List of useful formulae for Phys 123, Midterm 2

Density = Mass/Volume (kg/m^3) ; Linear Density = Mass/Length (kg/m)

Ch. 14

Hooke's law for spring: F = -kx, k is spring constant

For a horizontal mass-spring system: $E = mv^2/2 + kx^2/2$, E is total energy

Simple Harmonic Motion: $x(t) = A \cos(\omega t + \delta)$

$$f = 1/T$$
; $\omega = 2\pi f$; $v_{max} = \omega A$; $a_{max} = \omega^2 A$

For a mass-spring system: $\omega = (k/m)^{1/2}$; for a simple pendulum: $\omega = (g/L)^{1/2}$

Energy of an under-damped oscillator: $E(t) = (\frac{1}{2}) \text{ m } \omega^2 \text{ A}^2(t) = E_0 \exp[-t/\tau]$ where τ is the time constant

Quality Factor $Q = \omega_0 \tau \approx 2\pi / (|\Delta E|/E)_{cycle}$

Ch. 15

Speed of a string wave: $v_{string} = (Tension/\mu)^{1/2}$, μ is linear density

Harmonic Wave Function: $y(x,t) = A \sin(kx \pm \omega t + \delta)$ with $k = 2\pi/\lambda$

Speed of a harmonic wave: $v = f \lambda = \omega/k$

Doppler Effect for Sound: $f_r = f_s (v \pm u_r)/(v \pm u_s)$ where: u_r = velocity of receiver, u_s = velocity of source, v = speed of sound

Ch. 16

$$\sin\theta_1 + \sin\theta_2 = 2\cos[(\theta_1 - \theta_2)/2]\sin[(\theta_1 + \theta_2)/2]$$

Beat frequency: $\Delta f = f_1 - f_2$

Phase difference due to path difference: $\delta = 2\pi (\Delta x / \lambda)$

For standing waves on a string fixed at both ends: $f_n = nf_1$ with $f_1 = v/2L$ and n = 1,2,3,...

For standing waves on a string fixed at one end, free at the other: $f_n = nf_1$ with $f_1 = v/4L$ and n = 1,3,5,...

Ch. 30

For a plane EM wave moving to the right along +x axis:

$$E_y \ = \ E_0 \, sin(kx - \omega t) \quad ; \quad B_z \ = \ B_0 \, sin(kx - \omega t) \quad ; \quad B_0 = \ E_0 \, / \, c \label{eq:energy}$$

$$c^2 = 1 / (\mu_0 \, \epsilon_0)$$
 $c = 3 \times 10^8 \text{ m/s}$

Ch. 31

Index of Refraction: n = c/v with $n_{air} = 1.0$

Law of Reflection: $\theta_1' = \theta_1$

Snell's Law of Refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Total Internal Reflection: $\sin \theta_C = n_2 / n_1$ with $n_1 > n_2$

Polarization by Absorption (Law of Malus): $I = I_0 \cos^2(\theta)$

Polarization by Reflection: $n_1 \sin \theta_P = n_2 \sin \theta_2$ with $\theta_2 = 90^\circ - \theta_P$

Ch. 32

Mirror equation: 1/s + 1/s' = 1/f where f = r/2

Lateral magnification by mirror: m = y'/y = -s'/s

Image formed by refraction: $n_1/s + n_2/s' = (n_2 - n_1)/r$

Magnification due to refraction: $m = y'/y = -(n_1 s')/(n_2 s)$

Lens-maker's equation: $1/f = (n_1/n_2 - 1)(1/r_1 - 1/r_2)$

Thin-Lens equation: 1/s + 1/s' = 1/f

Power of a lens: P = 1/f (in Diopters = m^{-1})

Lateral magnification by lens: m = y'/y = -s'/s

Angular magnification of a Simple Magnifier: $M = \theta / \theta_o = x_{np} / f$

Magnifying power of a Microscope: $M = m_o M_e \ w/ \ m_o = - L/f_o \ and \ M_e = x_{np}/f_e$

Magnifying Power of a Telescope: $M = \theta_e/\theta_o$ w/ $\tan\theta_o = y/s = -y'/f_o$ and $\tan\theta_e = y'/f_e$

Ch. 33

Phase difference due to path-length difference: $\delta = 2\pi (\Delta r/\lambda)$

Two-slit Interference maxima: $d \sin \theta_m = m \lambda$ where m = 0,1,2,3,...

Two-slit Interference minima: $d \sin \theta_m = (m - \frac{1}{2}) \lambda$ where m = 1, 2, 3, ...

Distance of mth fringe from the central point of the screen: $y_m = L \tan \theta_m$

Intensity of light from interference: $I = 4I_0 \cos^2(\delta/2)$

Single-slit Diffraction minima: $\alpha \sin \theta_n = n \lambda$ where n = 1,2,3,...

Rayleigh's criterion for resolution for a circular aperture of diameter D: $\theta_c = 1.22 \,\lambda/D$

Resolving power of a grating: $R = \lambda / |\Delta \lambda| = mN$, m = order number, N = # of slits