Bose Einstein Condensates

Brendan Saxberg

Outline of Talk

- Motivation
- Derivation
- Exploration
 - Production
 - Uses

Motivation

 Unique macroscopic physical state dominated by quantum mechanics

- Experimental usefulness
 - probing quantum phenomena
 - High-accuracy measurements of fine structure constant

- N non-interacting gas of bosons
- 2 level system: states |0>, |1> for each boson
- Assume energy of |0> is less than |1>

Distinguishable Particles: 2^N possibilities Indistinguishable Particles: N+1 possibilities

K bosons in state |1> implies N-K in |0>

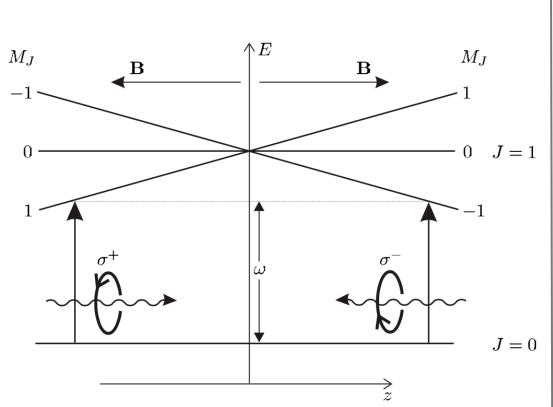
Each K is a quantum state with unique energy, so it is associated with a boltzmann probability

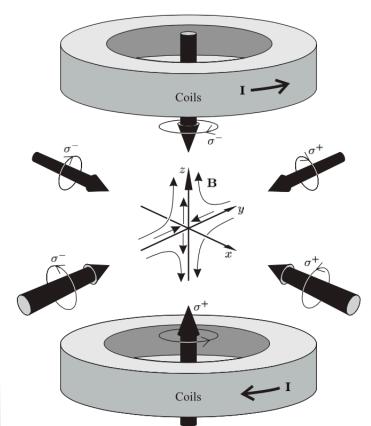
$$P(K) = Ce^{-EK/T} = C\left(e^{-E/T}\right)^K = Cr^k$$

1=
$$\sum_{K=0}^{N} Cr^k \to C^{-1} = \sum_{0}^{N} r^k \to C = (1-r)$$

$$< n(K) > = \sum_{K=0}^{N} (1-r)Kr^k \to \sum_{K=0}^{N=\infty} (1-r)Kr^k = \frac{r}{1-r}$$

$$=\frac{e^{-E/T}}{1-e^{-E/T}}<\infty$$

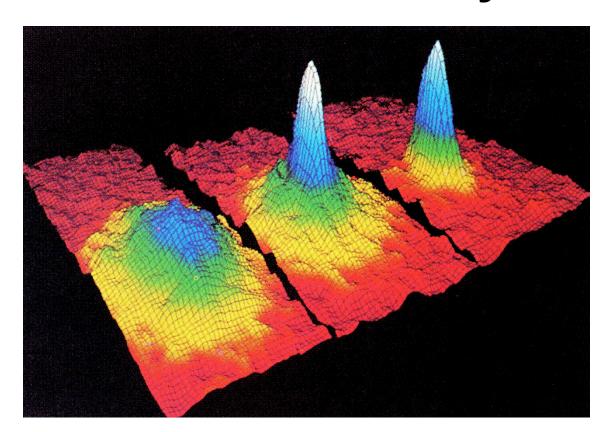

Physical intuition


Thermal deBroglie Wavelength

$$\lambda = \left(\frac{2\pi\hbar^2}{mk_bT}\right)^{1/2}$$

Condensation occurs approximately when the wavelength is longer than the mean free path. In reality this is in the nK.

Production

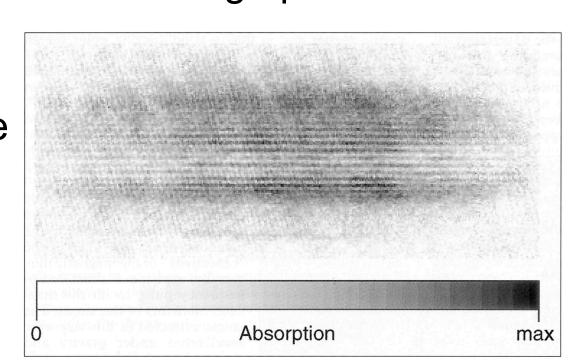


Experimental Evidence/Discovery

1995: Rb 87

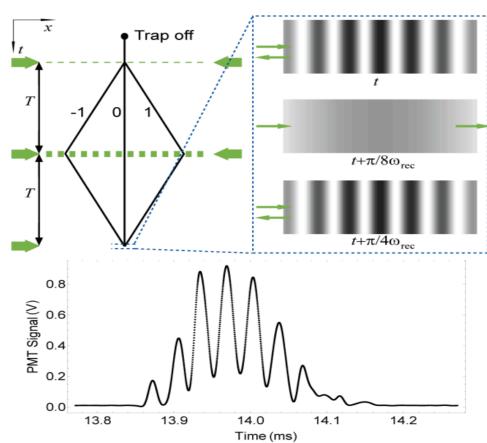
Nobel Prize

Ground state is x=y=0



Matter interferometry

Two colliding BEC's with a large phase


difference

Shadows capture the interference patterns

Current Work Here!

Ytterbium gas interferometry

Matter interferometry

 Wavelength of interference pattern related to the fine structure constant.

 Resolution high enough to compete with current measurements, aiding in experimental verification of QED

Other Phenomena

- Quantum Vortices can be sustained, Quantum Hydrodynamics/Turbulence can have experimental verification/falsification outside of superfluid helium
- Lattice of BEC's with optical trap, useful in condensed matter research
 - "negative temperature" material

Quantum information

Citations

C.J.Foot Atomic Physics 2005

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor Science 14 July 1995:

Vol. 269 no. 5221 pp. 198-201

D. Hanneke, S. Fogwell, and G. Gabrielse, <u>New measurement of the electron magnetic moment and the fine structure constant,</u> Phys. Rev. Lett. 100, 120801 (2008).

A.O. Jamison, J.N. Kutz, and S. Gupta, Atomic Interactions in Precision Interferometry Using Bose-Einstein Condensates, Phys. Rev. A. 84, 043643 (2011).

http://www.phys.washington.edu/users/deepg/BEC%20IFM.shtml