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Abstract: Under high initial attack fire loads, dispatchers sometimes redirect airtankers that are working on
other fires. The inherent variability of flight distance between random fire locations is a potentially important
aspect of any model that would reallocate the airtanker resource between fIres. Requisite formulas are derived,
and computational procedures are provided in this article for the stochastic description of airtanker flight
distances between fire-start locations randomly located along straight-line segments. Numerical approximations·
and comparisons with prior work confirm the results of detailed examples that establish a blueprint for
application and continued model development. FOR. SCI. 51(5):460-471. .
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I
SLAM AND MARTELL (1998) indicate that amphibious
lanq.-based airtankers may be dispatched directly from
one fire to another. Although acknowledging this ob

served fire-to-fire dispatch strategy, they assume, for mod
eling purposes, that airtanker dispatches only involve air
tankers being sent directly from anairbase to a fire. In their
investigation, Islam and Martell are interested in the re
sponse of the airtanker initial attack (ATIA) system to
changes in the daily fire load. They found that the optimal
initial attack range around an airbase depends on the daily
fIre load. However, it seems quite likely that, as the fire load
increases, the proportion of direct fire-to-fire airtanker dis
patches will also increase. Under these circumstances, it is
expected that inclusion of a fire-to-fire dispatch option
within airtanker system models may eventually lead to a
more accurate portrayal of actual system behavior under
high fire load conditions.

The fire-to-fire reallocation component of the ATIA
model envisions reallocation of the airtanker from one ran
domly located fire to another fire, also randomly located.
Anticipatory, model-based planning for dispatch ofairtank
ers directly between ATIA fires requires a probabilistic
assessment of their spatial distribution. The locations of two
simultaneous ATIA fires can be described for mathematical
modeling as point-events randomly located at points, along
line segments, or over polygonal regions. A statistical de
scription of the random flight distance between simulta
neous initial attack fires should include all six possible
pairings of points, line segments, and areas. For random
travel distances between points, between a point and a line
segment, ·or between a point and an area, there are well-es
tablished formulas and analytical procedures for first and
second moments about the origin. Interested readers are
referred to the article by Greulich (2003) for these formulas
and a brief history of their development. Okabe and Miller
(1996) give formulas for the expected distance in all six

·cases but they do not provide formulas for higher moments,
nor are potential computational issues examined for the
variety of intersecting and overlapping elements typically
observed in airtanker applications. ,

~artell et al. (1999) identify airtanker travel time as a
"very significant portion of the service time." Accordingly,
the expected flight distances between airbase, fire location,
and landable lakes are key parameters in the estimation of
service times (Islam and Martell 1998). This fundamental
relationship between service time and travel distance is not
unique to airtanker system performance. For example, Lar
son and Odoni (1981) associate this characteristic with a
wide range of spatially distributed public and private service
activities. Larson and Odoni, analyzing primarily urban
services, emphasize de novo analytic development of sta
tistical parameters for rectilinear travel over geometrically
simple regions. Airtanker systems, however, can be more
accurately described, and efficiently analyzed, using program
mable analytical procedures that use standard, closed-form
equations and assume straight-line travel over geometrically
complex regions (Greulich 2003): The use of closed-form
equations in the analytical development of travel time pa
rameters can bring defInite advantages in computational
flexibility, speed, and precision. The availability of these
closed-form equations also opens up potential new lines of
research. It is then the purpose of this article to continue
previous development of these analytical procedures based
on closed':form equations; mention some of their advan
tages, and illustrate their application to a simple, hypothet
ical problem.

As a first step in the development of an ATIA fite-to-fire
reallocation component, this article examines the statistical
description of the random distance between fires occurring
along line segments. An example is used to illustrate a
fIre-protection setting within which the formulas and pro
cedures, to be developed in this article, might be applicable.
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Figure 1. Hypothetical airtanker initial attack example illustrating
application of the formulas and computational procedure.
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total service time in the article by Islam and Martell (1998).
Also borrowing from Islam and Martell, it is assumed that
the airtanker has a mean cruising speed of 250 km/hr. In the
absence ~f additional information, this speed will be treated
here as if it were a constant [1].

For illustrative purposes, it is assumed that an ATIA fire
will start at some random location along one of the five line
segments shown in Figure 1. The probability of its occur
rence on each of the five segments has been specified and its
specific location on any given segment is assumed to follow
a uniform distribution over the length of the segment [2].
The airtanker resource is dispatched to this first fire. While
working at this fire, a second ATIA fire is reported. The
location of this second fire follows the same probability
distribution as the first. In modeling the ATIA system, it is
desirable to know statistical characteristics of the flight
distance between concurrent fires such as these. These de
scriptive measures would include the mean and variance of
the flight distance. Based on these flight-distance parame
ters and the given airtanker cruising speed, an average flight
time between concurrent fires may be calculated along with
an estimate of its variability. Formulas and procedures lead
ing to the calculation of these operational variables are now
,developed and verified before continuing with the example.

Solution Methodology

There are at least three ways in which the illustrative
example of the previous section could be evaluated for the
requisite flight-distance parameters: Monte Carlo simula
tion of the airtanker transfer process, numerical integration
of the corresponding moment equations, and analytical in
tegration. The latter method, analytical integration, will ,be
used to provide closed-form equations for the statistical
moments. All three methodologies have been successfully
applied to this example, but for brevity of presentation, only
the last two are reported here in detail.

Calculating the expected, or mean, distance between
random points located on line segments requir~s two for
mulas, one for parallel line segments and a second for
nonparallel segments. The latter formula, but not the former,
is explicitly presented in Okabe and Miller (1996). In air
tanker applications, it is also necessary that overlapping and
crossing line segments be included as possible configura
tions. Formulas for higher moments (not developed by
Okabe and Miller) are needed when calculating the ex
pected value of a nonlinear cost or flight-time model. These
higher moments may also be used in the calculation of
model variability (Ang and Tang 1975). The necessity for
recognizing and incorporating travel-time variability in
models of the initial attack system has been dramatically
shown in the simulation studies done by· Smith (1987).
Smithfound this aspect of fire modeling to beof particular
importance when examining simultaneous fires. He notes
that serious resource misallocation can result fr<;Jm the use
of averages where large variations in travel time are found.
One additional recommendation for a new derivation of the
moment formulas is found in the form of the equations. The
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A discussion of some alternative ways in which the statis
tical problem might be addressed is followed by develop
ment of the requisite formulas and their verification. With
formulas and associated analytical procedures in hand, the
illustrative example is revisited and its solution developed.
The article concludes with several observations on current
research motivation and direction in the statistical descrip
tion of fire-to-fire reallocation of airtankers.

0-.....
9.0

Illustrative Problem Setting

Two components of a hypothetical ATIA region, a trans
portation corridor and a wildland-urban interface, are
shown in Figure 1. These two components, each of consid
erable length, have been modeled as chains of linear ele
ments because oftheir curving nature and relatively narrow
widths. Their inclusion in the model is based on their having
high ATIA fire probabilities relative to the surrounding
area. For simplicity of exposition, the ATIA region will be
assumed to consist of only these two components.

When a fire, classified as subject to possible ATIA, starts
within one of these two strips, the dispatcher establishes its
priority relative to other demands and the availability of
suppression forces. It is possible, especially under high fire
loads, that an airtanker already assigned and working on an
initial attack fire will be redirected to the new fire-start
location. There will be some delay in arriving at the new
fire, and this elapsed time will vary depending, in part, on
the distance separating the two fires.

ATIA planning relies on good estimates of flight-time
delay in arriving at a fire. As a first pass at evaluating
airtanker travel times between concurrent ATIA fires, the
simple formula that time equals the distance divided by the
airtanker cruise speed may be used. The general form of this
equation is the same as that for the flight-time component of
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Figure 2. Specific examples of the six possible configurations of two
nonparallel segments.

2 3

x
4 5 6

Figure 3. Specific examples of the two possible configurations of par-
allel segments. .

Si Vi Ui

a 1.4142 1.4142 0.0000
1 4.2426 2.8284 1.4142
2 1.4142 1.4142 0.0000
3 0.0000 0.0000 0.0000

;-~~"!"\~,

Figure 4. Specific case of two nonparallel line segments labeled for
detailed computational analysis. Only segments of nonzero length are
labeled.

s~~wn in Figure 2a. Application of these configuration-spe
CifIC formulas to other nonparallel configurations (Figure
2b-f) requires the use of the additional formulas discussed
in Appendix B.

In the case of parallel line segments, such as those shown
in Fi~ure 3a, a standard derivation using integration is used,
and Its development is outlined in Appendix C. It is a
straightforward, if somewhat tedious, derivation and there
f~re not presented in detail. Formulas for both the expected
dIstance and the expected square of the distance are given.
Any configuration where the extended lines of two seg
ments are coincident, as illustrated in Figure 3b, must be
handled separately. An examination of the limit as one line
segment of Figure 3a approaches the extended parallel line
of the second line segment provides the appropriately mod~

ified formula for segments lying on coincident lines.
All of these formulas for parallel and nonparallel line

segments must be used in conjunction with computational
~ormulas. that ~xtend their application ib more general spa
t~al con:IguratiOns. Correctly implementing the computa
tIOnal SIde of these 'formulas is a critical second step be
caus~, even with the provision of convenient and compre
henSIVe formulas, the chance of misinterpretation and sub
sequent programming error remains significant. Specific
examples, two of which are tabulated here in detail, can be

Table 1. Individual segment labels and lengths for the four branches
of the two intersecting lines illustrated in Figure 4

b
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moment equation formulas are more compactly written and
structurally revealing when recorded in terms of length and
area rather than point coordinates, as listed in Okabe and
Miller. This format is alsQ consistent with previous usage in
forestry, thereby facilitating derivation and application of
the formulas in that .field of study. A brief overview,. in
cluding background relevant to the development of these
crucial formulas, will follow. The more analytical aspects of
formula derivation are covered in the appendixes.

The derivation of the formula for expected travel dis
tance between two nonparallel line segments given in this
article (Appendix A) follows a distinctly different develop
ment from that outlined by Okabe and Miller (1996). In this
current derivation, the use of Crofton's formulation and
previously published results for the expected travel distance
from a point to a line substantially shorten the development.
Derived in this alternative manner, the formula also pro
vides an opportunity for mutual verification with the results
presented by Okabe and Miller. The s.econd moment of the
flight-distance distribution is derived in a similar fashion.
These two formulas are specific to a particular spatial con
figuration of the line segments, an example of which is
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Table 2. Intermediate and final computational results for the four branches of the two intersecting lines shown in Figure 4

6* Al Az A3 . AZ
rb r e Eb Ee F(Az, A3 ) F(vi, Vi+l) Wt S(Az, A3) S(vi, Vi+l)

SOSI 4.4721 1.4142 4.2426 9.00 0.1623 0.7208 4.3199 2.6647 2.3282 6.6667
UOS I 4.2426 0.0000 42426 0.00 0.0000 0.0000
U1So 2.0000 1.4142 1.4142 1.00 0.4142 0.4142 1.6232 1.6232 ·1.0822 1.3333
UOU 1 1.4142 0.0000 1.4142 0.00 0.0000 0.0000

2.9512 0.50 9.3333
SlSZ 4.4721 4.2426 1.4142 9.00 0.7208 0.1623 2.6647 4.3199 2.3282 6.6667
U1SZ 2.0000 1.4142 1.4142 1.00 0.4142 0.4142 1.6232 1.6232 1.0822 1.3333
UZS I 4.2426 0.0000 4.2426 0.00 0.0000 0.0000
·U1UZ 1.4142 1.4142 0.0000 0.00 0.0000 0.0000

2.9512 0.50 9.3333

SZS3 1.4142 1.4142 0.0000 0.00 0.0000 0.0000
UZS3 0.0000 0.0000 0.0000 0.00 0.0000 0.0000
U3SZ 1.4142 0.0000 1.4142 0.00 0.0000 0.0000
UZU3 0.0000 ·0.0000 0.0000 0.00 0.0000 0.0000

0.0000 0.00 0.0000

S3S0 1.4142 0.0000 1.4142 0.00 0.0000 0.0000

U3S0 1.4142 0.0000 1.4142 0.00 0.0000 0.0000
UOS3 0.0000 0.0000 0.0000 0.00 0.0000 0.0000
U3UO 0.0000 0.0000 0.0000 0.00 0.0000 0.0000

0.0000 0.00 0.0000
E{D} = F = 2.9512 E{Dz } = S = 9.3333

* The corresponding legs of the triangle branching from the intersection point.

Figure 5. Specific case of two parallel line segments labeled for de
tailed computational analysis.

used by future users to develop and confirm their own
computational programs.

Figure 4 illustrates a case of two nonparallel line seg
ments. One branch of the two intersecting lines is selected
arbitrarily and the four branches are numbered sequentially,
proceeding counterclockwise around the intersection point
usmg the index variable i starting with zero. For each
branch, i = 0,3, we have Si =; ui + Vi' where Vi is the length
of that portion of the line segment falling on that particular
branch and ui is the distance from the intersection point to
the nearest segment point on the branch. The branches for

Table 3. Individual segment labels and lengths for the two parallel
lines illustrated in Figilre 5

0.0000
0.7071

5.6569
2.8284

5.6569
3.5355

o
1

this example have been labeled as shown in the figure and
the corresponding segment lengths calculated. These
lengths are listed in Table 1. The aforementioned formulas
and procedures yield the intermediate and final results pre
sented in Table 2. Implementing the computational proce
dure requires that each pair of .adjacent branches from the
point of intersection of the two lines be evaluated. It will be
noted in this example that branch pairs 2/3 and 3/0 do not
contribute to the expected distance; they are included in
Table 2, however, for the sake of procedural clarity for
program developers.

The annotated case of two parallel line segments is
shown in Figure 5. Segment lengths for this case are given
in Table 3, and intermediate and final results based on the
formulas and procedures provided in the appendixes are
found in Table 4. The rational for providing formula deri
vations and these detailed computational results will be
come evident during the process of verification that follows.

Verification

Lengthy formula and computer program developments
increase the chance of analyst or programmer error. For this
reason, it is of paramount importance to verify results. It is
anticipated that the formulas and procedures of this article
will be applied by others. That these users be able to verify
their computer code is highly desirable. Examining com
puter output for conformity with independently developed

654
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Table 4. Intermediate and final computational results for the two parallel line segments shown in Figure 5

0* '\12 ~4 A13 '\34 AI4 '\23 Wt F(~3' '\14) Wt S(~3' '\14)

SOSI 0.7071 3.6056 5.7009 2.2361 3.5355 5.6569 1.25 2.0092 1.25 5.3333
UOs I 0.7071 3.6056 0.7071 3.6056 3.5355 0.0000 0.00 . 0.0000 0.00 4.6667
UISO 0.7071 1.0000 5.7009 5.0000 0.7071 5.6569 -0.25 2.6790 -0.25 9.3333
UOu I 0.7071 1.0000 0.7071 1.0000 0.7071 0.0000 0.00 0.0000 0.00 0.6667

F(vo,vl) = 1.8418 S(vo, VI) = 4.3333

* The corresponding segment sides of the trapezoid.

results is an essential element of most verification pro
cesses. It is also advisable wherever possible to check for
internal consistency of the formulas by examining values
appro.ached at limits or other special cases for which results
have been independently established.

The crucial test of the formulas and computational pro
cedures of this article consist of comparing their output with
that of a numerical integration model (Appendix D). Each of
the specific examples shown in Figures 1-3 was evaluated
using the closed-form equations developed in this article as
well as numerical integration. The comparative results for
both the expected distance and the expected square of the
distance were found to be in complete agreement with the
number of decimal places listed in Tables 5 and 7 [3].

A comparison was then made with the results presented
by Okabe and Miller (1996). All of their results, as calcu
lated for pairs of perpendicular line segments, were in
essential agreement with values calculated using the model
of this article. There was, however, significant disagreement
when comparing results for parallel line segments. To re
solve this disagreement, further verification tests were run.

In one case, Okabe and Miller report an error of 12.3%
for two parallel line segments. These two lines, taken from
Figure 7 of their article, are appropriately scaled and
graphed in Figure 6. Based on their reported error of 12.3%,
the expected distance as calculated by their formula (not
provided in their article) was determined to be 1.27. Using
the closed-form equation developed in Appendix C of this
article and the numerical integration procedure of Appendix
D the expected distance in this instance was calculated to be
1.261 by both methods. Because of the small number of
significant digits in the percentage error reported by Okabe
and Miller, some caution must be exercised'in the interpre
tation of these results. It is recommended at this time,'
however, that the formulas and procedures given here be

Table 5. Calculated population parameters for line seguIent config
urations shown in Ji'igures 2a-f and 3a, b

Population parameters

preferentially used for the calculation of random distances
between parallel lines. These comparative results strongly
suggest that there is an ongoing need for meticulous veri
fication of derived formulas as well as the results of their
computational implementation. With this caveat in mind,
another confirmatory test of the formulas and procedures of
this article was run.

A cross verification of the formulas for parallel and
nonparallel line segments was done using two variations of
the example given in Figure 2a: In both variations, the first
line segment was kept fixed as shown between points (2, 1)
and (1, 5). In the first variation, one end point of the second
line segment was kept at (2, 1) but the other end point was
moved to (1.001, 5). These near-parallel lines gave an
expected distance of 1.3743, and an expected square of the
distance of 2.8332 when using the formulas for nonparallel
lines. In the second variation, the second line segment was
extended between points (2.001, 1) and (1.001, 5). In this
variation, the parallel line formula was applied and yielded
an expected distance of 1.3744 and an expected square of
the distance of 2.8333. (These latter two values to four
decimal places are also obtained if the second segment is
made to exactly overlap the first.) The precise values for
these two parameters for exactly superimposed segments

Figure

2a
2b
2c
2d
2e
2f
3a
3b

E{D}

2.5212
1.7568
1.9776
3.1074
2.9512
2.2409
1.8418
3.5355

7.1667
3.6667
4.3333
9.8333
9.3333
5.8333
4.3333

13.3333

0.9001
0.7618
0.6499
0.4211
0.7898
0.9009
0.9701
0.9129
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are known to be given by Al3 and A?/6, where A is the length
of the line segment (Conolly 1981). When applied to the
line segment between (2, 1) and (1, 5), these formulas from
Conolly yield values of 1.3744 and 2.8333, respectively.
Although not conclusive evidence of correct formula devel
opment, these essentially equal values coming from sepa
rately derived equations lend an additional measure of sup
port for the formulas of this article and their attendant
programming implementation.

Illustrative Example Continued

For linked segments 1-2 and 3-4-5 of Figure 1, the
probabilities that anyone of a pair of concurrently burning
ATIA fires will be observed somewhere along their two
respective lengths are arbitrarily set, for purposes of illus
tration, at P{1-2} = 0.6 and P{3-4-5} = 0.4. It is assumed
that the two random fire-start locations are distributed in
dependently. Here also, for simplicity of presentation, it will
be assumed that ali follow-on fire-start locations to which
the airtanker resource is assigned are statistically indepen
dent of current and previous fire-start locations and air
tanker assignments [4]. Given that a fire occurs along linked
segments 1-2, the probability that it is somewhere along
segment 1 is given by the ratio of the length of segment 1 to
the total length of both segments; i.e., P{l11-2} =
6.3246/(6.3246 + 5.3852) = 0.5401. (This allocation of
probability proportionalto segment length is also an arbi
trary, if convenient and sometimes logical, assumption.)
Similar probabilities proportional to segment length are
assigned to linked segments 3-4-5. For example,
p{313-4-5} = 3.1623/(3.1623 + 3.1623 + 4.2426) =
0.2993. Based on probabilities derived in this manner, the
ATIA transfer probabilities between line segments can be
calculated (Table 6). Two examples should help clarify
these calculations. The probability of airtanker transfer from
a fire located somewhere on segment 3 to another fire also
along segment 3 is calculated as the probability that the first
fire is located on this segment; i.e., P{3-4-5} . p{313-4-5} =

(0.4)(0.2993) = 0.1197, times the probability that the sec
ond fire is also on this segment (this second probability has
the same value as the first), which gives the probability of
this flight-distance event as 0.0143. As a second example,
transfer from segment 3 to segment 1, or vice versa, has a
combined probability given by P{3-4-5} . P{313A-5} .
P{l-2} . P{111-2} + P{1-2} . p{111-2} . P{3-4-5} .
p{313-4-5}, which, on substituting the l}umerical probabil-

Table·6. Calculated transfer probabilities between line segments as
illustrated in Figure 1

1 2 3 4 5

1 0.1050 0.1788 0.0776 0.0776 0.1041
2 0.0761 0.0661 0.0661 0.0886
3 0.0143 0.0287 0.0384
4 0.0143 0.0384
5 0.0258

Table entry shown for line i to line j is also the probability of transfer
from line j to line i.

ities, gives (0.4)(0.2993)(0.6)(0.5401) + (0.6)(0.5401)
(0.4)(0.2993), yielding a value of 0.0776. It is to be ac
knowledged that all of these probabilities have been kept
simple, and in practice, the nature and specification of fire
occurrence probabilities merit careful research in their own
right.

The expected distance, the expected square of the dis
tance, and. the SD have been calculated for all possible
transfer routings and are given in Table 7. When weighted
by the probabilities of Table 6 the aggregated expectations
of Table 8 are obtained.

The flight time between fires for this example applica
tion can now be easily found. The formula T = DIV gives
the flight time where Y, the cruising speed, is assumed to be
250 kmlhour. The expected time then is given by E{D}/Y.
Exercising some care with the units, this formula yields
(42.2/250) = 0.169 hour (10.13 min.) as the mean flight
time. The variance of the flight time is given by var{D}/y2

.

This formula can be written as [E{D2} - E{D}2]!y2. Once
again using some care with the units, the formula yields
[2,264 - 42.22]/2502 = 0.0077~. A SD expressed in min
utes is more intuitively appealing and a value of 5.27 min is
obtained for this parameter. These are the operational pa
rameters sought for airtanker planning in this particular
example. Although the example is quite simple, it has
captured most of the essential elements of the proposed
analytical description of airtanker redirection in a fully
reproducible way.

Concluding Observations

Substantial work remains before these promising analyt
ical results might be considered ready for practical applica
tion in the modeling of airtanker resource allocation deci
sions. Remaining work includes the analytical evaluation of
flight-distance moments from lines to areas as well as
between areas, the analytic determination of third and pos
sibly higher moments of the flight-distance distribution, and

Table 7. Computed population parameters for the one~way transfer
distance between the line segments of Figure 1

2 3 4 5

E{D}
1 2.1082 5.4152 5.4563 4.0399 6.2260
2 1.7951 6.7940 4.7462 3.0657
3 1.0541 2.4198 5.2262
4 1.0541 3.6231
5 1.4142

E{D2
}

1 6.6667 34.0000 30.6667 16.6667 41.3333
2 4.8333 46.5000 23.5000 10.1667
3 1.6667 6.6667 28.3333
4 1.6667 15.3333
5 3.0000

(I

1 1.4907 2.1623 0.9460 0.5884 1.6031
2 1.2693 0.5847 0.9868 . 0.8766
3 0.7454 0.9008 I.Q102
4 0.7454 1.4855
5 1.0000

"~'~'i':'.,..
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Table 8. Aggregate population parameters for the protection compo
nents shown in Figure 1

the evaluation of near-parallel lines that exhibit ill condi
tioning in the calculation of their intercept point.

Okabe and Miller (1996) give formulas for random dis
tances from lines to areas and from. areas to areas. Confir
mation of these formulas and extension of their range of
application should be can·ied out. Of particular interest in
this latter, regard is the analytical evaluation of the flight
distance between two random points within a single area.
Computational procedures based on the derived formulas
must also be developed and verified.

There is some indication that airtanker cost functions are
nonlinear in flight distance within their range of application
(Dobson 1965). If it is desirable to statistically evaluate
these cost functions when they are expressed as power
series, then higher moments of travel distance will have to
be developed (Ang and Tang 1975): If only for descriptive
purposes, the availability of the third moment would be of
value in the identification and summary characterization of
those flight-distance distributions that are strongly skewed.

In the evaluation of two nonparallel line segments, the
point of intersection of their extended lines must be calcu
lated. For lines that are very nearly but not quite parallel,
this ill conditioning can potentially lead to significant com
putational error. In a related issue, it is noted that, as two
nonparallel line segments approach parallelism, there is a
point at which a more accurate answer for the expected
flight distance will be given by the formula for parallel
lines. The practical importance of these issues in application
should be examined and procedures developed to address
them if found to be warranted.

In their development of an initial attack queuing model,
Islam and Martell (1998) list several elements composing
ATIA service time. The elements mentioned are mobiliza
tion time, flight time from the airbase to the fire and back,
and firefighting time. To achieve a more accurate descrip
tion ,of ATIA system behavior, especially during periods of
high daily fire loads, it is proposed that the definition of
service time include a time element for airtanker realloca
tion between fires. It has been the purpose of this article to
initiate an examination of this reallocation element by de
veloping an analytical procedure for calculating the flight
distance between randomly located fires on line segments.
First and second moments of the random flight-distance
variable, analytically developed and providing exact values
for line segments, are now. available in a comprehensive
computational format. The actual incorporation of these
results in an initial attack model awaits further research
developments, including those here mentioned, but these
results do represent a solid first step toward statistical spec
ification of flre-to-flre airtanker transfer distances.

Endnotes
[I] This assumption may be questionable in practice where it seems quite

likely that flight speed may be found to have both significant vari
ability and positive correlation with distance.

[2] The use of a homogeneous Poisson process leading to a uniform
distribution of servicepoints is a generally accepted assumption in the
development of models of this type (Larson and Odoni 1981), Here,
for purposes of model development and illustration, it is assumed that
airtanker initial-attack fires are, likewise, identically and indepen
dently distributed. The application and concuuent validation of this
model with'respect to a documented real-world example is a separate
topic, well beyond the purpose and scope of this article.

[3] The results reported here were also independently confirmed using
Monte Carlo simulation. Th~se simulation results are not reported in
this article due to considerations of length and the primacy of veri
fication through numerical integration.

[4] In this context, it is noted that the assumption of independently
distributed fire-start locations may be a questionable assumption for
some fire protection regions, especially, where arson- or lightning
caused fires are frequently observed (Greulich 2003). The identifica
tion and statistical description of such spatial-temporal clustering is..:
an area of active research by others and is well beyond the scope and
purpose of this article.

[5] The reader will note that Monte Carlo simulation is easily executed'
using these formulas by generating two random points (x, y) and (u, v)
for the distance formula using values of 'T1 and 'T2 distributed uni- ,
formly over the interval [0; 1]. .. ;0

'-
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Appendix A

The following derivation of the mean distance between
randomly selected points on 'two separate straight-lineseg
ments uses Crofton's theorem",Qn fixed points (Kendall and

""","

2.195822.6436

E{D)

4.2216
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where the following variables are defined: Eb is the ex
pected distance from a point falling between b and b' to the
line segment ae, Ee is the expected distance from a point
between e and e' to the line segment ab, and W is the
expected distance between a point ~:m bb' and a point on ee'.

(A3)

(A4)

(ASa)

(ASb)

(ASc)

(ASd)

dM(y)

dy

M(y + Liy) - M(y)

Liy

y(Eb + Ee) + WLiy - 2yM(y) - M(y)Liy

i + 2yLiy + Lii

which, on letting Liy go to zero and simplifying, yields

which is the desired differential equation consistent with
Crofton's formula. Formulas for the expected distances Eb

and Ee must now be inserted.
A formula for the expected distance from a fixed point to

a randomly selected point on a line segment has been given
elsewhere (Greulich 2003). A minor modification of this
formula will facilitate subsequent development of the above
differential equation. By applying basic trigonometric rela
tionships to the triangle of either Figure 8a or 8b, the
following formulas, equally applicable to both cases, are
easily derived for the indicated side lengths:

(
COS®z COS(3)

AI = Y sin®z + sin®3

Simplify Equation A2 and form the finite difference
relationship

-"-Z = y(Si:®J

A3 = y(Si:®J

In these equations, it is observed that the lengths of the
triangle sides are proportional to the value of y and that, for
any change in the triangle height, y, the angles ®i' which are
parameters defining the shape of the triangle, remain fixed.
It is likewise easily found that the area, A, of the triangle is
given by

_ (yZ) (COS®z COS(3)A- - --+--
2 sin®z Sin®3'

Here the area is observed to be proportional to the square of
y. With these results in hand, the expected distance from a
point to a random location on a line segment is examined.

(AI)

(A2)

y

Prob{Random Point falls on ee'}

length ee' Liy

length ae' = y + Liy'

with similar expressions for the probability that a randomly
selected point falls on segments bb', ae, and abo Using these
probabilities, it is possible to condition on the correspond
ing four partitions of the two line segments, obtaining as a
result

Moran 1963). Larson and Odoni (1981) offer an excellent
introduction to the use of Crofton's methodology that is
most relevant to the development that follows. In this par
ticular development, a previously derived formula for the
expected distance from a fixed point to a random point on
any line segment is used (Greulich 2003). The resulting
differential equation is solved for the desired result. A
formula is also given, without derivation, for the second
moment about the origin.

With reference to Figure 7 the expected distance from
the straight-line segment ab to segment ae is denoted M(y)
and the expected distance from segment ab' to segment ae'
is denoted M(y + Liy). It is observed that the Cartesian
coordinates of a point uniformly distributed along the line
segment ab' have a y-coordinate that is uniformly distrib
uted between 0 and y + Liy. A similar observation applies to
a uniformly distributed point along the segment ae'. Hence
it is possible to write, for example, that

. ( y)Z (yLiy)
M(y + Liy) = y + Liy M(y) + (y + Liy)Z Eb

(
yLiy) (LiY)Z

+ (y + Liy)Z Ee + (y + Liy) W,

c'

a
x

b

b'
a

AI
c"""",....._+- ......,.~-..,;.

a

b

b

Figure 7. Two line segments ab and ac forming the legs of a triangle
that has been oriented and extended for analysis.

Figure 8. The two possible triangular configurations oriented for
analysis with side and angle labeling.

"::Q"~-ft,::~~."1.'
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Applying the previously mentioned formula for the ex
pected distance the following equations are obtained: (A12)

and

Appendix B
In this appendix, a formula is developed for the weighted

mean distance between any two nonparallel line segments.
This formula accommodates line segments that either cross
the point of intersection of their extended lines or not. There
are six possible configurations, and examples of these are
illustrated in Figure 2. The expected distance formula of
Appendix A, as presented, is immediately applicable only to
line segments configured as shown in Figure 2a. The
weighting process developed in this appendix extends the
use of this formula to cover all conceivable nonparallel
cases. (In fact; the same final weighting formula derived
here is equally applicable to the case of parallel line seg
ments as configured and discussed in Appendix C.)

Figure 9 is an enlarged and further annotated represen
tati<:>n of the configuration shown in Figure 2d. This con
figuration will serve to illustrate the development of the
weighting formula. One branch of the intersecting lines is
selected arbitrarily, and the branches are numbered sequen
tially for subsequent indexing using the variable i. Branch
indexing starts with zero and proceeds counterclockwise,
For each branch i (i = 0,3) we have Si = Ui + Vi' where Vi

is the length of that portion of the line segment falling on
that particular branch, and Ui is the distance from the inter
section point to the nearest segment point on the branch. It
isnoted that U i and Vi can be zero on some of the branches,
as is observed here where Uz, Vz, u3, and v3 are all zero.

The mean distance for the length of a line connecting
randomly selected points on segments U i and ui+ 1 is denoted
F(ui , ui+I), the first moment about the origin for the distri
bution. In a similar fashion and more specifically for this·
configuration, it is possible to write

(A7a)

(A7b)

(A9a)

(A6b)

A = {-[A~ - (AI - A2):~[A~ - (AI + A2)2J}1/2 (A8)

By substitution of Equations A5a-d, the equation for Eb

could, if desired, be written in tenns of the variable y and
the 0 i parameter values. The following equation abbreviates
this substitution process:

where

and, in terms of the Ai'

and

(A6a)

where Kb is a function only of the 0 i values and is invariant
for any particular triangle of interest. The formula for Ec
may be written in a similar fashion,

(A9b)

Substitute Equations A9a and b into Equation A4, simplify,
and define K = Kb + Kc to obtain

Equation AlO is a linear differential equation of .the first
order that is readily solved (Gaskell 1958), giving the
solution

which can be most conveniently solved for a numerical
solution using Equations A6a-A8. This fonnula for the first
moment of the random distance variable between line seg
ments Az and A3 will be denoted as F(Az, A3). This is an
abbreviated notation for the equation because Al is not listed
but is understood to be present.

A similar development provides a formula for the second
moment about the origin (also written in abbreviated form),

dM(y) 2M(y)
--=K---

dy y

Ky Eb + Ec
M(y) = - = ----=------=-

3 3

(AIO)

(All)

···~1 O~"····

"~~.~0.~.~
U1 Uo

""' ::<../ ...- "

..,.... ....~..
, ..- ..... ....... .....

.' 2 3 '.
" "........ . .

..... .....
.... . .

Figure 9. Labeling of intersecting line components for analysis of a
more general case.
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(B8)

(B9)

3

Triangle 2

'.".'.....
".
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".'.'......
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....
'.
........

3 ( )( )
Vi Vi+l

F = 2: F(Vi> Vi+I)
i=O Vi + Vi+2 Vi+! + Vi+3

Mod 4

3 ( )( )
Vi Vi+1

S = 2: . S(Vi> Vi+I)
i=O Vi + Vi+2 Vi+ I + Vi+3

Mod 4

I....;;;~~~.;:..~ :.~.:::::::~ ::::::::.:". T
.., y

:1
.

. ......
.........

and the second moment by

Appendix C

4

A formula for the expected straight-line distance be
tween parallel lines has also been derived. This derivation
follows a more traditional approach, which will not be
shown in detail. Attention is limited to only the general
development techniques that lead directly to the several
results needed for computational purposes.

The somewhat tedious derivation of the formula can be
abbreviated by the following approach. Two parallel lines
are constructed as shown in Figure 10. The integration will
be carried out over segment A23. At any point y on this
segment, the expected distance to segment A14 can be sep
arated into two parts, each of which is a right triangle. The
expected distance formula for a right triangle may be readily
developed. By way of example with reference to the illus
trated side lengths of triangle 1, the appropriate formula
would be

(Bl)

(B3)

(B4)

(B6)3 [ ][ ]
2: Vi Vi+I_
i=O Vi + Vi+2 Vi+1 + Vi+3 - 1.0,

Mod 4

F(uo, SI) = [:;]F(UO, UI) + [::]F(UO, VI)'

Minor manipulation of this formula gives

F(uo, VI) = [~:JF(UO' SI) - [::]F(UO, Ul)' (B2)

Starting with a similar formula for .F(uI , so) it is found that

F(UI' va) = [~:]F(U:' so) - [::]F(UI> uo)·

Substitute B2 and B3 into B4 and simplify to

F(vo, VI) = [_l_][(SOSI)F(So, SI) - (uosl)F(uo, SI)
VOVI

It is also possible to write

The significance of this final equation is that the formula
derived in Appendix A can now be applied to all of the
expected distance terms on the right-hand side of the equa
tion yielding the sought-after expected distance between the
two line segments Vo and VI' This equation can be immedi
ately' modified for calculation of the second moment,
S(vo, VI)'

A final, general weighting process is needed to calculate
the expected distance. This formula is equally applicable to
any of the configurations illustrated in Figure 2. To arrive at
this weighting formula, the possible contribution to the
mean distance from each adjacent pair of the four branches
must be aggregated. The use of modulo 4 indexing provides
a convenient shorthand. This indexing process can be illus
trated using the fact that the following probabilities must
sum to one:

[ Vo ~ vJ [VI ~ vJ + [VI ~ vJ [V2~ vJ

that is,

(B7) 1 2
Finally then, the weighted mean distance from arandomly
located point on one line segment to a randomly located
poiDt on another line segment is calculated, in general, by

Figure 10. Two line segments forming the parallel sides ofa trapezium
oriented for analysis.
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(Cl)

(C2)

(C3)

Appendix D

is found as the generallimit.when A1Z goes to zero, should
be applied:

The expected square of the random distance from one line
segment to the other is less tedious in its derivation and is
given by the formula

5(Az3, A14) = [V6][6ATz + 2AT4 - 3A14AZ3 + 2A~3]. (<::4)

To apply Equations C2-C4 to the general case of parallel
line segments, a weighting procedure is required. With
reference to line lengths as defined in Figure 12, the appro
priate weighted value for the mean distance is once again
given by Equation B5. The same weights are applied in
calculating the weighted expected square of the random
distance. Two examples of situations involving parallel
lines are shown in Figure 3.

Numerical integration represents an alternative to the
procedures developed and presented in this article. It is an
alternative, however, that comes with the comparative dis
advantage of higher computational cost for a result that is
only an approximation to the exact value. In contrast, the
new procedures given in this article provide exact results
with modest computational effort. Numerical integration
does, however, provide an expedient means of verifying the
specific results given by these new procedures. Numerical

= [(yZ + ATz) liZ] [ATZ] {Cl + ATJ lIZ
+ y}

2 + 2y loge A
12

.

This formula, together with a similar formula for triangle 2
when weighted by (yIA I4) and (A14 - y)/A14' respectively,
and integrated over segment AZ3 yields the following result
for the expected distance:

F(Az3, A14) = {2Al:AzJ{[~][Af3 - A~4 - Afz + A~4]

+ [ATz][-A13 + A34 + A12 - AZ4]}

A vg Dist for Triangle 1

4

[ (
AZ3 + A13 )]}

+ AZ3loge AZ3 - A14 + A34 .

The lengths Aij are defined as shown in Figure 11. It is
observed with respect to this formula that interchanging the
two initial line segments (AZ3 and AI4), the shorter with the
longer, does not change equation results.

Under certain conditions when the two line segments fall
on the same extended line, there will be a division by zero
error. To avoid this difficulty, the following formula, which

So••••••••

Vo

••• i Uo

U1 1I . r----~-------~-------~

3

2

\'" ...
\ ......

\ ......
\ ......

\ ......
\ ...

\ ............ A34
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\ ......

\
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Figure 11. Detailed labeling of lengths for trapezium evaluation.
Figure 12. Labeling of parallel line components for analysis of a more
general case.
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and

(D3)

and the expected square of the distance as

These two formulas can be numerically approximated by

where 'flJ = (l/m)(j - Yz) and 72,i = (lIn)(i - Yz) with
finite differences A'fl = 11m and A72 = lin. The number of
subdivisions, m and n, of the line segments are analyst-spec
ified such that they provide requisite accuracy in the
approximation [5].

integration for statistical parameters in the current case of
random distances between two line segments can be exe
cuted as follows.

A point is to be randomly located on a line segment
extending from (Xl' Yl) to (X2, Y2). Let 'fl. be a random
variable uniformly distributed over the interval [0, Il The
coordinates of the random point (x, y) along the line seg
ment may be written in parametric form as [Xl + 'fl (X2 
Xl)' (Yl + 71 (Y2 - Yl)]. A second, independently distributed,
random point is to be located along a line from (ul' VI) to
(U2' v2). A similar parametric equation, here using 72 as an
independent and uniformly distributed random variable over
[0, 1], may be written for the random point (u, v) on this
second line segment. The distance from the point on the first
line segment to the point on the second can now be written
as a function of 71 and 'f2 simply by substituting for (x, y)
and (u, v) in the distance formula D = [(x - U)2 + (y 
V)2]1/2. Because the beginning and ending points of the line
between the two segments are random variables, the length
of this line, the flight distance, is also a random variable and
its expected value may be· written as

;:.'\';~.~...

"''''",
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