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Psychology will be a Much Better Science
When We Change the Way We Analyze Data

Geoffrey R. Loftus
University of Washington

In 1964, I entered the field of Psychology
because I believed that within it dwelt some of
the most fundamental and challenging problems
of the extant sciences. Who could not be in-
trigued, for example, by the relation between
consciousness and behavior, or the rules guiding
interactions in social situations, or the processes
that underlie development from infancy to ma-
turity?  

Today, in 1996, my fascination with these
problems is undiminished. But I've developed a
certain angst over the intervening thirty-
something years—a constant, nagging feeling
that our field spends a lot of time spinning its
wheels without really making all that much pro-
gress. This problem shows up in obvious
ways—for instance, in the regularity with which
findings seem not to replicate. It also shows up
in subtler ways—for instance, one doesn't often
hear Psychologists saying, "Well this problem is
solved now; let's move on to the next one" (as,
for example, Johannes Kepler must have said
over three centuries ago, after he had cracked
the problem of describing planetary motion).

I've come to believe that at least part of this
problem revolves around our tools—particularly
the tools that we use in the critical domains of
data analysis and data interpretation. What we
do, I sometimes feel, is akin to trying to build a
violin using a stone mallet and a chain-saw. The
tool-to-task fit is not all that good, and as a re-
sult, we wind up building a lot of poor-quality
violins.

My purpose here is to elaborate on these is-
sues. In what follows, I will summarize our major
data-analysis and data-interpretation tools, and
describe what I believe to be amiss with them. I
will then offer some suggestions for change.
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The Universality of Null Hypothesis Sig-
nificance Testing

The vast bulk of data analysis and data in-
terpretation in the social and behavioral sciences
is carried out using a set of techniques collec-
tively known as null hypothesis significance
testing (NHST). The logic of NHST goes as
follows.

1. One begins with the hypothesis that some in-
dependent variable will have an effect on some
dependent variable. At its most general level, the
hypothesis can be expressed as:

not  (µ1 = µ2 =...= µJ) (Eq. 1)

where µ1...µJ are the means1 of J population
distributions of the dependent variable that cor-
respond to J levels of the independent variable.
Equation 1 is generically referred to as an "al-
ternative hypothesis," or H1.

2. An experiment is conducted in which J ran-
dom samples of the dependent variable are ob-
tained—one sample for each level of the inde-
pendent variable. This yields the observed sam-
ple means M1...MJ, which are estimates of the
population means µ1...µJ. Generally it is not true
that M1 = M2 =...= MJ; i.e., there will always be
some differences among the sample means. What
needs to be determined is whether the observed
differences among the sample means are due
only to errors in measurement, and/or to noise,
or whether they are due, at least in part, to corre-
sponding differences among the population
means. Informally, the investigator needs to pro-
vide a convincing argument that the observed
effect is “real.”

3. To this end, the investigator endeavors to
compute the probability (known as p)2 of ob-

                                                

1 Actually NHST can be applied to any population pa-
rameter. I use means here because means are by far the
parameter of greatest concern in social science experi-
ments.

2 A brief note of clarification is in order here. The enti-
tity I have referred to as "p", which is computed from
the data, is Fisher's exact level of significance (Fisher,
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serving differences among the M's as great as
those that were actually observed given that, in
fact, the J population means are all equal, i.e.,
that

µ1 = µ3 =...= µJ (Eq. 2)

This hypothesis that the population means are
equal is referred to as the "null hypothesis," or
H0.

4. Based on a comparison of the computed value
of p with a criterion value of p known as α (α is
usually set at 0.05), the investigator makes a bi-
nary decision. If p is less than α then the investi-
gator makes a strong decision to "reject H0" in
favor of H1 (a decision which is usually phrased
as, "the observed effect is statistically signifi-
cant"). If p is greater than α , then the investiga-
tor makes a weak decision to "fail to reject H0."
Two types of errors can be committed in this
setting. One commits a Type-I error when one
incorrectly rejects a true null hypothesis. If the
null hypothesis is true, then the probability of a
Type-I error is, by definition, equal to
α (typically .05). One commits a Type-II error
when one incorrectly fails to reject a false null
hypothesis. If the null hypothesis is false, a
Type-II error is committed with probability β. In
general, we do not know the value of β because
we have no information, and no assumptions,
regarding the values of the actual µ’s, given that
the null hypothesis is false. Statistical power is
defined to be (1 - β), which is interpreted as the
probability of correctly rejecting a false null hy-
pothesis. Because β is not generally known, nei-
ther is power.

5. Finally, based on a series of such deci-
sions—that is, rejecting, or failing to reject a se-
ries of null hypotheses—the investigator tries to

                                                                    

1925; 1935). The related entity known as "α", described
below, is the Neyman-Pearson probability of at Type-I
error, which is decided upon before the data are collected.
The Pearson and Neyman-Pearson approaches to statis-
tics are quite different but, as splendidly described by
Gigerenzer, Swijtink, Porter, Daston, Beatty, & Kruger
(1989, pp. 78-109), they have been "hybridized" over
the years and it is the resulting mish-mash that has been
almost universally taught as "the statistical method"
over the past half century. A detailed analysis of this
issue is beyond the scope of this article, but Gigerenzer
et al. make a convincing case that the confusion of the
two approaches is responsible for much of what has
gone astray with modern statistical practice. The de-
scription of NHST that I provide here—and which I will
inveigh against—is, essentially, a description of this
commonly used hybridized approach.

make sense of the data set, no matter how com-
plex the data set might be.

Although variants of this procedure consti-
tute the primary means of making conclusions
from the vast majority of psychology experi-
ments, I do not believe that it is a fruitful way of
interpreting data or understanding psychological
phenomena. On the contrary, I believe that reli-
ance on NHST has channeled our field into a
series of methodological cul-de-sacs, and it’s
been my observation over the years (particularly
over my four years as editor of Memory & Cog-
nition) that conclusions made entirely or even
primarily based on NHST are at best severely
limited, and at worst highly misleading. Below I
will articulate the reasons for these beliefs.

I’m by no means the first to issue such
charges. Periodically a book or an article will
appear, decrying the enormous reliance we place
on NHST3. Sadly, however, although such air-
ings of the issues occasionally attract attention,
they have not (up until now, anyway) impelled
widespread action4. They have been carefully
crafted and put forth for consideration, only to
just kind of dissolve away in the vast acid bath of
existing methodological orthodoxy.

I have two goals in this article: first to sum-
marize some of the major problems with NHST,
and second to suggest some alternative tech-
niques for extracting more insight and un-
derstanding from a data set.

                                                

3 A sample of these writings is, in chronological order:
Tyler (1931); Jones (1955); Nunnally (1960); Roze-
bloom (1960); Grant (1962); Bakan (1966); Meehl
(1967); Lykken (1968); Carver (1978); Meehl (1978);
Berger & Berry (1988); Hunter & Schmidt (1989);
Gigerenzer, Swijtink, Porter, Daston, Beatty, & Kruger
(1989); Rosnow & Rosenthal (1989); Cohen (1990);
Meehl (1990); Loftus (1991); Carver (1994); Cohen
(1994); Loftus & Masson (1994); Maltz (1994);
Schmidt (1996); and Schmidt & Jones (1997).

4 This situation may finally be changing. Symposia at
both the 1996 APS convention and the 1996 APA con-
vention have aired the shortcomings of NHST as the
primary data-analysis technique in the social sciences;
see also Shea (1996). An APA task force has been set
up to study the value of NHST. At least one journal ed-
itor has tried to discourage NHST (Loftus, 1993a,
which provoked the caustic observation by Greenwald,
Gonzalez, Harris, & Guthrie, 1994, that every recent
empirical article in Loftus's journal, Memory & Cogni-
tion, has used NHST nonetheless).
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Six  Things to not Like about NHST
In this section, I will articulate six major

problems with NHST. As I have indicated, they
have been described before. But they bear re-
peating, and it is useful to consider them in con-
cert.

(1) The Usual Impossibility  of  a Typical Null
Hypothesis

NHST usually revolves around the testing
of a null hypothesis that couldn’t really be true
to begin with. To illustrate, suppose one pre-
sented subjects with digits on a computer screen
and were interested in effects of stimulus dura-
tion on the subsequent recall of the digits. One
might run an experiment in which digit strings
were shown for one of five exposure durations
ranging from say 10 to 100 ms, measuring pro-
portion of correctly recalled digits in each con-
dition. In the usual hypothesis-testing frame-
work, one would establish the following null hy-
pothesis:

µ1 = µ2 = µ3 = µ4 = µ5 (Eq. 3)

where the µ’s refer to the population means of
percent digits recalled for each of the five expo-
sure durations. Note that the logic of NHST de-
mands that the equal signs in Equation 3 mean
equal to an infinite number of decimal places. If
one weakens this requirement such that "="
means "pretty much equal," then one must add
additional assumptions specifying what is meant
by "pretty much." Although the mathematical
machinery for doing this has been worked out
(e.g., Greenwald, 1975; Hays, 1973; Serlin,
1993), it is rarely (if ever) implemented in prac-
tice.

This null hypothesis of identical population
means cannot be literally correct. As Paul Meehl
(1967) has pointed out, "Considering...that eve-
rything in the brain is connected with everything
else, and that there exist several 'general state-
variables' (such as arousal, attention, anxiety and
the like) which are known to be at least slightly
influenceable by practically any kind of stimu-
lus input, it is highly unlikely that any psycho-
logically discriminable situation which we apply
to an experimental subject would exert literally
zero effect on any aspect of performance." Al-
ternatively, the µ's can be viewed as measurable
values on the real-number line. Any two of them
being identical implies that their difference (also

a measurable value on the real-number line) is
exactly zero—which has a probability of zero5.

Accordingly, differences in exposure du-
ration must lead to performance differences even
if such differences are small, and the relevant
question is not really, "Are there any differences
among the population means?” Rather, the rele-
vant questions are: (1) How big  are the differ-
ences, (2) are they big enough for the in-
vestigator to care about; and if so, (3) what pat-
tern do they form? In short, testing the null hy-
pothesis of Equation 2 can’t provide new in-
formation. All it can do is to indicate whether
there is enough statistical power to detect what-
ever differences among the population means
must be there to begin with. As I have noted
elsewhere (Loftus, 1995), rejecting a typical null
hypothesis is like rejecting the proposition that
the moon is made of green cheese. The ap-
propriate response would be: "Well yes, ok...but
so what?"

(2) “Significance” vs the Underlying Pattern of
Population Means

A finding of “statistical significance” only
constitutes evidence (and vague evidence at that,
as we shall see) that a null hypothesis of the sort
embodied in Equation 2 is false. Such a finding
provides no information about form of the un-
derlying pattern of population means which is
presumably what’s important for making scien-
tific conclusions.

There are several ways of dealing with this
problem. First, one can address it using post-hoc
tests, whereby reject/fail-to-reject decisions are
made about particular pairs of means. But post-
hoc tests have problems. First, within the hy-
pothesis-testing framework, the more such tests
are carried out, the greater is the probability of
committing at least one Type-I error. It is possi-
ble to adjust for this problem, but only at the
expense of raising the probability of committing
a Type-II error. Second, and more generally,
post hoc tests focus on specific pairs of means,

                                                

5 One caveat is in order here. There are some experi-
ments in which a null hypothesis could genuinely be
true (see, e.g., Frick, 1995, for a discussion of this
topic). A good example (attributable to Greenwald, et
al., 1996) is a qualitative null hypothesis such as that a
defendant in a murder case is actually the murderer. In
such a case, the null hypothesis could certainly be true,
and rejecting it (say based on DNA matches) would be a
meaningful conclusion. However, these kinds of exper-
iments are the exception rather than the rule in the so-
cial sciences.
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which, when there are more than two conditions,
is only an indirect way of assessing the entire
pattern of means.

A second means of addressing the problem
is via planned comparisons. Use of planned
comparisons entails first generating a pattern of
weights—one weight per experimental condi-
tion—that constitute the prediction of some ex-
perimental hypothesis about the overall pattern
of population means. The correlation between
the weights and the observed sample means then
constitutes (essentially) a measure of how good
the hypothesis is. Use of planned comparisons
can be an informative and efficient process. The
problem with planned comparisons, however, is
that in practice, they are rarely used. I will have
more to say about planned comparisons in a
later section.

(3) Power
The third problem has to do with lack of

attention to statistical power. NHST has come to
revolve critically around the avoidance of Type-
I errors. This occurs mainly because the prob-
ability of a Type-I error (α) can be computed.
In contrast, the probability of a Type-II error (β)
and concomitantly power (1 - β) usually cannot
be computed. This is because computation of β
and power requires a specific, quantitative hy-
pothesis (e.g., µ2 = µ1 + 10 in a two-condition
experiment), and such quantitative hypotheses
are exceedingly rare in the social sciences.

Lack of power analysis is particularly trou-
blesome when an investigator bases a conclusion
on the proposition that some null hypothesis is
true (rather than making the logically correct
decision of "failing to reject the null hypothe-
sis"). In such a case one cannot be sure whether
there are in fact relatively small differences
among the population means (a conclusion that
can only be made when there is high power) or
whether there may be large differences among
population means that are undetected (a conclu-
sion that is implied by low power). With high
power, an investigator may be justified in ac-
cepting the null hypothesis "for all intents and
purposes." The lower the power, the less accept-
able is such a conclusion.

As noted, lack of power analysis often stems
from the lack of quantifiable alternative hy-
potheses that characterizes the social sciences in
general, and Psychology in particular. Nonethe-
less, there are ways of conveying the overall state
of statistical power in some experiment (par-
ticularly through use of confidence intervals, as
will be illustrated in an example below).

(4) The Artificial "Effects/Non-Effects"  Dichot-
omy

A related problem is not, strictly speaking, a
problem in the logic of NHST. Rather, it is a
problem that arises because investigators, like all
humans, are averse to making decisions that are
both complicated and weak, such as, "we fail to
conclude that the null hypothesis is false."
Rather, people prefer simple strong decisions
such as, "the null hypothesis is true." This fact of
human nature fosters an artificial dichotomy that
revolves around the arbitrary nature of the .05
criterion α level.

Most people, if pressed, will agree that there
is no essential difference between finding, say,
that p = .050 and finding that p = .051. How-
ever, investigators, journal editors, reviewers, and
scientific consumers often forget this and behave
as if the .05 cutoff were somehow real rather
than arbitrary. Accordingly, the world of per-
ceived psychological reality tends to get divided
into “real effects” (p ≤ .05) and “non-effects”
(p > .05). Statistical conclusions about such
“real effects” and “non-effects” made in Re-
sults sections then somehow get sanctified and
transmuted into conclusions that endure into
Discussion sections and beyond, where they in-
sidiously settle in and become part of our disci-
pline’s general knowledge structure6. The mis-
chief thereby stirred up is incalculable. For in-
stance, when one experiment shows a significant
effect (p ≤ .05), and an attempted replication
shows no significant effect (p > .05), a "failure to
replicate" is proclaimed. Feverish activity ensues,
as method sections are scoured and new experi-
ments run, in an effort to understand the circum-
stances under which the effect does or does not
show up—and all because of an arbitrary cutoff
at the .05 α level. No wonder there is an epi-
demic of "conflicting" results in psychological
research! This state of affairs is analogous to a
chaotic phenomenon in which small initial dif-
ferences lead to enormous differences in the
eventual outcomes. In the case of data analysis,
chaos is inimical to understanding, and it is more
appropriate that similar results (e.g., p = 0.050
and p = 0.051) yield similar conclusions rather
than entirely different conclusions.

(5) The Hypothesis-Testing Tail Wags  the The-
ory-Construction Dog

Central to NHST is computation of p, the
probability of a Type-I error. However, this

                                                

6 See Rosenthal & Gaito, 1963, for an interesting em-
pirical demonstration of this assertion.
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probability is difficult or impossible to compute
unless routine, simplifying assumptions are
made about the nature of the psychological pro-
cesses under consideration. These assumptions
then insinuate themselves into, and become in-
tegral to much of psychological theory. Some of
the most common such assumptions are these:

1. The dependent variable is a linear combina-
tion of a collection of "effects"—effects due to
the independent variables, to the interactions
among the independent variables, and to various
sources of "error."

2. The errors are distributed normally.

3. The variances of the error distributions are
equal across various conditions.

Thus, the nature of the data-analysis tech-
nique generally dictates the nature of psycho-
logical theory which, in turn, engenders strong
biases against formulating theories incorporating
other perhaps more realistic and/or interesting
assumptions. Accordingly, psychological theory
becomes generic linear-model theory and a lot
of potential for insight is lost. The situation
might be summarized as, “Off the shelf as-
sumption produce off the shelf conclusions ."

To illustrate this problem, suppose an ex-
periment is designed to investigate whether the
rate of forgetting depends on degree of original
learning. In this experiment, word lists are taught
to subjects whose recall is tested following inter-
vals that vary from zero to five days. There are
two groups of subjects. The high-learning sub-
jects are allowed to learn the lists to a criterion
level of 100% correct, while low-learning sub-
jects learn the lists to a lower criterion level. The
major data from this experiment are forgetting
curves of the sort shown in Figure 1: here, mem-
ory performance is plotted as a function of re-
tention interval.

The default data-analysis procedure in such
an experiment would be to carry out a two-way
analysis of variance (ANOVA). Let us suppose
that the experimental power is sufficiently great
that the ANOVA reveals statistically significant
main effects of both learning level and retention
interval, along with a significant interaction. It is
evident in Figure 1 that the form of the inter-
action indicates a shallower "slope" for the low-
learning than for high-learning condition (i.e.,
the vertical difference between the curves be-
comes smaller with increasing retention interval).
The typical conclusion issuing from these obser-
vations would be that forgetting is slower fol-
lowing low learning than following high learn-

ing (this logic was used by Slamecka & McElree,
19837).

This standard data-analysis procedure,
along with the concomitant conclusion, would
mask a very interesting regularity in the data: As
is indicated by the horizontal lines on the figure,
the horizontal difference between the high-
learning and low-learning forgetting curves is
constant. As shown by Loftus (1985a; 1985b;
see also Loftus & Bamber, 1990) such horizon-
tal equality is, under very general assumptions, a
necessary and sufficient condition to infer equal
high- and low-learning forgetting rates. Indeed,
the Figure-1 curves were generated from expo-
nential decay equations of the form:

Low learning: p = e-0.3t

High learning: p = e-0.3 (t+2)

where p is performance and t is forgetting time
(in days). Here, the equal forgetting rates are
expressed by the same exponential decay pa-
rameter (0.3) in both equations.

                                                

7 Actually Slamecka & McElree found no significant
interaction between degree of original learning and reten-
tion interval, and hence concluded that forgetting rate did
not depend on degree of original learning. However, dif-
ferent data sets using the same general paradigm show
different forms of interactions that would lead variously
to the conclusion that higher-learning forgetting is
faster, that higher-learning forgetting is slower and that
high- and low-learning forgetting do not differ (a meta-
finding that should, in and of itself, provoke suspicion
that something is fundamentally amiss). In any event, it
is the logic of the data-analysis technique, not the con-
clusion, that is primarily at issue here.
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the two curves are horizontally parallel.



GEOFFREY R. LOFTUS SIGNIFICANCE TESTING PAGE  6

Current Directions in Psychological Science (1996, 161-171)

In this example, the principal finding is (or
should be) that the horizontal difference be-
tween the two curves is constant. It is this finding
that would imply no difference between high-
and low-learning forgetting rates. However, in-
vestigators working within the hypothesis-testing
framework would tend to miss this critical regu-
larity, or would dismiss it, for at least two rea-
sons. First, it is not immediately obvious how a
standard significance test could be carried out
that is relevant to the finding8, and without a
significance test a finding is not generally
deemed "valid." Second the logic of the linear
model within which standard ANOVA is
couched focuses on differences between the de-
pendent variable at a fixed level of the inde-
pendent variable (vertical differences), rather
than differences between the independent vari-
able at a fixed level of the dependent variable
(horizontal differences).

(6) NHST Provides  Only Imprecise Information
about the Validity of  the Null Hypothesis
The final problem which has been ham-

mered at by Bayesian statisticians9 for decades,
is this. By convention, one rejects some null hy-
pothesis when

(1) p(observed data | null hypothesis) < 0.05,

while rejecting the null hypothesis implies the
conclusion that

(2) p (null hypothesis | observed data) is small.
(What else could be meant by the phrase "reject
the null hypothesis"?) But without additional
                                                

8 Which isn't to say such a test couldn't be invented; it
simply isn't part of general statistical knowledge or
(what is probably more important) part of present statis-
tics computer packages.

9 e.g., Berger & Berry (1988); Winkler (1993); see also
Cohen (1994).

information, there is no logical basis for con-
cluding the validity of (2) given the finding em-
bodied in (1). Indeed, the probability of the null
hypothesis given the data could be shown to be
anything given suitable assumptions about the
prior (pre-data) probability that the null hy-
pothesis is true. Without specific assumptions
about this prior probability, the exact probability
of the null hypothesis given the observed data is
unknown. In short, the common belief that the
precise quantity, ".05", refers to anything mean-
ingful or interesting is illusory.

Alternatives
I now suggest four (by no means mutually

exclusive) alternatives to traditional NHST. My
major goal in making each of these suggestions
is simple and modest: it is to increase our ability
to understand what a data set is trying to tell us.
These techniques are not fancy or esoteric.
They’re just sensible.

(1) Plot Data  Rather than Presenting Them as
Tables-Plus-F-and-p-Values

In a previous article (Loftus, 1993b) I de-
scribed some fictional data collected by a fic-
tional psychologist named Jennifer Loeb. The
story went as follows. Loeb was interested in
memory for visual material and carried out a
task in which visual stimuli were displayed and
then recalled. There were three independent
variables in Loeb’s experiment, all varied at the
time of stimulus presentation, which were:
Stimulus exposure duration (eight values, rang-
ing from 20 to 230 ms), verbal encoding (pro-
hibited or required), and stimulus spatial uncer-
tainty (high or low).

Based on a specific theory, Loeb had three
predictions. First she predicted her performance
measure to be a linear function of stimulus ex-
posure duration. Second, she predicted the slope
of this function to be higher with verbal encod-

Table 1. Performance as a function of exposure duration for four conditions

Exposure Duration (ms)

Condition 20 50 80 110 140 170 200 230

NVE/HU 0.287 0.503 0.843 1.005 1.468 1.664 2.102 2.257

VE/HU 0.461 1.192 1.399 2.360 3.008 3.236 3.908 4.649

NVE/LU 0.099 0.536 1.192 1.461 1.626 2.048 2.657 2.874

VE/LU 0.683 1.475 2.822 3.747 4.863 5.397 6.861 7.849

aNotes: NVE: No Verbal Encoding. HU: High Uncertainty
VE: Verbal Encoding. LU: Low Uncertainty
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ing. Third, she predicted the slope to be higher
with lower spatial uncertainty.

Table 1, which shows a common way of
presenting data like Loeb’s, lists the values of
her performance measure for all 8 x 2 x 2 = 32
conditions. Accompanying NHST results—long
compendia of F-ratios and p-values corre-
sponding to the main ANOVA plus subsidiary
tests—are generally provided as part of the text
(often spanning many tedious pages).

Most people find such tabular-cum-text
data presentation difficult to assimilate. That isn't
surprising. Decades of cognitive research, plus
millennia of common sense, teach us that the
human mind isn’t designed to integrate in-
formation that is presented in this form. There’s
too much of it, and it can’t be processed in par-
allel10.

An alternative way of presenting Loeb’s
data is shown in Figure 2. Here, performance is
plotted as a function of exposure duration for
                                                

10 One might argue that tables are useful when a reader
needs exact values of the data points. However, such
situations are quite rare, and when they do occur, exact
values are obtainable from the investigators—a process
that is particularly easy in these days of electronic
communication.

the verbal conditions (top panel) and the non-
verbal conditions (bottom panel). The two
curves within each panel are for the low-uncer-
tainty and high-uncertainty conditions. Best fit-
ting linear functions are drawn through the data
points. With the data presented like this, one can
acquire in a glance—or at most, a couple of
glances—the same information that it would
have taken practically forever to get out of Table
1. A picture really is worth 1000 words.

 (2) Provide Confidence intervals
The Figure-2 plot indicates that Loeb’s

obtained pattern of sample means confirms her
predictions pretty well. The curves are generally
linear, verbal encoding yields a higher slope
than no verbal encoding, and low uncertainty
yields a higher slope than high uncertainty.

However, this plot provides no indication of
the sort of error variance that is typically in-
cluded as part of an ANOVA. Figure 3 remedies
this deficiency: It shows the same data along
with 95% confidence intervals placed around the
sample means (computed, in this within-subjects
design, as described by Loftus & Masson, 1994).

Figure 3 illustrates my second suggestion,
which is to put confidence intervals around all
sample statistics that are important for making
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conclusions. Figure 3 provides most of the cru-
cial information about Loeb’s data. The ob-
served pattern of sample means provides the best
estimate of the underlying pattern of population
means upon which conclusions should be based.
The provision of confidence intervals allows the
reader to assess the degree of statistical
power—the smaller the confidence intervals, the
greater the power. Power, in contrast to its pro-
foundly convoluted interpretation within the hy-
pothesis-testing framework, can here be simply
interpreted as an indication of how seriously the
observed pattern of sample means should be
taken as a reflection of the underlying pattern of
population means.

One could further analyze these data by, for
instance, computing the slope for each of the
four verbal encoding x uncertainty conditions
for each subject. These four slopes could then
be plotted along with their confidence intervals,
One could go still further by, for instance, com-
puting mean slope differences along with
their confidence intervals. Such procedures cor-
respond to graphic illustrations of various kinds
of interactions. Creative use of such procedures
allows one to jettison NHST entirely.

Confidence intervals as a guide  to "accepting
the null hypothesis"

The provision of confidence intervals is
particularly useful when one wants to accept
some null hypothesis “for all intents and pur-
poses.” Another fictional data set11 involves a
clinician whom I will call “Christopher Sand-
ers.” In this account, Sanders developed a clini-
cal technique to decrease agoraphobia that is
cheaper than the generally used “Standard
technique.” Sanders ran a simple experiment to
compare his technique with the Standard tech-
nique. In this experiment, forty agoraphobic
individuals were randomly assigned to be ad-
ministered either the Standard or the Sanders
treatment. A year later, each individual’s ago-
raphobia was assessed on a 10-point scale. Sand-
ers’ hope was that there would be no difference
between the two treatments, in which case his
treatment, being cheaper, would presumably be
preferred to the Standard treatment.

Sanders got his hoped-for result, and re-
ported it thusly: “The mean agoraphobia scores
of the Standard and the Sanders groups were
5.05 and 5.03. The difference between the two
groups was not statistically significant, p > .05.”
Sanders went on to conclude that the cheaper

                                                

11 Also introduced by Loftus (1993b).

Sanders technique was therefore the preferred
one.

What is implied by the phrase “not signifi-
cantly different” in Sanders's report? We can't
tell, because Sanders provided no indication of
statistical power, evaluation of which would be
critical for justifying his accepting the null hy-
pothesis of no treatment difference.

Sanders’ report is consistent with many
possibilities, two of which are presented in Fig-
ure 4. Given the top panel outcome, where small
confidence intervals reflect high experimental
power, Sanders’ acceptance of the null hypothe-
sis would be reasonable: Here it is readily appar-
ent that the actual difference between the Sand-
ers and Standard population means must be
quite small. In contrast, given the bottom panel
outcome, where large confidence intervals reflect
low statistical power, Sanders’ acceptance of the
null hypothesis would be unconvincing: the ac-
tual population mean difference between the two
treatments could vary widely.

There is a noteworthy epilogue to this story:
When pressed, over drinks, at a professional con-
ference, Sanders further defended his acceptance
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of the null hypothesis by pointing out that the
actual t-value he obtained in his t-test was very
small—"Practically zero!" he declared proudly.
And so it was that Sanders committed the com-
mon error of equating smallness of the test sta-
tistic with permissibility of accepting the null
hypothesis. Ironically, it can be easily shown
that, given a particular mean difference, the
smaller the t-value, the lower is power—and
hence, the less appropriate it is to accept the null
hypothesis.

Plus ça change, plus c’est la même chose.
The notion of using confidence intervals in

this way—as a guide to accepting a null hy-
pothesis "for all intents and purposes"—is not
new. Thirty-four years ago the following sug-
gestion appeared in the pages of the Psycholog-
ical Review .

“In view of our long-term strategy of
improving our theories, our statistical
tactics can be greatly improved by
shifting emphasis away from overall
NHST in the direction of statistical es-
timation. For example [when testing a
presumed null pre-treatment difference
between two groups, an investigator]
would do better to obtain a...confidence
interval for the pre-treatment difference.
If the interval is small and includes zero,
[the investigator] is on fairly safe
ground; but if the interval is large, even
though it includes zero, it is immediately
apparent that the situation is more seri-
ous. In both cases, H0 would have been
accepted” (Grant, 1962).

Confidence intervals and  statistical significance
A section on confidence intervals would be

incomplete without a discussion of the question:
"How do you make a decision about whether
some variable has an effect by just looking at
confidence intervals?12"

The answer is: You can't13. This, I would
assert, is an advantage rather than a disadvantage

                                                

12 In numerous statistics classes and in other forums in
which I have discussed this issue, a question that I can
absolutely count on is: In a two-condition situation,
what is the relation between error-bar overlap, and the
reject/fail to reject decision?

13 At least not usually. In a two group design, nonover-
lapping 95% confidence intervals implies that a two-
tailed, α = .05 t-test would lead to a conclusion of "sta-
tistically significant." However if the error bars do over-
lap, and/or if there are more than two conditions in the

of using plots plus confidence intervals rather
than depending on NHST. I have argued above
that a major difficulty with NHST is that it re-
duces data sets into a series of effect/no effect
decisions and that this process, artificial as it is,
leads the field astray in many ways. It imposes
the illusion of certainty on a domain that is in-
herently ambiguous. Simply showing data, with
confidence intervals, provides a superset of the
quantitative information that is provided by a
hypothesis-testing procedure, but it does not
foster the false security embodied in concrete
decision that is based on a foundation of sand.

(3) Meta-Analysis and  Effect Size
An increasingly popular technique is that of

meta-analysis (e.g., Schmidt, 1992, 1996;
Rosenthal, 1995). Meta-analysis entails con-
sidering a large number of independent studies
of some phenomenon (for example, gender dif-
ferences in spatial ability) and (essentially) av-
eraging the observed effects across studies to
arrive at a overall effect. This technique is par-
ticularly useful when two conditions are being
compared, but trickier when the question under
investigation involves more than two conditions
(see Richardson, 1996, for a discussion of this
issue).

To illustrate, consider the question of gen-
der differences in spatial ability. Suppose that, in
fact, there is some difference in spatial ability
between the population of males and the popu-
lation of females. The direction and magnitude
of this difference might be investigated in many
(say 25) separate studies. Each individual study
produces some observed gender difference (pre-
sumably the mean male spatial score minus the
mean female spatial score) that constitutes that
experiment's estimate of the population mean
difference. Meta-analysis would entail averaging
all 25 reported differences, thereby arriving at a
single estimated difference that is (roughly
speaking) five times as accurate as any of the
individual estimates.

One problem is: What actual number should
be extracted from each of the individual studies?
One could simply use the raw difference, what-
ever it might be. The problem with this is that
different studies presumably use somewhat dif-
ferent measures of spatial ability, different ways
of carrying out the experiment, different popu-
lations of subjects, and so on; thus the raw meas-
ures wouldn't be comparable across the studies.
                                                                    

experiment the relation between confidence interval pat-
tern and statistical significance is not immediately ap-
parent.
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The typical solution is to compute effect size
which, in its simplest incarnation, is the mean
difference observed in a given experiment di-
vided by the obtained estimate from that ex-
periment of the population standard deviation. It
is these effect sizes that are then averaged to ar-
rive at an overall estimate of the population ef-
fect size.

(4) Planned Comparisons (Contrasts)
My final suggestion, which I alluded to ear-

lier, is to carry out planned comparisons on a
data set. The use of planned comparisons is a
technique that has been strongly advocated, and
clearly described by many14. In my opinion,
however, it is a technique that is surprisingly un-
derutilized.

Briefly, carrying out a planned comparison
involves the following steps.

1. First, one generates a quantitative hypothesis
(even a relatively simple one will do) about the
underlying pattern of population means corre-
sponding to the conditions in some experiment.
Suppose, for example, that one were investigat-
ing the relation between problem-solving time
and alcohol consumption. An experiment is de-
signed in which subjects are assigned to one of
five groups that differ in terms of amount of
alcohol consumed—0, 1, 2, 3, or 4 oz—and
problem-solving time is measured for each
group. A hypothesis to be tested is that problem-
solving time increases linearly with number of
ounces of consumed alcohol.

2. Next, hypothesis in hand, one generates
weights—one weight per condition—that cor-
respond to the hypothesized pattern of means.
One constraint is that the weights must sum to
zero; thus, in this example, the weights repre-
senting the linearity hypothesis would be: -2, -1,
0, 1, 2.

3. The experiment is carried out and the
means—in this example, the five mean problem-
solving times—are computed.

4. Finally, one (essentially) computes an over-
conditions correlation between the weights and
the sample means. The magnitude of the Pear-
son r2 that emerges reflects the goodness of the
hypothesis. Various other more sophisticated
procedures can also be carried out, the nature of
which are beyond the scope of this article.

                                                

14See, for example, Abelson (1995), Hays (1973),
Loftus & Loftus (1988), and Rosenthal & Rosnow
(1985).

Conclusions
I’ve tried to provide a variety of reasons

why NHST, as typically utilized, is barren as a
means of transiting from data to conclusions.
I’ve tried to provide some examples of tech-
niques—these are standard techniques, not bi-
zarre or fancy ones—to replace standard NHST.
These techniques are: First to plot  the data rather
putting them in tabular form, second to put con-
fidence intervals around important sample statis-
tics, third to use meta-analysis, and fourth to use
planned comparisons. These techniques are all
designed to assist in the ultimate goal of under-
standing what it is that some data set is trying to
tell us.

This article is entitled “Psychology will be
a much better science when we change the way
we analyze data.” I hope that my arguments
make it clear why I believe this to be true. I be-
lieve that in order for any science to progress
satisfactorily, its primary data-analysis tech-
niques must provide genuine insight into what-
ever phenomenon its practitioners set out to in-
vestigate. The primary data analysis technique of
Psychology—NHST—does not, as I’ve tried to
demonstrate, meet this criterion.

Acquisition of insight is often difficult in
the social sciences, which are cursed with large
numbers of uncontrollable variables, and hence
error variance that has to be dealt with somehow.
I believe that, historically, social scientists have
embraced NHST procedures because they pro-
vide the appearance of objectivity. These proce-
dures may indeed be objective in the sense that
they provide rules for making scientific deci-
sions. But objectivity is not, alas, sufficient for
insight. I believe that these rules provide only
the illusion  of insight—which is worse than pro-
viding no insight at all.
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