular
curve. All turns will be yarded and continuously decked
along the curve of the road. Yarding distances are to be cal-
culated to the road center line. Tables 1A and 1B show the
analysis when circular elements are used to describe the
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Fic. 6. Plan view of the cutting unit for example 1.

road center line. In Table 1A, each element, identified by
its coordinates, is evaluated. These results are then combined
to yield the composite area parameters shown in Table 1B.

Here it has been assumed that turns will be decked on
the road. If turns are decked off the road center line a sig-
nificant distance then the analysis can be done using a more
appropriate curve radius. If turns are decked on both sides of
the road then two different radii may be used for turns out-
side and inside the curve.

Tables 2A and 2B show the results of an analysis of the
same problem. However, here the circular sector has been
approximated using two triangles. A comparison of Tables 1B
and 2B shows that little accuracy was sacrificed by using
this approximation in calculating the two parameters ED1 and
ED?2 for the total unit. A more significant loss of accuracy
shows up in the parameter calculations for the individual
regions inside and outside the curve. For the region outside
the curve the approximation gives estimates that are too
low. For the region inside the curve the estimates are too
high. When combined, these two errors compensate for one
another to produce a deceptively good total unit estimate.

Figure 7 shows a setting for which the continuous landing
extends along both the circular curve and two adjacent tan-
gents. Results of an analysis using circular sectors are given
in Table 3. The setting has been partitioned to carry out the
analysis. In this example, partitioning is based on three con-
siderations; the division of the cutting unit into two parts
by the road, the yarding of turns to the nearest point on the
road, and whether turns are brought to a road tangent or
curve. Procedures given in part I of this paper have been
used to evaluate those regions to be yarded to a tangent.
Means and variances associated with the random distribution
of yarding distances have been calculated and are given in
Table 3. Some generally applicable statistical procedures
can be based on these parameters.
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TaBLE 1. (A) Geometric element analysis for example 1 employing circular sectors

Region element i Coordinates ED1; ED2; A,
Routside
Triangle 1 (10,10) (19,7) (17,16) 5.70 36.7 37.5
Triangle 2 (10,10) (17,16) (14,13) 4.74 26.0 —-1.50
C-Sector 3 (10,10) (14,13) (14,7) 3.33 12.5 —16.1
Triangle 4 (10,10) (14,7) (16,3) 472 25.8 —-5.00
Triangle 5 (10,10) (16,3) (19,7) 6.09 41.7 22.5
R'nsid
lTr?angle 1 (10,10) (12,11) (14,7) 2.20 5.83 —-5.00
C-Sector 2 (10,10) (14,7) (14,13) 3.33 12.5 16.1
Triangle 3 (10,10) (14,13) (12,11) 2.41 6.83 —1.00
(B) Results of composite area analysis when employing circular sector elements in
example 1
Region EDI1, ED2, EDI, ED2, ED1 ED2
R uuside 7.12 52.0 37.4 2.12 5.75
Rinside 3.98 16.4 10.1 1.02 1.57
Total unit 1.89 4.86

TABLE 2. (A) Geometric element analysis for example 1 employing triangles as
approximations to the circular sectors

Region element i Coordinates EDI1, ED2, A,
Routside
Triangle 1 (10,10) (19,7) (17,16) 5.70 36.7 37.5
Triangle 2 (10,10) (17,16) (14,13) 4.74 26.0 —1.50
Triangle 3 (10,10) (14,13) (15,10) 3.22 11.7 -7.50
Triangle 4 (10,10) (15,10) (14,7) 3.22 11.7 —-7.50
Triangle 5 (10,10) (14,7) (16,3) 4,72 25.8 —5.00
Triangle 6 (10,10) (16,3) (19,7) 6.09 41.7 22.5
Rinside
Triangle 1 (10,10) (12,11) (14,7) 2.20 5.83 —=5.00
Triangle 2 (10,10) (14,7) (15,10) 3.22 11.7 7.50
Triangle 3 (10,10) (15,10) (14,13) 3.22 11.7 7.50
Triangle 4 (10,10) (14,13) (12,11) 241 6.83 —1.00

(B) Results of composite area analysis when employing triangular elements to
approximate circular sectors in example 1

Region EDI, ED2, ED1, ED2, EDI ED2
R uiside 7.06 51.2 38.5 2.06 5.56

inside 3.87 15.4 9.00 1.13 1.70

Total unit 1.88 4.83

The density function of & varies depending on the spe-
cific configuration of the setting. However, for any single
randomly selected turn on a setting, Chebychev’s inequality
can be used to set a confidence interval for its to be observed
yarding distance. Likewise, the central-limit theorem can
be used to establish a confidence interval for the to be
observed average yarding distance for a setting. For exam-
ple, if there are m turns uniformly and independently dis-
tributed over the setting then the to be observed mean yard-
ing distance is approximately normally distributed with a
mean of E{®} and a variance of Var{8}/m.? In this context,
it is appropriate to return to a consideration of the wander
factor.

*0On most settings, the number of turns will be large enough to
give a very adequate approximation.

It should be recognized that the wander factor, w, is in
fact a random variable. Denote this random variable by
small @ and assume that for any setting it has a mean and
variance. If yarding distance is statistically independent of
the wander factor, then

[17] E{wd} = E{w}E{8} = wAYD
and
[18] Var{wd} = Var{8}Var{w} + AYD*Var{w}

+ whvar{d}
These relationships and their assumption of statistical inde-
pendence must be considered when applying Chebychev’s
inequality or the central-limit theorem to tractive yarding set-

tings. However, it is anticipated that under most circum-
stances the variance of the dimensionless wander factor will
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Fig. 7. Plan view of the cutting unit for example 2.

be quite small, perhaps on the order of 1072 When at the
same time the variance of the straight line yarding distance
is large it may be appropriate to use

[19] Var{wd} =~ w?Var{3}

Concluding observations

It has been the purpose of this two-part paper to propose
procedures appropriate to the analysis of continuous landing
models. The procedures given should greatly improve the
speed and accuracy with which turn location parameters are
calculated. However, much work remains to be done.

On the theoretical side future research topics might include:
(i) extension of these procedures to curves on sloping ground;
(ii') relaxation of the assumption of statistical independence

TaBLE 3. Intermediate and final composite area
results for example 2

Region  E(3) E{8)  Var{3) A
R, 3.31 14.8 3.89 45.5
R, 474  24.1 1.56 19.5
R, 1.88  4.92 1.40 16.1
R, 244 791 1.94 24.4
R 200  5.33 1.33 28.0

Total unit 291 11.7 3.24 133.5

between yarding distance and the wander factor; (iii) devel-
opment of optimal location models for continuous landings;
and, (iv) derivation of formulas for shortest distance yarding
parameters from a triangular planar region to a noncopla-
nar line segment.

On the application side, future work is needed in: (i) imple-
mentation of these procedures in computerized planning
models; (ii) statistical testing of model predicted parame-
ter values against observed values for actual settings; and
(iii) development of equations for predicting expected values
and variances of the wander factor under different yarding
conditions.
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