CS-1

Assignment 1.2

Supporting User Choice – Nested Logic Construction

Purpose:

This program will allow a user to have one of two options for entering data. In one case, the user knows exactly how many data items are to be entered. By providing this number to the program, a loop structure can be used which eliminates the necessity for asking the user if they are done yet (as in Assignment 1.1). The program enters a loop that keeps track of the number of entries automatically.

In the other case, the user does not know exactly how many items they will enter in a given session, so it is necessary to allow them to choose the previous style of data entry – that is with a prompt after each entry to find out if they are done.

Thus the user is given a choice of entry methods prior to starting the actual data entry.

Learning Objectives:

To achieve this goal you must learn to construct programming logic that is more complicated than in the previous assignment. Here you will learn how to nest one kind of construct (a loop) within another kind (an if-else). You will also learn how to properly format a program with statement indentation so as to make it readable.

Problem:

Give the user a choice of two modes of data entry. The first mode is a fixed number of iterations based on the number of data entry items supplied by the user before starting. For example, if the user knows that she has exactly 14 items to enter, she could provide this number, 14, at the outset and then the program would loop exactly 14 times prompting for the data, but not asking if the user was done. The second mode is exactly like that in assignment 1.1. The user does not know how many items she will enter and so she must be asked each time if she is done to determine when to terminate the loop.

Requirements:

The program should provide these two modes of input operation. It should query the user whether or not they know how many entries will be made and then, if they do, get that number and set up to iterate exactly that number of times. If the user does not know (or indicates they do not) then the program sets up to do an indeterminate number of iterations, prompting the user for completion after each entry (as in Assignment 1.1).

This program will require you to pay close attention to indentation of statements. The indentation is meant to highlight (and follow) the logic structure of the program. Proper use of indentation makes the program much easier to read and modify. You may use the indentation given below in the Algorithm section.’

All general requirements (e.g. name, etc. in header comment) as in Assignment 1.1.

Algorithm:

// Program to allow user to choose mode of data entry

Put the program title on the screen

Initialize working variables (e.g., sum)

Ask the user if they know how many items will be entered

Get the answer

IF they say ‘Y’ (yes) then

Prompt for that number and record it as the count

Enter a FOR loop

Prompt for the data

Add it to the running sum

End of for loop

ELSE (otherwise)

Initialize the count to zero

Enter a WHILE loop

Prompt for the data

Add it to the running sum

Increment the count variable

Prompt for ending the loop

Get the answer

IF the answer is ‘Y’ set the condition to terminate the loop

End of while loop

End of IF-ELSE

Compute the average (= sum/count)

Display the result

Terminate

Use the computation algorithm for average as given in Assignment 1.1.

Resources:

Note that the while-loop algorithm is exactly the same as in Assignment 1.1. This means that you do not have to reinvent the wheel! You can use a copy-and-paste approach to copying that algorithm into your new program. Take care to properly indent the loop within the ELSE clause of the IF-ELSE structure for readability.

You will reuse the Console.class library to get keyboard input and write output to the screen.

Turn-in:

On a floppy disk, turn in your source code for ComputeAverage2.java program. Be sure your name and other data are in the program header comment.

