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A new formula for average yarding distance is presented. This formula permits the development of an algorithm
suitable for calculating average yarding distance under very general conditions when cable yarding to centralized landings.
The minimal assumptions are that the surface of the setting is adequately approximated by a polygonal mesh and that
a straight line segment provides an adequate description of the path followed by each turn from its setting location
to the landing. Examination of the results obtained from a specific example offers tentative validation of the formula
and the algorithm. The algorithm-calculated parameters are shown to closely match the corresponding statistics obtained
by way of an independent simulation model. Both the theoretical basis and the computational efficiency of turn location
parameter estimation in general logging engineering practice should be enhanced by this new formula and computational
algorithm.
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Cet article présente une nouvelle formule pour calculer la distance moyenne de débusquage. La formule permet
I’élaboration d’un algorithme pour calculer la distance moyenne de débusquage dans des conditions trés générales de
débusquage par cable vers une jetée centrale. Les hypothéses minimales sont a ’effet que la surface de I’emplacement
soit évaluée de fagon adéquate au moyen d’un filet polygonal et qu’un segment de ligne droite procure une description
correcte du chemin suivi par chaque tour depuis son emplacement jusqu’a la jetée. L’examen des résultats d’un exemple
concret présente une validation expérimentale de la formule et de ’algorithme. Les parametres calculés de I’algorithme
ressemblent de prés aux valeurs statistiques correspondantes obtenues d’aprés un modéle de simulation indépendant.
Le fondement théorique et I’efficacité de calcul de I’estimation des parametres de localisation des tours dans la pratique
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générale du génie forestier devraient tous deux étre haussés par cette nouvelle formule de 1’algorithme qui I’accompagne.

Introduction

A review of the conceptual development of average
yarding distance (AYD) for central landings has been given
in a recent publication (Greulich 1987). As noted in that
review, a key paper in the theoretical development is that
of Suddarth and Herrick (1964). Their paper also made a
substantial contribution to the practical application of the
theory. Among these contributions is a clear description of
the practical yet analytically rigorous evaluation of com-
posite areas. Donnelly (1978) extended their results and
presented a computationally convenient and theoretically
sound evaluation procedure for polygonal settings on level
terrain. Garner (1979'), incorporating elevational dif-
ferences, then applied these procedures to settings on steep
terrain. In this procedure Garner employed a formula for
the AYD of any triangular setting with an apical landing,
a formula first given by Peters (1978). Because of the apical
landing assumption, however, the procedure employed by
Garner is, in a strict sense, only applicable to settings that
exhibit uniform ground slope in all yarding directions from
the landing (Greulich 1987).

The paper by Suddarth and Herrick (1964) suggests an
alternative approach to the estimation of AYD for settings
on steep, broken terrain. In this approach the horizontal
area of the setting is subdivided into a finite number of
mutually exclusive rectangles. The distance from the landing
to the (terrain-projected) geometric center of each rectangle

!G. J. Garner. 1979. Cut-block area and average primary
transport distance. Internal report of the Forest Engineering
Research Institute of Canada, Pointe Claire, Quebec.
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is weighted by its corresponding horizontal area. Summation
of these weighted distances and division by the total horizon-
tal area of the setting yields an estimate of the AYD. At the
limit, as the number of subdividing rectangles goes to infinity
and the maximum diagonal of the rectangles approaches
zero, this summation yields the exact value for the AYD of
the setting. It is simply a refined variation of this fundamen-
tal concept that is presented in the present paper.

The imprecision associated with, and the impracticality
of, directly measuring yarding distance on proposed settings
has favored the development of model-based estimation
procedures. Models typically employed are contour maps
or polygonal meshes of the setting surface. One source of
estimation error in this approach is that arising from
discrepancies in fit between an abstracted model surface and
the actual physical surface of the setting. A second, indepen-
dent source of error is the procedure by which the AYD of
the fitted model is then calculated. It is the purpose of this
paper to present a calculation procedure that can entirely
eliminate this second source of error for polygonal mesh type
models. It should be possible to amend this particular pro-
cedure in most AYD estimation programs that are based on
the finite division of a setting surface into polygonal
elements. For a given level of computational effort, very
significant gains in the total precision of the AYD estimate
should be realized from such modification.

The AYD formula

The computational algorithm to be presented employs a
new formula for AYD. With reference to Fig. 1, consider a
right-angled triangle opi that could be drawn in the X' Y’
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FiG. 1. Setting surface abcd has been fitted with two triangular meshes separated by a streamside leave strip. The heavier lines indicate
one of the triangular elements, jjk, defining a plane X’ Y". The right-hand coordinate system X'Y’Z’ used in the analysis of side ij
of this triangular element is placed as follows. First, the Z' axis is established. It is normal to the X’ Y’ plane and passes through the
landing location s. The direction of increasing elevation, with reference to the original XYZ coordinate system, is treated as positive.
The X' -axis is then rotated within the X’Y"’ plane to the position where it is perpendicular to the extended side ij of the triangular element.

plane, defined as being the plane of the triangle ijk. The
lengths of its two legs will be denoted L,, and L,;. This
triangle is constructed so that the normal to the X’ Y’ plane
passing through the triangle’s vertex o also passes through
the landing location s. The distance from the landing to the
three vertices of the triangle opi will be denoted L, L,
and Lsi' ‘

With reference to triangle opi, and beginning with the
usual assumptions, which are (7) a uniform distribution of
turns over the horizontal area of the triangle, and (i) the
straight line yarding of these turns to the landing from their

lay on the triangle, the following formula for the AYD of
triangle opi can be derived:?

Ly 1?2, + 312 L.+ L
11 ayp = || + |2 —2 ln(—"’ S’)
[ [ 3 ] [ 1L, I,

- [ 2L, ] [tan_l( Lopl )]
3Lopri Lgp + LsoLsi

*The derivation is quite long. Copies may be obtained from the
author upon written request.
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TABLE 1. Example of a triangular mesh evaluated for average yarding distance by both analytical
and simulation methods

Analytical model

Simulation model

Triangular Coordinates
element Vertex X,Y,Z2) Area AYD Sample size AYD SE
A 1 1000, 1000, 500 125 000 559.01 250 191 559.02 0.29
2 500, 500, 500
3 500, 0, 500
B 1 500, 0, 500 625 000 901.33 1 249 459 901.25 0.22
2 2000, 500, 1000
3 1000, 1000, 500 .
C 1 1000, 1000, 500 250 000  926.29 499 561 926.69 0.34
2 2000, 500, 1000
3 1000, 1500, 1000
Landing 500, 1000, 500
Setting* 1000 000 864.78 1999 211 864.78 0.19

*Setting values have been calculated by aggregation of the results listed in the table for the individual triangular elements.

Computational algorithm

Given this new AYD formula it is now possible to for-
mulate a general algorithmic solution for a polygonal mesh.
This sequential procedure will yield the AYD for any setting
surface that is everywhere visible from the landing location
and that has turns uniformly distributed over its projected
horizontal area.

1. Fit polygonal mesh(es) to the setting surface (abcd of
Fig. 1). .

2. Select a polygonal element (e.g., ijk of Fig. 1) for
evaluation.

3. Find the plane (X'Y’) of the polygonal element.

4. Calculate the coordinates of the point 0 where the plane
has a normal that passes through the location of the
landing (s). _

5. Select and extend a side (ij) of the polygonal element.

6. Calculate the coordinates of the point (p) where the
.extended side has a perpendicular that passes through
the point (o) found in step 4.

7. Calculate the AYD and the horizontal area for each of
the two right-angled triangles (opi, opj) formed by the
two points found in steps 4 and 6 and the vertices
associated with the current polygonal element side, each
vertex being taken in turn. '

8. Using the composite area rule and the results of step 7,
calculate the AYD for the triangle (0ij) formed by the
point found in step 4 and the two vertices associated
with the current side. Find the horizontal area of this
triangle.

9. If all sides of the current polygonal element have been
analyzed, continue to step 10, otherwise return to step 5.

10. Using the AYDs and horizontal areas associated with
each side of the polygonal element, calculate the com-
posite AYD of the polygonal element. Calculate its
horizontal area.

11. If all polygonal elements of the mesh(es) have been
evaluated, continue to step 12, otherwise return to
step 2.

12. Employing AYDs and horizontal areas which have now
been determined for all polygonal elements in the
mesh(es), calculate the composite AYD for the mesh(es).

The first step in this algorithm is discussed elsewhere and
the interested reader should consult the paper by Eli et al.

(1984) for an example of its application within the context

“of forest engineering. Analytical procedures based on com-

posite areas and vector algebra can be used to facilitate
programming implementation of subsequent steps. The
interested reader should refer to Donnelly (1978) and Perkins
and Suddarth (1970) for forest engineering related examples
of these respective procedures.

Application

The algorithm given in the previous section will now be
applied to a specific example. The objectives are threefold:
to establish an initial level of confidence in the validity of
the algorithm, to further illustrate the nature of its applica-
tion, and to provide a numerical check for subsequent pro-
gram development by others.

The previously listed algorithm (excluding the first step)
was programmed for the Hewlett-Packard HP-41CX. The
triangulation mesh listed in Table 1, in the first three col-
umns (‘‘triangular element,’’ ‘‘vertex,”” and ‘‘coordinates’’),
was evaluated for the specified landing location, and the
results are given in Table 1 in the columns headed ‘‘analytical
model”’.

A simulation model was then written and used as a
standard of comparison. Each triangular element was
examined in turn. Points were randomly distributed over
the horizontal projected area of each triangular element at
an intensity of approximately two points per unit of horizon-
tal area. The actual number of such points in each case is
given in the column showing the sample size of the simula-
tion model in Table 1. Each point was projected onto its
corresponding triangular surface in three dimensions and
its distance from the landing location was then computed.
The mean distance was calculated for each of the three
samples and is recorded in the column headed AYD. The
standard error for each of these estimates of AYD is given
in the last column. The close agreement between the cor-
responding values of AYD and AYD is offered as supporting
evidence of procedural validity. In one case (triangular ele-
ment A) the AYD can also be calculated by means of a
previously derived and generally accepted formula (Peters
1978). This alternative calculation was performed and the
same result was obtained for the AYD.
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Final observations

The algorithm presented in this paper can provide the
basis for a computationally efficient means of estimating
AYD. The procedure is quite general and should be appli-
cable to most cable settings encountered in practice. Even
so, a further generalization of this basic algorithm is
possible. Nonuniform distribution of turns can be handled
by additional surface partitioning and the application of
appropriate weights in the composite formulas (Donnelly
1978). It is worth noting that in general, the assumption of
uniform turn distribution over an area is not as restrictive
as it might initially seem. Within any given partition it simply
reflects the lack of more specific knowledge with regard to
the actual spatial distribution of the turns (see Appendix).
Thus, the only major restriction on the generality of the
algorithm would be the straight line yarding assumption.
For those settings with topography that places a significant

proportion of the turns well out of sight of the landing, the
algorithm may not describe with sufficient accuracy the path
followed by a typical turn.3

Other turn location parameters, such as average yarding
slope and the expected square of the yarding distance, might
be developed in a similar fashion. This approach to their
estimation would provide both a firm theoretical formula-
tion and a very general range of applicability, in addition
to increased computational efficiency.

The analytical underpinning of this procedure may also
provide the basis for some interesting advances in the theory,
the development and comparison of approximating formulas
being one especially challenging area of investigation.

3A necessary and sufficient condition for the existence of
landing-concealed ground on a setting is that Z, > Z for at least
one element of the mesh.

Appendix

If no information other than boundary location is available with regard to the horizontal distribution of turns across
an area, what can be said about the nature of an ‘‘appropriate’’ distribution? One approach to this question might
involve distribution characterization through maximum entropy (ME). Applying this methodology, as suggested by
Shannon (1948), the problem stated previously may be written as follows:

[Al] maximize I = ‘ 5 - W(x,y)ln W(x,y) dx dy

D

[A2] subject to §§ W(x,y)dxdy =1

D

A (density) function W(x,y) is sought which will maximize the entropy I over the area D in the XY plane while concur-
rently satisfying a normalization constraint across the same area. This is a two independent variable isoperimetric pro-
blem of the calculus of variations. Following Weinstock (1952), the unknown function W(x,y) must satisfy

[(A3] o [-WEYIn W(xp) + AF(ep)] = 0
from which

[A4] W(xy) = €'

As \ (the Lagrange multiplier) is a constant, W(x,y) must also be constant. From the constraint [A2] it is then conclud-

ed that

[AS] W(xy) =1/ jj dx dy = 1/area

D

The uniform density is thus seen to represent the ‘‘appropriate’’ choice by the ME criterion. By the principle of ME,
it is then the broadest possible distribution consistent with the given information (boundary location); or, in the words
of Jaynes (1957), ‘It is the least biased estimate possible on the given information; i.e., it is maximally noncommittal

with regard to missing information.”’
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