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ABSTRACT

The reduction of yarding costs by alternative
optimization methods is examined. A general nonlinear
programming approach-is presented for selecting an
optimal yarding strategy from two different skidder types.
A reason that an optimal yarding strategy is not apparent is
due to the complex interactions of skidders queueing at the
landing. The nonlinear programming approach captures the
effect of skidders queueing at the landing with the use of
nonlinear equations, whereas a linear programming model
is unable to include this important effect. The solutions to
both nonlinear and linear programming models are
compared to provide some insight into the effect of skidder
congestion on an optimal yarding strategy.
KEywoRrbps. Forest engineering, Logging, Operations
research, Linear programming, Nonlinear programming,.

INTRODUCTION

n this article we consider the problem of how to best
Inllocatc skidders of differing capacity within a timber

harvest area where logs are being picked up and
brought to a common landing. The best spatial allocation
of the skidder resource may not be that which intuition,
even intuition tempered by experience, initially favors. A
major determinant of skidder productivity (and by
implication a potential factor in its allocation) is congestion
at the landing (Mclntosh and Johnson, 1974). Failure to
recognize and allow for the adverse productivity impact of
this queueing effect has the potential of leading to serious
overestimation of skidder system output. This over-
estimation may subsequently affect installed operational
capacity of other harvesting subsystems when skidding is
balanced with related activities such as felling, loading,
and hauling. Under these conditions better estimates of
skidding production will yield a more efficient overall
harvesting system operation.

The primary objective is to develop a general
optimization model that more realistically describes
skidding operations. In this study, we achieved this goal by
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developing a nonlinear optimization model of a skidding
yarding activity. A nonlinear programming approach was
chosen because skidder congestion at 'the landing and its
influence on productivity is fundamentally a nonlinear
process. Estimation of this nonlinear production
relationship under optimal allecation of the skidder
resource is examined using some initial computer runs with
realistic input data. A comparison of these numerical
results with those obtained from a linear programming
model of the same skidding operations ignoring congestion
reveals the relative impact of the nonlinear queueing effect. ’

While it is clear that nonlinear effects exist in harvesting
operations, very few applications of nonlinear
programming have been made in this area. According to
Bare (1971):

“Much work needs to be done in exploring the potential of
nonlinear programming methods in forest management. At
present it is not clear if the use of more sophisticated
programming methods will offer the forest manager any
advantages over linear programming. However, it is an
area that deserves much more attention than it has so far
received.”

The research presented in this article strongly suggests
that a nonlinear programming approach could be very
useful as an advanced analytical procedure applied to a
harvesting problem.

BACKGROUND

In a recent work, Koger and Webster (1986) presented
an optimization procedure (LOST: logging optimization
selection technique) to evaluate road and setting layout
within a forest tract. They used linear programming to help
identify the “best” transportation system design. The
transportation system was considered “best” when the
related costs of harvesting the tract were minimized within
the confines of user-specified layout alternatives.

LOST (Koger and Webster, 1984) included several
activity submodels which calculated the times and costs of
skidding, trucking, and other required implementing
activities for each user-specified layout. Multiple
equipment was allowed within these activity submodels.
The LOST model provided a general context within which
to examine the relative value of applying linear and
nonlinear optimization to typical harvesting activities. In
this paper, we examine the skidding submodel for: (1) the
production impact of optimal allocation of the skidder
resource within a single setting; and (2) the impact on
production of skidder congestion at the landing. In keeping
with the LOST submodel, the assumption of concurrent
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use of all skidders is retained throughout. The evaluation of
multiple-equipment performance within a LOST submodel
is based on two additional important assumptions:
1) optimization within a submodel is not necessary because
potential gains are insignificant; and 2) interaction effects
with other submodels, if present, are small enough to
ignore. Our research investigated the impact of
optimization within the scope of a skidding submodel,
considered potential impact of interaction effects, and
demonstrated the differences of applying linear and
nonlinear optimization.

MODEL DEVELOPMENT

A general optimization model of the skidding process
has been developed. The problem can be stated as: given a
setting that is to be yarded and several skidders, what is an
optimal strategy for assigning skidders to regions so that
the entire setting is yarded in the minimal amount of time.
We assume a setting area with a central landing, and start
by partitioning the setting area into subareas, specified by
the subscript j(j = 1, m). The model can easily incorporate
irregular setting shapes and nonuniform tum distributions
through appropriate partitioning of the setting area. The
number of partitions reflects the desired accuracy of the
solution as well as computational limitations.

Skidders were sorted into two classes (each class
representing a different resource input) with the objective
of aggregating skidders of similar capability and
comparable yarding cycle times. We use the subscript i to
denote a skidder class (i = 1, 2). This article is limited to
two classes, although an arbitrary number of skidder
classes may be permitted in the future. A sample problem
is presented later where class 1 contains small skidders,
and class 2 contains medium-sized skidders.

Let p;; be the decision variable, defined as the
proportion of the volume (V;) in a setting partition j that is
to be yarded to the landing by those skidders comprising
class i. The objective function is specified as minimizing
task completion time, i.e., time to yard the entire setting.
The constraint that all skidders of both classes start and
finish the job together is included. The use of proportions
as the decision variable in the optimization model leads to
the inclusion of normalization and nonnegativity
constraints. The general optimization problem is then
written as:

Minimize: T,

Subjectto: T, =T,

2
Zpij=l forj=1,m

i=1

pijzo fori=1,2andj=1,m.

It remains to derive the equations for T, and T,, the
expected time it takes for the skidders in each class to
complete the job. Assuming that all skidders in class i
work as a group until their assigned volume(Z V; p;j) has
been yarded, their expected clock time from job start to job
finish is estimated by:
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where p;; is the decision variable; Vj, v;, and K; are input
parameters; and t;; is the total expected cycle time for any
skidder in class i when yarding from pargition j. All of the
input parameters for the optimization model are defined in
figure 1. The total expected cycle time is approximated by:

ty=Wo+p, 7 +by @

where p;~! and b;; are input parameters; and W,, is the
expected time spent waiting in the queue at the landing.
We now specify the calculations for the queueing time W,
based on any randomly selected yarding cycle (selected
from those of all skidders of both classes). It is also
assumed that both unloading and backcycle times are
adequately described by the exponential distribution. This
is a common and convenient assumption, and an
experimental justification may be researched in the future.
The queueing time is calculated by the following formula
(Gross and Harris, 1985:104-107):

-1

W, ={K/[R(1- Py}~ TRy 3)

where K is an input parameter; and p-!, X -1, and Py are
all calculated. The variable y~! can be interpreted as an
average unloading time for all skidders, and is estimated by
(Gross and Ince, 1981):

Bo=K o KKK @

]
]

the number of partitions of the setting area,

j=1,m.

average volume of logs per unit area,

m3/ha (or bd ft/acre).

= tota’ volume of logs in partition j, m>

(or bd ft.).

average one-way straight-line yarding distance

- for partition j, meters (or ft ).

tutal number of skidders in use concurrently.

number of skidders inclassi,i=1, 2. To be

consistent, K, plus K, must equal K.

i average turn capacity for skidders in class i,
m3/cycle (or bd ft/cycle).

= expected unloading time at the landing for

skidders in class i, min/cycle. This time

does not include the time spent waiting for

other skidders to unload.

expected backcycle time for skidders in class i

yarding partition j, min/cycle. This time is

measured from the moment the skidder departs

the landing to when it returns to the landing

and enters the possible queue.
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Figure 1-Definitions of the model’s Input parameters,
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where K1, K3, ;~1, and o~} are all input parameters. The
variable A-! can be interpreted as an average backcycle
time for all skidders, and is similarly estimated by (Gross
and Ince, 1981):

A=K A K ADK+K)  6)

where K| and K, are input parameters, and A;~! is the
average backcycle time for skidder class i, estimated by
forming the weighted average:

Y= by Vipy /L Vipy fori=12 (©)
j=1 j=1

where p;; is the decision variable as defined earlier; and by
and V; arc input parameters. Notice that the equations for
y afe nonlinear in terms of the decision variables. The
variable Pg is the probability that the landing is
unoccupied, and is given by (Gross and Harris, 1985):

K
Po= {n% [(K!/(K-n)][ A/ Pyt 0]

where K is an input parameter; and fland A can be obtained
from equations 4 and 5.

As described above, this general model is a nonlinear
programming model.

Numerical solution of this model requires the use of a
nonlinear programming algorithm. The use of an algorithm
not requiring derivatives (e.g, EO4UAF of the Numerical
Algorithms Group, 1982) greatly facilitates implementa-
tion. The nonlinearity of the above problem is introduced
through the queueing effect at the landing, Wq . If the
queueing term W is set ﬁqual to zero, implying that the
total expected cycle time (t;;) is specified without regard
for possible congestion, lhen the above model becomes
linear in the p;; and can be evaluated via conventional
linear programmmg packages. When two or more skidders
are working on a setting having limited landing capacity,
the recognition of queueing delays may lead to more
realistic estimates of expected cycle time including delays
due to congestion. The nonlinear programming model can
be compared to the linear programming model to evaluate
the impact of skidder interaction on the yarding strategies.

RESULTS AND DISCUSSION

To gain some insight into the relative merits of the
linear and nonlinear models, numerical results were
examined. A sample problem is introduced for the
purposes of this analysis. Values were assigned to input
parameters that are based on those given in Koger and
Webster (1984) and Koger (1976), and represent realistic
values for skidding operations in southeastern United
States. Other estifnation procedures may be employed if
available.

The sample problem is a circular setting on level terrain
with a central landing that is to be skidder yarded. Values
for all the input parameters are included in figure 2. The
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setting has an external yarding distance of 305 m (1,000 ft)

and is partitioned into five concentric bands, each band is

61 m (200 ft) wide. Skidders are placed into either a small

(52 kw, or 70 hp) class (i = 1) or a medium (89 kw, or

120 hp) class (i = 2). The actual number of skidders in

each class was varied to examine the impact on task- \
completion time.

The numerical results of the optimization runs are listed
in Tables 1 through 3. Results in Table 1 clearly illustrate
the potential impact of queueing. Substantial increases in
task-completion time due to queueing are indicated even
for as few as two skidders assigned to the setting. Consider
the case of one small-sized and one medium-sized skidder
being assigned to the setting (Tables 1 and 3). The linear
programming (LP) solution, which does not include the
effect of queueing, estimates the task-completion time at
346 hours which is a difference of about 25% from the
estimated solution of 458 hours using the nonlinear
programming (NLP) model with the queueing effect. The
magnitude of this difference increases dramaticaily as the
number of skidders assigned to the setting increases and
the queueing effect increases in importance. These results
may be an indication of the difficulty possibly attending
any attempt to increase daily production by assigning
additional skidders to the setting. Prior estimation of

m = 5 partitions of concentric bands, each band 61 m
(200 fi) wide,

V = 360 m¥ha (30,000 bd ft/ac).

Vi= Vp (- (1.1)21/10,000 for j = 1, 5, where r; is the outer
radius of concentric band j. The constant 10,000 converts
square meters into hectares (a constant of 43,560 converts
square feet into acres).

v, v, V, v, Vs

m? 421 1,263 2,104 2,946 3,788

(bdft) (86,545) (259,636) (432,726) (605.817) (778.907)

Xi=@/3) (P = - D3V (P - (- 12} forj=1.5, where 1 is
defined above.

X, X, X, X4 Xs
m 40.7 949 154.5 215.0 275.6
(®  (1333)  @ILD)  (506.7)  (704.8)  (907.3)

K, Ky, and K are varied in the analyses.

vy = 2.01 m¥/cycle (410 bd ft/cycle) v, =6.54 m3/cycle (1,334
bd fi/cycle).

! = 6.38 minutes/cycle ;! = 11.56 minutes/cycle.

byy = (A)X1022 + (B)X;1 0% by, = (C)X;1022 + (D)X;! 98 for j= 1, 5.
where the values f’ﬂl’ A.B,C, d are given below. The values
of the exponents are mdependem of unit measurement. The
calculations for the constants come from Koger and Webster
(1984), and incorporate a skidder wander-correction factor of
1.86 applied to all straight-line average yarding distances; and an
efficiency factor for each skidder class, L, = 0.80 and L, = 0.90.

A B C D
Xjinm 0.0097 0.0129 0.0188 0.0088
(Xiin ft) (0.00287) (0.00349) (0.00557) (0.00239)

Figure 2-Values for all input parameters used in the sample problem.
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TABLE 1. Minimum total time to yard the setting (hours)
by number of skidders in each class®

Number of Small Skidders
0 1 2 3

LPt NLP} [P NP LP NP [P NLP

Number 0 — — LI46 1,146 573 TI0 382 &R
of | -1 5 -1} | M6 458 265 441 215 446
mediom 2 255 351 206 365 173 381 150 397
skidders 3 170 320 146 341 129 360 116 375
* Hours.

1 Determined by linear programming (LP).
t Determined by nonlinear programming (NLP).

loading and truck-hauling requirements based on the
skidding LP solution will be biased upward, in contrast to
the NLP solution where the queueing effect on skidder
production is recognized.

An examination of the minimal task-completion times
as calculated by the NLP model reveals an interesting
effect. If the number of medium-class skidders is held
constant (Table 1) at one skidder of this class, and the
number of small skidders assigned to the setting is
progressively increased from zero to three, a pattern
emerges. The corresponding marginal reductions in task
completion time calculated by successive subtractions are:
from O to 1 skidder equals —53, from 1 to 2 skidders equals
~17, and from 2 to 3 skidders equals +5. The sign on the
last number is not a mistake, but rather a clear indication of
how the more productive medium-sized skidders can be
adversely affected through increased queueing time as
more, less productive, small-sized skidders are employed.
In the LP model, every additional skidder decreases the
yarding time. Consider the case where there are zero
medium-sized skidders. Then the yarding time for two
small skidders is simply one-half the time for one small
skidder, and the yarding time for three small skidders is
one-third the time for one small skidder. Thus the LP
solutions indicate linear relationships which do not
incorporate queueing-related effects associated with
multiple skidders.

Optimal allocation of the skidder resource is also
influenced by the incorporation of queue waiting time.

TABLE 2. Optimal yarding pattern showing the proportion (py) of
ench setting partition (j) yarded by each skidder class (i) when two
small and one medium-class skidder are available®

Lp NLP
Small Medium  Small Medium
skidder skidder skidder skidder
class class class class
(i=1) (i-2) (i=1) (i=2)
Setting  (j=1) band 1 1.00 0.00 .00 1.00
(j=2) band 2 1.00 0.00 0.00 1.00
partition  (j=23) band 3 1.00 0.00 0.00 1.00
(j=4) band 4 0.63 037 0.14 0.86
)] (j=5) band 5 0.00 1.00 1.00 0.00

* Solutions are shown for linear programming (LP) and nonlinear
programming (NLP) models. The five concentric bands are 61 m
(200 ft) wide, with the first band being the innermost one in the
center.
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TABLE 3. Minimum time with best allocation vs.
maximum time with worst allocation to yard the setting®

Minimum Maximum
Best Time Worst Time
LP} NLP} LP NLP
1 Small skidder and 36 458 358 460
1 Medium skidder :
2 Small skidders and 173 381 179 395
2 Medium skidders
* Hours.

t Determined by linear programming (LP).
1 Determined by nonlinear programming (NLP).

Typical results are given in Table 2, with an illustration
given in figure 3. If the impact of queue formation at the
landing is ignored (LP formulation) then the small-class
skidders are assigned to work from the landing out, while
the medium-class skidders start at the external yarding
boundary and work towards the landing. The two classes of
skidders will meet at a radial distance of 221.43 m (726 ft).
Recognition of time lost in the queue (NLP formulation)
leads to a reversal of this allocation scheme. Now the
optimal allocation is for the medium-class skidders to work
from the landing out, while the small-class skidders work
the outer area. They now will meet at a radial distance of
235.46 m (772 ft). It would seem that the small (less
productive) skidders should be forced to spend more time
traveling (hence away from the landing) so that they do not
tie up the more productive medium-class skidders in a
longer landing queue. .
Skidder allocation within the setting does not seem to
greatly affect task completion time. Table 3 compares the
time required to yard the setting under the worst possible
allocation with the time required using the best possible
allocation of skidders for two different resource levels. The
best allocation was determined by minimizing task
completion time, and are consistent with the times reported
in Table 1. To contrast with extreme allocations, the worst
allocation was determined by maximizing task completion

LP Solution

NLP Solution

Class 1 (small skidders)
Class 2 (medium skidders)

Figure 3-Diagram of the optimal skidder allocations corresponding
to the LP and NLP solutions in Table 2.
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time. This provides a range on task completion time. The
variation in task completion time is small when comparing
LP best with LP worst, or when comparing NLP best with
NLP worst. However, the variation in task completion time
is quite large when comparing LP best with NLP best, or
when comparing LP worst with NLP worst. This indicates
that time differences due to allocation are minimal, while
time differences due to a queueing effect are substantial,
The difference is greatest when queueing has the biggest
effect; i.e., for the NLP formulation with four skidders.

SUMMARY AND CONCLUSIONS

In a recent trade journal article it was suggested that one
solution to delays resulting from skidder congestion at the
landing was to send the large capacity, slow skidders
farther from the landing while the fast, small capacity
skidders worked in close to the landing (Garland, 1989).
The results obtained from our nonlinear programming
model suggest that such intuitive allocation rules must be
closely re-examined. For at least one numerical example
when the effect of skidder queues was included, this
allocation rule was reversed. Model results suggested a
more efficient allocation where the smaller, less productive
skidders should spend more time traveling, and hence away
from the landing, so that they do not tie up the more
productive medium-sized skidders in a longer landing
queue.

Regardless of the allocation rule applied to the skidders,
productivity was only slightly affected. Even under the
worst possible allocation of the skidder resource,
productivity was only slightly decreased from that
achieved under optimal allocation. The suggestion here is
that there are only minor productivity gains that result from
intensive management of skidder spatial allocation on a
setting. This observation does not rule out substantial
productivity gains from more creative approaches to
skidding subsystem design on a setting (Anonymous,
1988).

Failure to incorporate operational delays due to skidder
queueing at the landing can lead to significantly different
results in estimation of production. Through the use of a
nonlinear program, our results indicate that the impact of
congestion and subsequent queue formation during
harvesting operations lead to substantial increases in
overall harvest time, both on the immediately affected
activity and on those activities further along in the
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production process. Total harvesting system efficiency may
})c a-dvear;;ly affected when other subsystems such as
oading hauling are desi for hi necessary
levels of producnog. gned gher than

Overall system models, such as LOST, might
significantly benefit from the inclusion of subsystem
models that include nonlinear effects such as those
associated with queueing. While linear programming has
been widely used in forestry and the forest products
industry, nonlinear applications have been relatively few
(Bare, 1971; Bare et al., 1984). Nonlinear programming
techniques have achieved a level of general applicability
and ease of use that warrants their serious consideration as
an alternative to more traditional approaches such as linear

programming.
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INTRODUCTION

This paper presents initial results from an exploratory application of nonlinear
programming to timber harvest planning. A nonlinear model of skidder yarding
activity was compared with a more conventional linear programming model. The
increased flexibility of the nonlinear model permits skidding operations to be
described more realisticaelly than is possible with the linear model.

Within the exploratory scope of this work, a general optimization model was
developed to capture the production impact of skidder interaction at the landing.
Some initial computer runs using realistic input data have been made. The
comparison of these preliminary numerical results from both linear and nonlinear
models of the skidding process suggest the relative merit of a nonlinear
formulation.

In the first section of this paper, the two alternative models are discussed and
placed within the context of some previous research. The next section is devoted
to a comparative examination of numerical results from these models. A summary
discussion of current results and future opportunities for nonlinear modeling in
the harvesting process concludes the paper. This study was sponsored by the USDA
Forest Service, Pacific Northwest Research Station, in cooperation with the
University of Washington (Agreement No. PNW-86-268, Amend. No.2.).

MODEL DEVELOPMENT

In a recent paper, Koger and Webster (1986) present an optimization procedure
(LOST: logging optimization selection technique) to evaluate road and setting
layout within a forest tract. They use linear programming to help identify the
"best” transportation system design. The transportation system is considered
"best" when the related costs of harvesting the tract are minimized within the
confines of user-specified layout alternatives.

LOST has several submodels. The times and costs of skidding, trucking, and

other required implementing activities are calculated for each user-specified
layout. Within these activity submodels, multiple equipment may be used. The
evaluation of multiple-equipment performance within a submodel is based on

several important assumptions: (1) optimization within a submodel is not
neccessary because potential gains are insignificant; (2) interaction effects, if
present, are small encugh to ignore; and (3) all equipment within a submodel is
used concurrently.

It is not the immediate purpose of this paper to suggest changes to the
optimization procedures of the LOST model. The LOST model provides, however, a
general context within which to examine the relative value of applying linear and
nonlinear optimization to typical harvesting activities. 1In particular, the
skidding submodel will be examined for (1) the production impact of optimal
allocation of the skidder resource within a single setting and (2) the impact on
production of skidder congestion at the landing. In keeping with the LOST
submodel, the assumption of concurrent use of all skidders will be retained
throughout.

A general optimization model of the skidding process has been developed. (A
detailed mathematical description of the model is given in Appendix A.) The model
can easily incorporate irregular setting shapes and nonuniform turn distributions



through appropriate partitioning of the setting area. We used the subscript j to
denote a specific setting and partition. The number of partitions reflects the
desired accuracy of the solution as well as computation time. Skidders are sorted
into two classes with the objective of aggregating skidders of similar capability.
We used the subscript i to denote a skidder class. This paper is limited to two
classes, although future research may permit an arbitrary number of skidder
classes. A decision variable, pi;, indexed over all skidder class and setting-
partition (s-c/s-p) combinations, was defined as the proportion of the volume in a
setting partition j varded to the landing by a skidder class i. The use of
proportions as the decision variable (hence "p-model”) in the optimization model
leads to the inclusion of nonnegativity and normalization constraints. One
additional constraint, that all skidders of both classes start and finish the job
together, was also imposed. Because the total cost of skidding activity for the
setting is proportional to the time required to complete that task, the objective
function may be specified as minimizing task-completion time.

If the expected cycle time for each s-c/s-p combination is specified without
regard for possible queueing delays at the landing, then the problem as just
described is completely linear in the decision variables. Linear programming
algorithms can be employed to find the optimal allocation of skidder classes to
setting partitions, together with the associated task-completion time.

When two or more skidders are working on a setting having limited landing
capacity, the recognition of queueing delays may lead to more realistic estimates
of expected cycle time. Work by Gross and Ince (1981) suggests a method for easy
approximation of the expected time spent in a finite source queue. When expected
queueing time is incorpecrated into the expected cycle time, the problem beccmes
nonlinear in the decision variables. Nonlinear programming algorithms must now be
applied to obtain the optimal allocation and associated minimal completion time.
The nonlinear pregramming model can be compared to the linear programming model to
evaluate the impact of skidder interaction.

NUMERICAL RESULTS

To gain some insight into the relative merits of the linear and nonlinear models,
numerical results were examined. An effort was made during problem specificaticn
to assign realistic values to model parameters. (A complete numerical description
of the problem is given in Appendix B.) A circular setting with an external
yvarding distance of 1,000 feet and a uniformly distributed volume of 30 thousand
board foot (Mbf) per acre was partitioned into five 200-foot-wide concentric
bands. Skidders were placed into either a small (70 horse power [HP]) class or a
medium (120 HP) class. The actual number of skidders in each class was varied to
examine the impact on task-completion time.

The numerical results of the optimization runs are listed in tables 1 through

3. Results in table 1 clearly illustrate the potential impact of queueing.
Substantial increases in task-completion time due to queueing are indicated even
for as few as two skidders assigned to the setting. Consider the case of one
small and one medium-sized skidder being assigned to the setting. The linear
programming {(LP) solution, which does not include the effect of queueing,
underestimates the task-completion time by about 25%. The magnitude of this
difference increases dramatically as the number of skidders assigned to the
setting increases and the queueing effect increases in importance. These results
may be an indication of the difficulty possibly attending any attempt to increase



daily production by assigning additional skidders to the setting. Prior
estimation of loading and truck-hauling requirements based on the skidding LP
solution will be biased upward, in contrast to the NLP solution where the queueing
effect on skidder production is recognized.

Number of Small Skidders

0 1 2 3
LP NLP : LP NLP LP NLP Lp NLP
Number 0: - : 68,743 68,743: 34,372 42,604: 22,914 36,124
of 1: 30,636 30,636: 20,785 27,465: 15,905 26,460: 12,880 26,730

medium 2: 15,318 21,052: 12,335 21,895: 10,390 22,865: 9,010 23,820

skidders 3: 10,212 19,182: 8,770 20,480: 7,740 21,590: 6,930 22,525

Table 1. Minimum total time to yard the setting (minutes) by number of
skidders in each class as determined by linear programming (LP) and nonlinear
programming (NLP) models.

An examination of the minimal task-completion times as calculated by the nonlinear
programming (NLP) model reveals an interesting effect. If the number of medium-
class skidders is held constant (refer to table 1), say one skidder of this class,
and the number of small skidders assigned to the setting is progressively
increased, 'say from zero to three, a pattern emerges. The corresponding marginal
reductions in task completion time are -3,171, -1,005, and 4+270. The sign on the
last number is not a mistake, but rather a clear indication of how the more
productive medium-sized skidders can be adversely affected through increased
queueing time as more, less productive, small-sized skidders are employed. A
glance at the LP-calculated task-completion times shows that this queueing-related
effect has not been captured by that model.

Optimal allocation of the skidder resource is also influenced by the incorporation
of queue waiting time. Typical results are given in table 2. If the impact of
queue formation at the landing is ignored (LP formulation) then the small-class
skidders are assigned to work from the landing out, while the medium-class
skidders start at the external yarding boundary and work towards the landing. The
two classes of skidders will meet at a radial distance of 726 feet. Recognition
of time lost in the queue (NLP formulation) leads to a reversal of this allocation
scheme. Now the optimal allocation is for the medium-class skidders to work from
the landing out, while the small-class skidders work the outer area. They now
will meet at a radial distance of 772 feet. It would seem that the small (less
productive) skidders should be forced to spend more time traveling {hence away
from the landing) so that they do not tie up the more productive medium-class
skidders in a longer landing queue. Another way to further mitigate this

particular problem would be to give landing-use priority to the medium-class
skidders.

The optimal allocations shown in table 2 indicate that the most efficient strategy
is to divide the setting intc two areas, one for each skidder class. The



Lp NLP
Small Medium Small Medium
skidder skidder Skidder skidder
class class Class class
(i=1) fa=2) (i=1) {i=2)
: radial distance
Setting 0'- 200° (g=1): 1.00 0. 0. 1.00
: 2007 - 4007 (j=2): 1.00 0. 0. 1.00
partition: 400’- BOOY {3=3)3 1.00 0. 0. 1.00
: B600'- 800’ (g=4): 0.63 0.37 0.14 0.86
(J) : 800'- 1,000' (j=5): 0. 1.00 1.00 0.

Table 2. Optimal yarding pattern showing the proportion (pi; ) of each setting
partition (j) yarded by each skidder class (i) when two small and one medium-class

skidder are available. So
nonlinear programming (NLP

assumption that dividing t
led to the development of
the decision variable (hen
During testing of this ass
to be an optimal strategy

lutions are shown for linear programming (LP) and
) models.

he setting into two werk areas is an optimel strategy
another optimization model using the radial distance as
ce "r-model"). This model is discussed in Appendix C.
umption, two concentric work areas were generally found
for typical values of skidder parameters; however,

academic examples were constructed where this assumption led to suboptimal

decisions. The p-model st
circumstances. Sometimes
of the objective function
models were used to cross

Skidder allocation within
completion time. Table 3
worst possible allccation
different resource levels.
worst allocation decisions
the biggest effect; i.e.,

ill found the optimal allocations under those

the r-model was easier to run, partlv because convexity
guaranteed convergence of the optimization method. Both
verify internal consistency.

the setting does not seem to greatly affect task
compares the time required to yard the setting under the
with the best possible allocation of skidders for two
The variation in task completion time between best and
is small. The difference is greatest when queueing has
for the NLP formulation with four skidders.

Minimum time Maximum time

LP NLP LP NLP
"1 Small skidder and 20,785 27,465 21,460 27,615
1 Medium skidder
2 Small skidders and 10,390 22,865 10,730 23,895

2 Medium skidders
Table 3. Minimum time for
yard the setting (minutes)
programming (NLP)} models.

best allocation vs maximum time for worst allocation to
as determined by linear programming (LP) and nonlinear

DISCUSSION

This study compared the application of linear and nonlinear programming to

harvesting activities and

revealed a considerable need and potential for nonlinear
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models in this area. Whereas linear programming has been widely used in forestry
and the forest products industries, nonlinear applications have been few (Bare,
1971; Bare, et al., 1984), Bare (1971) states:

"Much work needs to be done in exploring the potential of nonlinear
programming methods in forest management. At present it is not clear if
the use of more sophiscated programming methods will offer the forest
manager any advantages over linear programming. However, it is an area
that deserves much more attention than it has so far received."”

Our results indicated that the impact of queue formation during harvesting
operations may be substantial, both on the immediately affected activity and on
those activities further along in the production process. The queueing effect is
nonlinear and thus requires the use of nonlinear programming to effectively
incorporate this impact into optimal decisions.

Future work is needed to extend this model to encompass other elements of the
harvesting system including loading and hauling. Other activities such as road
construction might also be more accurately portrayed by a nonlinear model.

On the practical side, efforts should be made to incorporate many of these
ideas into the LOST model. Substantial gains in the descriptive power of the
model might be achieved through the use of nonlinear submodels.
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Appendix A

Appendix A contains a complete description of the general optimization model used
in the paper. It defines all the notation and includes all the equations used in
- the model.

The setting area with a central landing is partitioned into subareas (j=1,m)
appropriate to requisite modeling precision. We define the average board foot
volume per acre as, V (bd.ft./acre), and then calculate the total volume of logs
in each partition, V; (bd.ft.). The average one-way straight-line yarding
distance, X; (ft.), is also calculated. These calculations depend on the actual

shape and partitioning of the setting area. (Numerical values are included in
Appendix B to provide an example.)

A variety of skidders, K in total number, are to be used concurrently to yard the
setting. These skidders are separated into two classes (i=1,2). This sorting is
done to collect skidders with comparable characteristics, and hence comparable
yarding cycle times, into the same class. The number of skidders in class i is
denoted K; ; Ki plus Ki then equals to K.

A decision variable, pi ;, is defined as the proportion of the volume V; in
partition j that is to be yarded by those skidders comprising class i. We refer
to this model as the p-model because proportions are used in the solution.

For each of the two skidder classes, several variables are defined. Let Vi
(bd.ft./cycle) denote the average turn capacity for skidders in class i. The
expected unloading time at the landing, u-!(minutes/cycle), is estimated. This
time does not included that spent waiting for other skidders to unload. The
expected backcycle time, by; (minutes/cycle), is also estimated for each skidder-
class and setting-partition combination. This time is measured from the moment
the skidder- departs the landing to when it returns to the landing and enters the
possible queue. A major factor in estimating this average backcycle time is the
average yarding distance, X;, associated with any given partition. In this
analysis, the backcycle estimations are based on those given in Koger and Webster
(1984) and Koger (1976) as explained in Appendix B. Other estimation procedures
may be employed if available. Both umloading and backcycle times are assumed to
be adequately described by the exponential distribution.

For any randomly selected yarding cycle (selected from those of all skidders of
both classes), the expected time spent waiting in the queue at the landing is
denoted Wq (minutes). This queueing time is calculated for a finite source gueue
(Gross and Harris, 1985) by the following formula:
W={K/((1 - P))] - (1/4) - (1/X) :

Values for &land %\ -t are estimated, per Gross and Ince (1981), by the formulae:

i=(Kawm-! + K2 w-!)/(K: + Kz) and

A= BN RO, 4K

where ) i~! has been estimated by forming the weighted average:
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The probability of an unoccupied landing, Pe, is given by (Gross and Harris
1985):

P = [k )/(k - n)!' T[N ul"1™"

=3

s

i

The expected cycle time, ti; for any skidder in class i when yarding from
setting-partition area j is approximated by:

tis = Wqg + ui-! 4 by
Then, assuming that all skidders in class i work as a group until their

assigned volume (T V; pi ;) has been yarded, their expected clock time from
Jjob start to job finish is estimated by:

Ti = 3 t.‘j v_f p;_./v,' K:

=i

The general p-model optimization problem is then written as:
Minimize: T
Subject to:

Ty =Tz

4

Bo=id for j =1, m

=l

pi; 20 for-t. = 1,8 and. 5 = 1, m.

As described above, this is a nonlinear programming model. Numerical solution of
this model requires the use of a nonlinear programming algorithm. The use of an
algorithm not requiring derivatives (e.g, EO4UAF of the Numerical Algorithms Group
(1982) greatly facilitates implementation. The nonlinearity of the above problem
is introduced through the queueing effect at the landing, Wq. If this latter term
is set equal to zero, then the above model becomes linear in the pij and can be
evaluated via conventional linear programming packages.



Appendix B
Appendix B contains values for all model parameters used in the numerical analyses
presented in this paper. The values of the parameters are given in the same order
as they were defined in Appendix A.
A circular setting on level terrain with a central landing and a constant external
yarding distance of 1,000 feet is to bg skidder yarded. There is an average
volume of 30,000 board feet per acre (V = 30,000) in turns assumed to be uniformly
distributed over the setting. The setting is partitioned into five concentric
bands, each 200 feet wide. The volume of logs in each band can be calculated by:

Vi;= Vo {{200 j)2 -[200(j-1)1%2}/43,560 |,

where the constant 43,560 converts square feet into acres. The average straight-
line yarding distance for each partiticn is then calculated by:

X;=(2/3)(([200 j]* - [200(j-1)]*}/{[2005]2-([200(j-1)12}) .
J = 1,5

The skidders are separated into either a small, 70-horsepower, skidder class (i=1)
or a medium, 120-horsepower, shidder class (i=2). The following valugs are given:

vi = 410 bd. ft./cycle va = 1,334 bd.ft./cyecle
u;-1= 6.38 minutes/cycle u;~! = 11.56 minutes/cycle

The expected backcycle times are calculated by using the following equations
(Koger and Webster, 1984):

bi; = (0.00287)%;1-922 + (0.00349)X;1- 998 and
I 2 L

by; = (0.00557)%;1:022 + (0.00239)X;1- 095,
§ = 145s

The constants in the above two equations incorporate a skidder wander-correction
factor of 1.86 applied to all straight-line average yarding distances; and an
efficiency factor for each skidder class, L;=0.80 and L:=0.90. Unless otherwise
specified, mean values as given in Koger and Webster (1984) and Koger (1976) are
employed in equation development.

Having developed these 10 backeycle values, the analysis proceeds as described in
Appendix A for selected values of K; and K.



Appendix C

In the case of a level circular setting with the landing at the center, an
alternative model (the r-model) may be developed. It is assumed that under
optimal allocation, skidders of one class will be employed at shorter distances
than skidders of the other. The radial distance, r (feet), must then be found
that, under optimal allocation, divides the circular setting into two concentric
bands (j=1,2), one work area for each skidder class.

In the r-model, it is assumed that skidder-class 1 is used closer to the landing
(partition j=1) while skidder-class 2 is employed in the other work area (j=2).
The situation is as described in Appendix B, with R=1,000 feet or the radius of
the circular setting. Then the following equations apply:

Nt = (0.00187)r 9% 4 (0.00224)r-0%8
\,7' = (0.00374)[(R® - r®)/(R® - r?)])' %%
+ (0.00152)[(R® - r®)/(R® - r?)}'"°®®
and
t, =W, +u™ o+ i=1,2
ti; =0 i

with Wg and other variables as previously defined in Appendix A. Then the
expected clock time from job start to finish is given for each respective skidder
class by:

Ti=(n r?/43,560)(V/vi)(ti1/K1) and
Tz={n (R2-r2)/43,560)(V/v2)(tz2/Kz)

The r-model optimization problem is then written as:
Minimize: T

Subject to:

The r-model formulation, although nonlinear, is in a single variable, r, and
thereby offers some computational advantages. It is convex in r, and thus
convergence of the optimization algorithm is guaranteed. Also, it is easy to
graph the objective function, T, and T: as functions of r and thereby gain some
insight into the model. The main disadvantage of the r-model is that it is not
easily generalized to a noncircular setting,

Another disadvantage to the r-model is that two separate runs are generally
required because it is not usually known which skidder-class should be employed
closer to the landing; hence, both options must be examined. This can be seen as
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an advantage of the model, however, because it makes comparison of suboptimal
allocations very easy. Also, as discussed in the text, the assumption that two
concentric work areas is an optimal strategy seems to be generally valid with the
exception of contrived counter examples. To perform the analysis presented in the
text, the combination of the r-model and the p-model was ideal because it included
the generality of the p-model with the ease and graphic capabilities of the r-
model. Both models were used to verify internal consistencies among solutions.



