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We describe a theory of memory for visual material in which the visual
system acts as a linear filter operating on a stimulus to produce a function,
a(t), relating some sensory response to t, the time since stimulus onset.
Stimulus information is acquired at a rate proportional to the product of (1)
the magnitude by which a(t) exceeds some threshold and (2) amount of as-
yet-unacquired information. Recall performance is assumed to equal
proportion acquired information. The theory accounts for data from two
digit-recall experiments wherein stimulus temporal waveform was
manipulated. We comment about the theory's account of the relation
between two perceptual events: the phenomenological experience of the
stimulus and the memory representation that accrues from stimulus
presentation. We assert that these two events, although influenced by
different variables, can be viewed as resulting from two characteristics of the
same sensory-response function.

We are concerned here with perception of
and memory for complex visual stimuli. By
"complex" we mean stimuli such as alphanu-
meric characters, words, or naturalistic scenes,
that must be pattern recognized, interpreted, and
processed by the cognitive system, rather than
simple, to-be-detected light patches or sine-
wave gratings. Our major goal is to incorporate
a model that has been successfully used to
account for a variety of low-level visual
phenomena (e.g., time-intensity tradeoffs, and
flicker perception) into a broader theory de-
signed to account for higher-level cognitive
tasks such as recall and picture recognition.

Our theory development is motivated in part
by the substantial body of research implying
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intimate perceptual connections between stimu-
lus duration on the one hand, and stimulus in-
tensity on the other. Before describing the the-
ory we will, accordingly, provide a brief sketch
of this research, and describe an experiment
designed to relate it to memory for visual mate-
rial.

Bloch's Law: Strong Intensity-Duration
Tradeoffs with Simple Visual Stimuli
The most fundamental duration-intensity re-

lation is captured in Bloch's Law, which asserts
that for stimuli shorter than some critical
duration (around 100 ms) there is an almost
perfect tradeoff between intensity and duration
with respect to threshold detection performance.
Essentially, detection performance in the critical
range depends only on the integral of intensity,
irrespective of how this intensity has been
distributed over time. Bloch's Law has been
confirmed many times, but almost always
within the context of simple stimuli and simple
tasks1.

                                                
1Instances of these confirmations are: Hood & Grover
(1974), Kahneman (1968), Kahneman & Norman
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Weaker Intensity-Duration Tradeoffs
with Complex Visual Stimuli

Does Bloch's Law apply within the context
of more complex stimuli and/or using memory
tasks rather than threshold detection tasks? This
question is important, as an affirmative answer
would set the stage for modifying models
originally designed to account for low-level
perceptual tasks in such a way as to account for
higher-level cognitive tasks as well.

The answer to this question is thus far un-
clear. Memory for complex visual stimuli has
been found to improve with greater stimulus
duration (e.g., Loftus & Kallman, 1978; Potter
& Levy, 1969; Shaffer & Shiffrin 1972) and
also with greater stimulus intensity (e.g., Loftus,
1885; Loftus, Kaufman, Nishimoto, &
Ruthruff, 1993). However, the only exact
measurement of the duration-intensity relation
using complex stimuli in a memory task was
reported by Turvey (1973) who found a data
pattern conforming to Bloch's Law with respect
to memory for digit trigrams in a backward-
masking paradigm. Provocative though it was
though, this finding was ancillary to Turvey's
major goals (which principally involved an
empirical and theoretical investigation of
masking); also, Turvey's duration and intensity
ranges were limited.

Loftus (1985; Loftus et al., 1993a; see also
Sperling, 1986) found evidence for a weak form
of intensity-duration tradeoff with complex
pictures whose memory was tested in both
short-term and long-term memory tasks:
Specifically, lowering intensity required that
duration be increased by some factor k
(referred to as the "slowdown factor") to
achieve some criterion memory performance.
Within certain boundary conditions, the slow-
down factor was independent of the particular
criterion performance level that was chosen, i.e.,
the relation between intensity, φ, and duration, d,
could be described by,

p(d, φ1) = p (kd, φ2) Eq. 1

where p(x, y) is performance for a stimulus of
duration x and intensity y, φ1 > φ2 and k > 1.0.

                                                                       
(1964), Kaswan & Young (1963), Raab & Fehrer
(1962), and Zacks (1970).  Reveiws are provided by
Watson (1986) and Wasserman and Kong (1979, plus
associated commentaries)

Such a finding is consistent with the
proposition that decreasing intensity simply
slows down perceptual processing by the
slowdown factor, k, without otherwise affecting
the system.

The multiplicative relation between intensity
and duration implied by Equation 1 is neces-
sary, but not sufficient, to infer a simple
Bloch's-Law relation in a relatively complex
memory task. To show that Bloch's Law held
would require determining that in Equation 1,
φ1 = kφ2. However, no existing experiment
provides the data necessary make such a de-
termination. In some relevant experiments, the
stimuli were complex, naturalistic color pho-
tographs. Here, each stimulus included a wide
range of colors and intensities, and stimulus
intensity couldn't be precisely measured; thus
only qualitative conclusions were possible, viz.,
the less intense the stimuli, the greater the
slowdown factor (Loftus, 1985; Loftus, et al.,
1993a). In other experiments the complete in-
tensity/slowdown function could not be charac-
terized because either the range of stimulus du-
rations and/or the range of stimulus intensities
was too small and/or use of a backward mask
obscured conclusions made purely on the basis
of duration and intensity (e.g., Turvey, 1973;
see Eriksen, 1980, for a discussion of problems
making conclusions based on data from
experiments in which a mask is used). It was to
fill this empirical void that we carried out
Experiment 1.

Experiment 1: Measurement of
Duration-Intensity Tradeoffs in a Digit-

Recall Paradigm
Experiment 1 was designed to allow precise

measurement of the function relating the slow-
down factor to stimulus intensity in a memory
task. To accomplish this, we used simple black-
on-white digit arrays as stimuli, along with a
relatively wide range of both duration and
intensity. Both duration and intensity were
precisely controlled.

Method
The basic procedure consisted of a series of

trials. On each trial, a four-digit string was pre-
sented for some exposure duration on the order
of 5 - 150 ms. The observer's task was to
immediately report as many of the digits as
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possible in their correct positions, guessing if
necessary.

Observers
Four observers participated in the experi-

ment: the two authors (GL and ER), an under-
graduate (KG) and a graduate student (CA). All
observers were familiar with the purposes of the
experiment. All observers were highly practiced,
having participated in a minimum of 3000
practice trials prior to beginning the experiment.

Stimuli and Apparatus
Stimuli were prepared as 35-mm slides. A

stimulus consisted of a 4 (columns) x 3 (rows)
array of black digits on a white background.
Eighty such stimuli were prepared and used re-
peatedly. The 4 x 3 x 80 = 960 digits compris-
ing all stimuli were selected randomly and
without replacement from the set of ten digits.
Each digit subtended a visual angle of 0.56o

vertically, and 0.28o horizontally. Digits were
separated by 0.37o vertically, and 0.74o hori-
zontally. On a given experimental trial, one
four-digit row of one stimulus was the to-be-
reported target. Target row was blocked over
trials; accordingly, an observer always knew
which row was the target.

Intensity control was accomplished by atten-
uating stimulus luminance using a Wrattan
neutral-density filter2. Each observer viewed
stimuli at four different intensity levels. For two
observers (GL and ER) intensity ranged from
1.33 to 7.84 cd/m2. The other two observers
(CA and KG) were substantially better at the
task; to avoid ceiling performance, their
intensity levels were lower, ranging from 0.90
to 4.10 cd/m2. A summary of luminances,
contrasts, and intensities for the four observers
is provided in Table 1.

All stimuli were displayed via Kodak projec-
tors equipped with Gerbrands tachistoscopic
shutters. A random-access projector was used
                                                
2There are numerous ways of defining intensity. We
defined "contrast" to be the difference between
background and foreground luminance divided by the
sum of background and foreground luminance. Intensity
was then defined to be the product of contrast and
background luminance. This definition was appropriate
to the nature of our display apparatus which,
unfortunately, did not allow contrast variation without
concommitant variation in background intensity. Other
definitions of intensity (or simply using contrast rather
than intensity) did not materially change our results or
our conclusions.

to display the stimuli, while standard carousel
projectors were used to present a constant, uni-
form adapting field, and a fixation point that
initiated each trial. Responses were made on a
numeric keypad. All display equipment was
enclosed in a soundproof box. All display and
response collection was under the control of an
AT-compatible computer system described by
Stoddard and Loftus (1988).

Design and Procedure
For each observer, 24 conditions were de-

fined by four intensity levels and six exposure
durations within each intensity level. The expo-
sure-duration values within each intensity level
were selected with the goals of (1) producing
roughly equal performance ranges within each
intensity level (which meant that durations
within the lower intensity levels had to be suit-
ably longer than corresponding durations
within the higher intensity levels) and (2)
maintaining performance (proportion of cor-
rectly recalled digits) within a range of roughly
0.1 - 0.9.

Within each observer's intensity level, the six
exposure durations were specified by two
experimental parameters: base, the minimum
duration, and factor, the amount by which each
duration was multiplied to obtain the next
higher duration. Table 2 provides these parame-
ters for each of the 16 observer/intensity level
combinations.

Each observer participated in 24 blocks of 80
trials per block. Recall that stimuli were
prepared as three, four-digit rows. On any given
block, only one row (top, middle, or bottom)
was the to-be-reported target. Also, stimulus
intensity remained constant over a block.
Intensity was changed on a given block by
adjusting the luminance of the target-slide
projector via the neutral-density filters. A uni-
form adapting field remained at a constant level
(of 21.21 cd/m2) at all times during an experi-
mental session.
The sequence of events for a given 80-trial
block was as follows. First, the observer ascer-
tained that the filter configuration was correct
for that block's intensity level (noting in the
process what the stimulus intensity would be on
that block). Next, a high, medium, or low
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tone (2000, 1000, or 500 hz) signaled the ob-
server that the top, middle, or bottom row would
be the target row for that block (i.e., for the next
80 trials). Next, eight practice trials were
presented. The durations for these practice trials
were selected randomly, and without
replacement. Next, 72 experimental trials were
presented. The six durations were randomly
intermingled over the 72 trials, with the restric-
tion that each duration occurred 12 times.
Stimulus-presentation order was quasi-ran-
dom3.

                                                
3The 80 stimulus slides were fixed in the 80 slots of a
carousel tray.  We wanted to preclude observers' ability
to memorize and make use of sequential, slide-to-slide
information (e.g., we did not want middle row "7184"
to always follow middle row "0072.")  We
accomplished this goal as follows.  On each block, the
72 experimental stimuli were randomly divided into two
36-stimulus groups (Group A and Group B).  The
carousel circled twice within each block: on pass 1, all
Group A stimuli were shown, and on pass 2, all Group
B stimuli were shown.  This scheme insured that
stimulus ordering differed unpredictably from one block
to the next.

The to-be-reported row was changed sys-
tematically over blocks (in a top-middle-bot-
tom-top... sequence); thus, each row served as
target in eight of the 24 blocks. Assignment of
durations to trials within a block was also
changed over blocks. As noted, intensity also
changed over blocks. Each intensity level oc-
curred once within each four-block sequence.
Although observers were not forced to partici-
pate in all 24 blocks at once, they were con-
strained to participate in four-block modules,
each of which incorporated all four intensity
conditions. The 24 total blocks for each ob-
server included two instances of each of the 12
intensity-level/to-be-reported-row combina-
tions.

As noted, a block consisted of 80 trials. The
sequence of events within each trial was as
follows. First, a 500-ms tone warned the ob-
server to look at a small fixation point which
simultaneously appeared, superimposed over
the adapting field, positioned such that it would
be in the middle of the upcoming stimulus (i.e.,
between the second and third digits of the
middle row). Warning-tone frequency was
2000, 1000, or 500 hz and reminded the ob-

Table 1
Summary of Background Luminances, Foreground (Digit) Luminances, Contrasts, and Intensities for each of the
Four Observers. Luminances and Intensities are in cd/m2

Observers:
CA  and KG

Intensity

Level  1 Level  2 Level  3 Level  4

Background 23.961 25.200 27.531 31.689

Digits 22.218 22.680 22.890 24.423

Contrast 0.038 0.053 0.092 0.129

Intensity 0.904 1.326 2.534 4.103

Observers:
GL and ER

Intensity

Level  1 Level  2 Level  3 Level  4

Background 25.200 27.531 31.689 37.926

Digits 22.680 22.890 24.423 24.927

Contrast 0.053 0.092 0.129 0.207

Intensity 1.326 2.534 4.103 7.844



THEORY OF INFORMATION ACQUISITION/BLOCH'S LAW

5

server which row (top, middle, or bottom) was
the target during the current block. Following
ing tone was the stimulus, superimposed on the
adapting field, presented for its appropriate
duration. The observer typed in four responses
after stimulus presentation, guessing on a digit
if uncertain. Following responding, there was
feedback in the form of four 150-ms beeps.
Each beep was 2000 hz if the corresponding
digit had been correctly reported, and 500 hz if
the corresponding digit had not been correctly
reported. Following feedback was a 300-ms
interval prior to the start of the next trial.

Results
Our basic performance measure, p, is the

proportion of digits recalled in the correct posi-
tion (corrected for the 0.10 chance rate).

Performance Curves
We present our data in the form of perfor-

mance curves which are functions relating per-
formance to exposure duration with different
curves for different intensity levels. Past work
using this paradigm (e.g., Busey & Loftus,
1993; Loftus, Duncan & Gehrig, 1992; Loftus,
Busey, & Senders, 1993; Shibuya &
Bundesen, 1988; Townsend, 1981) indicates
that performance curves can be described al-
most perfectly by the equation,

0 for d ≤ L
p = Eq. 2

A(1.0 - e-(d-L)/c) for d > L

where A, L, and c are free parameters. The in-
terpretations of the parameter values are as fol-
lows. First, L (mnemonic for "liftoff") is the
performance curve's d-intercept, i.e., the
minimum stimulus duration necessary for
above-chance performance. Second, c is the
post-liftoff duration (i.e., the duration exceeding
L) required for performance to reach a criterion
level of p = A(1.0 - 1/e) Finally, A is asymptotic
performance. In the present paradigm,
observers had the capability of reporting all
four digits perfectly following sufficiently long
exposure durations; thus any less-than-1.0 A
values resulted from keypress errors, lack of
vigilance, etc4. Accordingly, the value of A is
                                                
4To ascertain that the lower-than-1.0 asymptotic values
are not perceptual effects, we carried out a control
experiment in which stimuli were displayed as long as
the observer wanted. After the observer signalled

uninteresting from the present perspective. We
estimated A for each observer, but do not
discuss it further5.

For simplicity of analysis and discourse, we
define a new dependent variable, P, to be:
P = -ln(1.0 - p/A), which, given Equation 2,
implies,

0 for d ≤ L
P = Eq. 3

(1/c)d - L/c for d > L

That is, if Equation 2 holds, then the perfor-
mance measure P is related linearly to duration

                                                                       
"enough," the stimuli were removed, and the observer
responded. Performance was essentially 100%,
5The estimated asymptotes were: 0.90 (CA), 1.00
(KG), 0.97 (GL), and 0.89 (ER).

Table 2
Parameters for Generating Exposure Durations for
each Observer and Intensity Level. beginning with the
Lowest Duration ("Base" in ms) Each Successive
Duration was Computed by Multiplying its
Predecessor by "Factor"

Observer

Intensity CA KG GL ER

Level 1 base

factor

26

1.22

16

1.21

18

1.32

33

1.32

Level 2 base

factor

18

1.23

13

1.18

10

1.40

14

1.32

Level 3 base

factor

8

1.24

6

1.17

6

1.41

11

1.37

Level 4 base

factor

6

1.23

5

1.17

3

1.38

6

1.32

the warning tone was the stimulus, superim-
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with a slope of 1/c and a P-intercept of L/c. We
assert that a performance curve's slope can be
interpreted as the rate at which information is
acquired from the stimulus: the greater the

slope, the higher the information-acquisition
rate. For the moment, we leave status of this
assertion as "intuitively reasonable." Later, we
will see that it is an implication of our theory.

Figure 1 shows the performance curves.
Each panel shows one of the four observers;
within each panel, the four curves represent the
four intensity levels, with increasing intensities
corresponding to leftward curves. The dashed
lines through the data points are the best-fitting
regression lines obtained via Equation 3. The
solid lines are predictions from the theory that
we describe below. The increasing perfor-
mance-curve slopes with higher intensities in-
dicate that with higher intensities, stimulus in-
formation is acquired at a higher rate. Table 3
provides the regression data—c, L, and Pearson

r2 values—for each observer and each intensity.
Table 3 (bottom row) also provides root-mean-
square errors between the data points and
predicted regression values.

Two aspects of these data are notable. First,
the performance curves are well fit by linear
functions. Of the 16 curves, one produces a
Pearson r2 of 0.90, and the others all produce
r2's of 0.94 or higher. Nine of the 16 r2's are
0.98 or higher. This replicates past data using
this paradigm (Busey & Loftus, 1993; Loftus,
et al. 1992; Loftus et al., 1993b; Shibuya &
Bundesen, 1988). Second, the parameters c and
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Figure 1. Experiment 1: Performance curves (recall performance measured in P = -ln (1.0 - p) as
functions of stimulus duration). Each panel shows data from one observer. The four curves within each
panel are for the four intensity levels. The curve symbols represent data points (lowest intensity: triangles;
next intensity: diamonds; next intensity: squares; highest intensity: circles). Dashed lines are best linear
fits, and solid lines are best fits from the theory described in the text.
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L both decrease with increasing intensity. This
means that with increasing intensity, (1) a
smaller stimulus duration is required for per-
formance to exceed chance (implied by decreas-
ing L) and (2) once performance has exceeded
chance, less additional stimulus duration is re-
quired to achieve any given criterion perfor-
mance level (implied by decreasing c).

Are the Performance Curves Fundamentally
Linear?
there are deviations from linearity in the
individual subject curves, they do not seem to
be systematic. Figure 2 shows the mean
performance curves (across observers),
normalized for the different observers' different
exposure durations. Again, dashed lines repre-
sent the best linear fits, and solid lines are to-
be-described theoretical predictions. It is clear
that the mean curves are highly linear; all r2

values exceed 0.99. Accordingly, we conclude
that individual deviations from linearity are
nonsystematic, and that something very close to
linearity (Equation 3) accurately describes
performance curves in this paradigm.

Intensity-Duration Tradeoffs
So far we have merely shown that with

higher intensity, performance increases faster
with stimulus duration. We now consider the
intensity/duration relations in more detail and in
particular inquire whether they conform to
Bloch's Law.

Our general logic is as follows. Consider
some criterion performance level, Pc. Bloch's
Law asserts that the product of duration, d, and

Table 3
Regression Fits for each Observer and each Intensity
Level. Upper Rows Show Parameter Values and
Pearson r2 Values. Bottom Row Shows the Overall
Root-Mean Square Errors

Observer

Intensity CA KG GL ER

c 20.69 27.70 40.19 72.46

Level 1 L 22.59 15.94 17.27 16.02

r2 0.99 0.90 0.97 0.94

c 13.11 14.45 18.39 25.22

Level 2 L 15.16 12.29 8.42 13.48

r2 0.96 0.95 0.99 0.97

c 6.12 4.74 13.51 13.98

Level 3 L 6.13 6.26 5.91 10.55

r2 0.98 0.98 0.98 0.99

c 3.53 3.18 6.27 8.09

Level 4 L 5.38 4.75 2.91 4.39

r2 0.98 0.98 0.97 0.99

RMSE
(regressions)

0.155 0.110 0.113 0.153

Although there are deviations from linearity

0.0

1.0

2.0

3.0

0 20 40 60

P
 =

 -
ln

(1
.0

-p
/A

)

80 100

Stimulus Duration (Normalized Units)

Mean Data: Four Observers

Figure 2. Experiment 1: Mean performance
curves (recall performance as functions of
duration, averaged across observers, nor-
malized for different exposure durations). The
four curves are for the four intensity levels.
The curve symbols represent data points
(lowest intensity: triangles; next intensity:
diamonds; next intensity: squares; highest
intensity: circles). Dashed lines are best linear
fits, and solid lines are best mean fits from
the theory described in the text.
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the intensity, φ, required to achieve Pc is con-
stant, i.e., that:

φ x d = k1

where k1 is a constant, or

1
d  = k2 x φ Eq. 4

where k2 = 1/k1 is also a constant. Thus, the
prediction is that, across intensity levels, the
reciprocal of d be linearly related to stimulus
intensity with an intercept of zero.

What should we use as Pc, the criterion per-
formance level? As indicated by the shape of
our performance curves, increasing stimulus
duration leads to two successive achievements.
First, at duration L, performance rises above
chance. Second, with additional duration be-
yond L, performance rises linearly. The
Bloch's-Law prediction, Equation 4, can be

tested for both these effects. Using as the first
performance criterion the rise from chance that
occurs at duration L ms, the prediction be-
comes,

1
L  = kL x φ Eq. 5

where kL is a constant.
Using as the second performance criterion

the achievement of P = 1.0, which occurs at
duration c following liftoff, the prediction be-
comes,

1
c  = kc x φ Eq. 6

where kc is a constant.
One important note is in order here. The cri-

terion performance level of P = 1.0 used as a
basis for determining the duration c is, of
course, arbitrary. However, because the per-
formance curves are linear beginning at dura-
tion L, using a different criterion performance
level (call it P') would simply entail a rescaling
of the original c values by a factor of P' across
intensity levels. Equation 6 would still hold,
although the constant of proportionality (kc in
Equation 6) would be different.

Equations 5 and 6 thus make analogous
predictions for each of the performance-curve
parameters, L and c: the parameter's reciprocal
should be proportional to intensity, φ. For the
record, we can also test an analogous "stan-
dard" Bloch's Law prediction which is that the
total duration (L+c) required to achieve any
criterion performance level trades off with in-
tensity. This prediction is that,

1
L+c  = kL+c x φ Eq. 7

where kL+c is a constant. We must, however,
regard the prediction of Equation 7 with some
wariness, because unless the ratio, L/c, is con-
stant across intensity levels, Equation 7's va-
lidity will depend on the particular performance
level that is chosen. There is no apriori reason
to expect any particular relation between L and
c.

Recall that observers CA and KG had one
intensity range, while observers GL and ER had
a different intensity range. Figure 3 shows 1/L,
1/c, and 1/(L+c) as functions of intensity
averaged over CA and KG (top panel) and over
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Figure 3. Experiment 1: Each panel shows
1/L, 1/c, and 1/(L+c) as functions of stimulus
intensity averaged over two observers. Dashed
lines are best linear fits, and solid lines are
best fits from the theory described in the text.
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GL and ER (bottom panel). As in Figures 1 and
2, the dashed lines represent the best linear fit,
and the solid lines represent theoretical
predictions to be discussed later. It is clear that
the predictions embodied in Equations 5-7 hold
quite well: as indicated in the figure legends, the
curves are quite linear, and the intercepts are
quite close to zero

Discussion
The purpose of Experiment 1 was to deter-

mine the relations between stimulus duration
and stimulus intensity in a digit-recall task.
Several findings emerged. First, in accord with
other studies using this paradigm (e.g., Loftus,
et al., 1992) performance as a function of
stimulus duration was described well by a linear
function (or by an exponential approach to an
asymptote if proportion correct is the dependent
variable). This finding, demonstrated in Figures
1 and 2, is interesting in and of itself, and is
discussed in detail by Loftus, et al. (1993b).
For present purposes, however, we regard this
performance-curve simplicity as a convenient
tool for carrying out other analyses.

In particular, the nature of the performance
curves facilitated a detailed investigation of the
relation between duration and intensity. As in-
dicated in Figure 3, we discovered that Bloch's
Law held quite well in terms of two fundamen-
tal durations and associated performance crite-
ria. First, intensity traded off with L, the initial
duration required for performance to exceed
chance. Second, intensity traded off with the
additional duration required to rise from chance
to any criterion above-chance performance
level. At the risk of redundancy, we reempha-
size that this latter duration is equal to the re-
gression parameter c if a criterion performance
level of P = 1.0 is used. However, the linearity
of the performance curves implies that the
tradeoff between intensity and post-liftoff du-
ration will hold independent of the particular
above-chance criterion performance level that is
chosen.

In addition to the tradeoffs between intensity
on the one hand, and the durations L and c on
the other hand, we discovered that intensity also
trades off quite well with the total duration
required to achieve above-chance performance.
This observation indicates that the relation be-
tween the durations L and c is not arbitrary;

rather, it is such that the ratio c/L is independent
of intensity level.

In short, we have discovered strong regu-
larities in the duration-intensity relation under-
lying performance in a digit-recall task. These
regularities suggest that performance in this
task can be described by a relatively simple
theory of perception, memory, and immediate
recall. We now describe such a theory.

A Linear-Filter/Information-Acquisition
Theory

The theory we describe in this section is a
concatenation of two
components—models—that have been used in
the past to describe two different domains: low
level visual processes, and higher-level cognitive
processes.

Overview
We refer to the first component as the sen-

sory-response model. We assume, in particular,
that the initial stages of the visual system act as
a linear low-pass temporal filter that operates on
a physical stimulus, to produce what we term a
sensory-response function, designated a(t).
This function relates the magnitude of some
form of neural activity associated with stimulus
presence to time, t, since stimulus onset6. This
kind of temporal-filter model has been used to
account for a variety of low-level visual
phenomena such as flicker detection, and time-
intensity relations in simple detection tasks (see
Watson, 1986 for an overview); however linear-
filter models have been used only sporadically
to account for higher-level cognitive phenomena
(e.g., Dixon & Di Lollo, 1993; Groner, Bischof,
& Di Lollo, 1988).

The second component of the theory, termed
the acquisition-rate model has been described
by Loftus and his colleagues to account for
relatively high level picture-processing tasks7,

                                                
6The designation of the sensory response function as
a(t) is historical. In previous formulations of the model,
the a(t) function has been termed "proportion of
available information" and was constrained to vary
between 0.0 and 1.0. In the present formulation, the
conceptual definition has been broadened and the range
constraint has been dropped.
7See, for example, Loftus and Hogden (1988) and
Loftus, Hanna, and Lester (1988) for general
descriptions. The model is applied  to temporal-
integration tasks by Loftus and Hanna (1989) and
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and builds on several earlier models8. The ac-
quisition-rate model begins with the assumption
that there is some sensory-response function,
a(t), that rises following stimulus onset, and
decays following stimulus offset9. The model
further assumes the following. First, in-
formation is acquired from a stimulus and
placed into a more permanent memory where it
can be used as the basis for either an immediate
response or further cognitive processing.
Second, such information acquisition occurs at
a rate, r(t) that is, among other things, propor-
tional to a(t). Third, any measure of subsequent
memory performance is monotonically related
to amount of acquired information.

We will show that this model makes an im-
portant prediction: that memory performance is
monotonically related to total area under the a(t)
function, which we designate A(∞). Thus, any
two stimuli that engender the same area (e.g., a
short, high-intensity stimulus and a longer,
lower-intensity stimulus) must lead to identical
performance. As we shall see, it is this property
of the model that allows it to account for the
duration/intensity relation that we observed in
Experiment 1.

In the what follows, we will describe the ac-
quisition-rate model and the sensory-response
model in detail. We describe the acquisition-
rate model first as this component presupposes
some sensory-response function. We then de-
scribe the sensory-response model.

The Acquisition-Rate Model
The logic of the acquisition-rate model is as

follows. First the physical stimulus presentation
engenders a sensory response. The sensory
response forms the basis for acquisition of
stimulus information, which in turn leads to the

                                                                       
Loftus and Irwin (1993). It is applied to the sort of
digit-recall task used in the present Experiment 1 by
Busey and Loftus (1993) and Loftus, et al. (1993b). It is
applied to partial report by Loftus and Busey (1992) and
Loftus and Irwin (1993). Di Lollo & Dixon (1992)
present an opposing viewpoint.
8Notably, Bundesen (1990), Kowler and Sperling
(1980), Loftus and Kallman (1979), Massaro (1970),
Rumelhart (1969), and Townsend (1981).
9In previous formulations of the model, this a(t)
function was defined somewhat arbitrarily—that is, on
the basis of intuition—rather than generated on the
basis fundamental principles.

memory representation, upon which subsequent
memory performance depends. More precisely,
1. A physical stimulus is characterized as a
temporal-input function, f(t), relating stimulus
intensity to the time, t, since stimulus onset. The
left panels of Figure 4 illustrates six f(t)
functions: these are square-wave functions of
the sort used in most perceptual experiments,
including the present Experiment 1. Because
they are square-wave functions, the term "in-
tensity" can be informally used to describe the
function's maximum intensity. Intensity is 1.0
in the first three panels, and 2.0 in the last three
panels.
2. The stimulus input function engenders the
sensory-response function, a(t). The a(t) func-
tions resulting from the Figure-4 stimuli are
shown in the right panels of Figure 4. The ver-
tical lines represent stimulus offset10.
Generally speaking, a(t) lags behind, and is
temporally blurred relative to f(t). Below we
describe both the mathematical origin of these
functions, and the meaning of the horizontal
lines just above the abscissas.
3. The subject's task is construed as acquiring
information from the stimulus, and transferring
it to more permanent storage. At time t follow-
ing stimulus onset, some proportion, I(t) of all
stimulus information has been acquired.
Information is acquired at an instantaneous rate,
r(t) which is the derivative over time of acquired
information, d[I(t)]/dt. The value of r(t) is the
product of two entities: first, a(t) and second,
some function h[I(t)], of already-acquired
information. The only constraints on h[I(t)] are
that it is positive, finite, monotonically
decreasing, and is zero when I(t) ≤ 1.0. Thus,
new information is acquired at a rate that is
proportional to the sensory response, and in-
versely related to amount of already-acquired
information11. Note that, given the constraints
on r(t), I(t) cannot exceed 1.0.

                                                
10The portion of a(t) that follows stimulus offset can
be identified with the iconic image.
11These assumptions imply that r(t) generally declines
following stimulus onset as a result of the decreasing
h[I(t)] component. Following stimulus offset, r(t)
begins to decline more precipitiously as a result of the
additional decrease in the a(t) component. Clark and
Hogben (1991) offer a visual-processing model in which
system output is defined by fiat to have this form.
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4. Performance, p, is a monotonic function,
m[I(∞)], of the total acquired information, I(∞ ).

Appendix A shows that, given the logic thus
far, a powerful prediction ensues: Performance,
P, is a monotonic function of the total area
under the a(t) function. We term this total area
A(∞). Others (e.g., Nisly & Wasserman, 1989;
see their Figure 2) have informally proposed
that the area under some sensory-response
function might be suitable as a theoretical basis
of stimulus identification. The reasoning that
we have just provided establishes a formal basis
for this proposition.

The Sensory-Response Model
Where does the presumed sensory-response

function, a(t), come from? Loftus et al. (1992)
assumed a semi-arbitrary a(t) function, but
pointed out that it was deficient in that it did not
derive from basic principles. Loftus et al. did,
however, sketch a means by which the function
could be derived from more basic principles
based on the proposition, alluded to above, that
a linear low-pass temporal filter operates on the
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stimulus input function to generate the sensory-
response function.

The Impulse and the Impulse-Response
Function

The linear-filter-based model begins with the
assumption that an input consisting of an in-
stantaneous12 impulse engenders what is
termed the impulse-response function. The im-
pulse-response function is often assumed to be
a gamma function, of the form,

g(t) = Error! Eq. 7

where n and τ are free parameters: n is a posi-
tive integer, and τ is a positive real number (cf.
Watson, 1986). The impulse-response function
of Equation 7 is illustrated in Figure 5. As
noted in Figure 5 the total area under the im-
pulse-response function is 1.0. The gamma
function is rooted in physical reality, in that it
describes the response of a system of n inde-
pendent stages where the input to Stage 1 is the
impulse, the input to each subsequent stage is
the response of the previous stage, and the re-
sponse of each stage decays exponentially with
decay constant τ.

Linear Responses to an Arbitrary Input
Function

The model next assumes that any input
function may be viewed as a series of impulses,
scaled by intensity, and that the resulting
sensory-response (a(t)) function is the sum of
the resulting linearly scaled impulse response
functions. More precisely, given input function
f(t) and impulse-response function, g(t), the
resulting sensory-response function, a(t) is the
convolution of f(t) and g(t).

Sensory Response to a Square-Wave Input
In Experiment 1, we used square-wave dis-

plays as shown in the left panels of Figure 4: to
display a stimulus, the projector shutter opened,
essentially instantaneously13, remained open
for some duration, d, and then closed, again
essentially instantaneously. This makes
computation of the f(t) and g(t) convolution

                                                
12More precisely, an impulse is defined to be a
stimulus of infinitesimal duration, infinite intensity,
and unit area.
13In fact, it took approximately 2 ms both for the
shutters to completely open and for them to completely
close.

quite simple. For a d-ms square-wave function
whose maximum intensity is φ, the resulting a(t)
function is,

φG(t) for t ≤ d
a(t) = Eq. 8

φ[G(t) - G(t-d)] for t > d

where G(x) is the integral from zero to x of
g(x) dx. The a(t) functions shown in the right
panels of Figure 4 were generated from
Equations 7 and 8.

Accounting for Bloch's Law
The theory that we have so far described is

quite simple. To summarize, an a(t) function is
generated by a linear filter that operates on the
stimulus input function. Information is acquired
at a rate r(t) = a(t)h[I(t)], and performance, P, is
a monotonic function, m, of I(∞), the total
information acquired from the stimulus. As we
have noted, this theory implies performance, P,
to be a monotonic function of A(∞), the total
area under the sensory-response function, a(t).
Because a(t) is generated by a linear process
operating on f(t), the total area under a(t), A(∞),
must be proportional to the total area under f(t),
F(∞) (with the constant of proportionality
being φ, the intensity.)

It is easy to see that the theory as described
so far implies something close to our Bloch's-
Law finding. The f(t) function is a rectangle
whose width is duration and whose height is
intensity. Because performance is monotoni-
cally related to A(∞), it is also monotonically
related to F(∞), which is the rectangle's area.
This implies a perfect duration/intensity trade-
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off: if duration is multiplied by some factor,
intensity must be divided by the same factor to
maintain equal area.

Accounting for the Experiment-1 Data
So far, however, the theory does not account

for either the linear performance curves or for
the non-zero liftoff values that we observed in
Experiment 1. To remedy these deficits, the
theory requires two modifications. First, the
linear performance curves result if the
presumed monotonic functions, h[I(t)] and
m[I(∞)] are strengthened in suitable ways.
Second, the non-zero liftoff values result with
one additional assumption about the nature of
the information-acquisition rate, r(t).

Linear Performance Curves: Strengthening the
h([I(t)] and m[I( )] Functions

In Experiment 1 we observed linear perfor-
mance curves. The theory predicts such linear-
ity if the functions h[I(t)] and m[I(∞)]
presently assumed to be only monotonic are
strengthened such that

h(I) = 
1.0 - I(∞)

c  Eq. 9

where c is a free parameter, and

m[I(∞)] = I(∞) Eq. 10

These strengthened assumptions are both
reasonable. Equation 9 asserts that information
acquisition rate is proportional to the remaining
to-be-acquired information at any given time.
This relation, implied as it is by an ecologically
common Poisson process, describes many
physical processes, such as radioactive decay.
Equation 10 simply asserts that proportion cor-
rect is equal to the proportion of acquired in-
formation. Appendix B shows that with these
strengthened assumptions, performance curves
are described by the equation,

P = 
d
c Eq. 11

where the parameter c is proportional to 1/φ, the
inverse of stimulus intensity.

Equation 11 almost, but not quite, describes
the observed performance curves. According to
Equation 11, all performance curves pass
through the origin. However, the observed per-
formance curves do not pass through the origin.
Instead, as we have seen (Figures 1 and 2), the
observed performance curves intersect the

duration axis at some positive value L that
increases with decreasing intensity. The theory
is, accordingly, still deficient.

Nonzero Liftoffs: The Threshold Assumption
This deficiency can be remedied by inclusion

of one additional assumption: that information
acquisition does not begin until the sensory-re-
sponse function exceeds some threshold. This
threshold is represented by the horizontal lines
just above the abscissas in the right-hand panels
of Figure 4. We refer to this sensory threshold
value as at.

The simplest way of incorporating such a
threshold within the theory is to assume that the
information-acquisition rate, r(t) is proportional
not to a(t), but to the magnitude by which a(t)
exceeds at. It is easy to show that the theory
then predicts performance to depend on the to-
tal area under the a(t) function above threshold
(see Appendix C). We refer to this value as
At(∞). The performance-curve equation then
becomes,

P = 
At(∞)

c  

where c is approximately proportional to 1/φ.
Note that At(∞) is zero for durations less than
some threshold duration. For any given inten-
sity level, the threshold duration is the longest
duration such that a(t) never exceeds the
threshold, at. These assertions are illustrated by
the a(t) functions in Figure 4, right panels.
Here, the horizontal lines represent threshold
values. Note first that when intensity is 1.0, the
d = 20 ms a(t) function never achieves thresh-
old; accordingly, At(∞)—and
performance—would be zero for all values of
20 ms or less. When intensity is 2.0, however,
the d = 20 ms curve does exceed threshold;
accordingly, At(∞)—and performance—would
exceed zero. This threshold assumption thereby
accounts qualitatively for two observed aspects
of the data: first that the critical "liftoff"
stimulus duration generally exceeds zero, and
second that this liftoff value decreases with
increasing intensity levels (see Figure 3, top
panel).

This revised theory no longer predicts ex-
actly linear performance curves. As we shall
see, however, it predicts performance curves that
are almost linear.
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Theoretical Fit
To summarize, the theory has five free pa-

rameters: the asymptote, A, the two impulse-
response function parameters, n and τ; the sen-
sory-response threshold, at; and a scaling pa-
rameter, c. As noted earlier, the asymptote for
each observer was already estimated in the pro-
cess of producing the best linear performance
curves, and will not be considered further here.
In what follows, we consider only the parame-
ters n, τ, c, and at.

We found the best-fitting values of these
four parameters for each of the four observers
using a grid search procedure. The goodness of
fit was remarkably impervious to the value of n.
This is demonstrated in Table 4 which shows
the best-fitting values of τ, c, and at, along with
the root-mean-square errors letting n = 2 (top
of Table 4) and n = 10 (bottom of Table 4). The
RMSE depends only very slightly on the value
of n. The value of c depends not at all on n, the
value of at depends slightly on n, and the value
of τ depends quite a bit on n.

The threshold (at) values are in intensity
units (cd/m2). The rationale underlying this as-
sertion is as follows. As the stimulus remains
on indefinitely, a(t) will asymptote at a value
equal to the stimulus intensity level.
Accordingly, the threshold can be interpreted as
the maximum stimulus intensity level at which
no information would be acquired even if the
stimulus were of infinite duration.

Predicted Performance Curves
The predicted performance are shown as the

solid lines in Figure 1 (individual data) and
Figure 2 (mean data across the four observers).
The predicted best-fit P values are essentially
identical for any value of n from 2-10; for the
record, the predictions shown are based on n =
10 (an n value that often emerges when the lin-
ear-filter model is used to account for low-level
sensory data; see Watson, 1986). The predicted
mean performance curves (Figure 2) were gen-
erated by simply averaging the individual pre-
dicted curves, normalizing for different ob-
servers' different exposure durations (as was
done to produce the mean data). It is obvious
that the mean predicted curves correspond
closely to the data and are virtually indistin-
guishable from their linear counterparts.

Predicted 1/L, 1/c, and 1/(L+c) Curves
The predicted 1/L , 1/c, and 1/(L+c) curves

are shown as the solid lines in Figure 3.
Predicted values were obtained by finding the
best linear fits (L and c values) to the predicted
performance curves for each observer and then
averaging the resulting 1/c and 1/L values sepa-
rately for CA and KG and for GL and ER (as
was done to produce the data). The predicted
intensity-axis intercepts were the estimated
threshold values: if intensity is at (or below) the
threshold value, no information is ever acquired;
hence both L and c would be infinite and their
reciprocals would be zero.

Recall the Bloch's-Law predictions embodied
in Equations 4 and 5: that 1/L and 1/c are
proportional to intensity. The theory makes
something very close to this prediction; how-
ever, at small intensities, the predicted curves
bow downward, and intercept the intensity axis
at small positive values. As discussed earlier,
these departures result from the theory's non-
linearity embodied in the sensory threshold.

Table 4
Model Fits for each Observer. Top: Data for n = 2.
Bottom: Data for n = 0. Within each n Value, Upper
Three Rows Show Best-Fitting Values for the other 3
Parameters and Bottom Row Shows Root-Mean
Square Error

n = 2 Observer

CA KG GL ER

 ms) 3.3 2.7 4.4 3.6

c (ms) 12 10 44 52

at (cd/m2) 0.32 0.37 0.23 0.48

RMSE
(Model)

0.210 0.145 0.154 0.171

n = 10 Observer

CA KG GL ER

 ms) 5.7 3.9 8.1 6.7

c (ms) 12 10 45 52

at (cd/m2) 0.35 0.48 0.25 0.52

RMSE
(Model)

0.214 0.148 0.151 0.165
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Figure 6. Experiment 2: Stimulus input functions (f(t), left panels) and the resulting sensory-response
functions (a(t), right panels) for the no-gap and gap conditions..

We have argued that the most fundamental
Bloch's-Law predictions are those involving the
tradeoffs between intensity and the durations L
and c. Other research designed to investigate
Bloch's Law has typically examined the tradeoff
between intensity and total duration. In
Experiment 1, there turned out to be an almost-
perfect tradeoff between intensity and total
duration, (L+c); as is evident in Figure 3c, this
tradeoff is predicted by our theory.

Experiment 2: An Additional Test of the
theory

Experiment 2 is designed to test a straight-
forward implication of the theory's threshold
assumption. To understand this prediction,
consider for a moment the theory without the
threshold assumption. Without a threshold, the
theory would imply memory performance to
depend on A(∞ ), the total area under the sen-
sory-response function. A(∞) is, in turn, equal

to F(∞), the total area under the stimulus input
function.

Suppose now that we generate a stimulus of
intensity, φ, whose total duration is d ms. We
create two conditions. In the first condition, the
stimulus is simply presented as a square-wave
function for the d ms. In the second condition,
the d ms is divided into two separate square-
wave presentations of durations d1 ms, and d2 =
(d - d1) ms which are displayed successively,
separated by some temporal gap. We refer to
these conditions as the no-gap and the gap
conditions, respectively. For instance, a no-gap
condition might consist of a single 40-ms
stimulus, while the corresponding gap condition
might consist of a 20-ms stimulus, followed by
a 250-ms blank period, followed by the
stimulus for another 20 ms.

Figure 6 shows the f(t) and a(t) functions re-
sulting from these two conditions. The two a(t)
functions are quite different from one another.
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However, because the system is linear, the total
areas, A(∞) must be the same; in the example,
they both equal 40. In the absence of a thresh-
old, therefore, the two conditions are predicted
by the theory to yield equal performance.

However, if a threshold is introduced, the no-
gap condition is predicted to yield a higher
At(∞), and hence higher performance than the
gap condition. This mathematical truth may or
may not be intuitively obvious, but the criterion
has been selected in the Figure-6 example to
illustrate it as forcefully as possible. In the gap
condition, a(t) never exceeds the threshold;
hence At(∞) and performance are both zero. In
the no-gap condition, however, a(t) does exceed
threshold; hence At(∞) and performance are
both above zero. More generally, the prediction
is that, assuming a threshold, performance will
be worse in the gap condition than in the no-
gap condition.

Method
Experiment 2 was actually a collection of

mini-experiments using the same stimuli and
display procedures as Experiment 1. In all
mini-experiments, there was a gap and a no-gap
condition. We used various combinations of d1,
d2, and gap duration. With one exception, only
a single intensity was used: φ = 1.372 cd/m2.
Observers included one of the authors (GL)
along with other graduate and undergraduate
students working in the laboratory.

Results and Discussion
The results were clear-cut: performance in

the gap condition was invariably inferior to per-
formance in the no-gap condition. This was true
for all miniexperiments. Figure 7 illustrates
these results from two of the mini-experiments.
The theory's prediction is thus confirmed.

General Discussion
We first summarize what we have shown

thus far. We then discuss two additional issues:
first, the relations among Bloch's Law, the
Experiment-1 results and our theory; and sec-
ond, the relation between initial phenomenolog-
ical appearance of some visual stimulus and in-
formation acquired from that stimulus.

Summary
In Experiment 1, we demonstrated several

strong regularities in the relations between
stimulus intensity and stimulus duration in a
digit-recall task: the product of stimulus inten-
sity and each of two observed durations—the
duration, L, required for above-chance perfor-
mance and the additional duration required for
performance to rise from chance to any crite-
rion performance level—was approximately
constant. In addition, the product of intensity
and total time required to reach a criterion level
was approximately constant. This regularity
approximately confirms Bloch's Law as it is
applied to memory performance for relatively
complex visual stimulus. It also replicates and
extends Turvey's (1973) finding that the prod-
uct of intensity and duration determines the
probability with which an alphanumeric stimu-
lus will escape being masked.

The theory we used to account for these
findings incorporated a front-end linear filter
that operates on the stimulus intensity function
to produce what we term a sensory-response
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function. The theory then assumes an informa-
tion-acquisition process that, at any given time,
is proportional to the product of (1) the magni-
tude by which the sensory response exceeds
some threshold sensory response and (2) the
proportion of yet-to-be-acquired stimulus in-
formation. This four-parameter theory accounts
quite well for the Experiment-1 data, predicting
in the process the form of our duration-inten-
sity tradeoffs that we found.

In Experiment 2, we tested and confirmed a
particular prediction of this linear-response-
with-threshold theory: that with brief, low-in-
tensity displays, a stimulus presented once is
recalled better than a stimulus presented for the
same total time, but broken into two temporally
distinct halves.

Bloch's Law, Perceptual Metamers, and
"Memory Metamers"

We now discuss the interrelations between
our Experiment-1 results, Bloch's Law, and our
theory. We begin by considering three stimulus
pairs, each pair configured such that the
duration x intensity product is the same for
each member of the pair. We refer to such
stimuli as equal-product stimuli. Denoting a
stimulus in terms of its intensity value x dura-
tion value, the first pair is 2 cd/m2 x 10 ms and
1 cd/m2 x 20 ms; the second pair is 2 cd/m2 x
40 ms and 1 cd/m2 x 80 ms; and the third pair
is 2 cd/m2 x 100 ms and 1 cd/m2 x 200 ms.
The a(t) functions emerging from these six
stimuli are shown in Figure 8. In each panel, the
solid line corresponds to the shorter, more
intense stimulus, and the dashed line corre-
sponds to the longer, less intense stimulus.

When Different Stimuli Lead to Similar
Sensory-response Functions

As noted by Watson (1986) the stimulus
representations in Figure 8 suggest a parsimo-
nious explanation for Bloch's Law: two equal-
product stimuli will be detected with similar
probability to the degree that they produce simi-
lar sensory-response functions. This explana-
tion follows no matter what specific detection
mechanism is hypothesized as long as detection
occurs "downstream" from the sensory-re-
sponse function (i.e., somewhere in the system
where the only available information about the
stimulus is based on the sensory-response
function). This is because, by definition, any
downstream part of the system cannot have

more information about a stimulus than is con-
tained in the stimulus's sensory-response func-
tion. Thus, in the extreme, if two equal-product
stimuli produced identical sensory-response
functions (as is essentially the case with the
Figure 8A stimuli), they would be indistin-
guishable by any possible test (including in
particular any detection test) that is based on a
downstream representation.

Metamers
In color vision, the term metameric is used to

describe two stimuli composed of physically
different wavelength mixtures that are perceived
to be identical. In the present context, two
stimuli producing the identical sensory-re-
sponse function could similarly be termed
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metameric if, in general, metamers are defined
to be physically different stimuli that produce
identical responses at some peripheral stage of
the perceptual-cognitive system.

So, for instance, the two Figure 8A stimuli
must lead to equal detection performance (or
any other kind of performance), because they
produce essentially identical responses at some
presumably early stage. However, as equal-
product stimuli get longer, the corresponding
sensory-response functions become less simi-
lar: As indicated in Figures 8B and 8C, the
longer member of the pair produces a longer,
flatter function than does the shorter member.
Thus, the longer a pair of equal-product stimuli,
the more distinguishable become their sensory-
response functions, and the easier it is for the
system to devise a test that will distinguish
them. In one class of detection models, for in-
stance, detection occurs if the sensory-response
function exceeds some threshold; thus as illus-
trated in Figure 8, the longer are the stimuli, the
more probable it is that the shorter brighter one
will be detected relative to the longer dimmer
one (and indeed, this is exactly what happens).
This is a reasonable explanation of why Bloch's
Law "breaks down" at long durations.

Memory Metamers
However, although it is possible for the per-

ceptual-cognitive system to distinguish a
shorter-duration from a longer-duration, equal-
product stimulus, it does not follow that any
representations generated by system to such
pairs can be distinguished. In particular, any
stimulus representation that depends only on
the area under the sensory-response function
cannot serve as a basis for distinguishing any
of the Figure-8 stimulus pairs, as the area under
the two curves is identical in all three cases. The
theory that we have presented supposes such
representations; accordingly, the "Bloch's Law-
like" effects observed in the data would, unlike
real Bloch's-Law effects, continue to hold with
indefinitely long stimuli (see Kahneman &
Norman, 1964; Wasserman & Kong, 1989 for
additional discussion about why Bloch's Law
applies in somewhat different ways to different
tasks involving the same physical stimuli).
Generalizing the notion of a metamer yet
further, such stimulus pairs might be termed
"memory metamers": the two pair members
would yield different perceptual experiences,
but identical memory representations.

Perceptual metamers could, in contrast, be
defined as stimuli, such as classical color
metamers, that are indistinguishable by any
stage of the perceptual-cognitive system.

Information Extraction and
Phenomenology

These remarks bring us to our last topic: the
link between the phenomenological appearance
of some stimulus on the one hand, and the ul-
timate memory representation that issues from
the stimulus on the other hand.

Essentially, we have argued that, while these
two facets of perception and cognition are sepa-
rable, and influenced by different variables, they
are, within the context of our theory, determined
by two facets of the same function: the sensory-
response function. Roughly speaking,
phenomenology is determined by the shape of
the sensory-response function, while the
memory representation is determined by the
area under the sensory-response function.

This argument is aptly illustrated by results
from another project in our laboratory (Loftus,
Futhey, & Russon, 1993) within which we
carried out several modifications of the present
Experiment 2. As in Experiment 2, we dis-
played stimuli of constant total physical dura-
tion in either a no-gap or a gap-condition.
However, instead of being simple digits tested
by immediate recall, the stimuli were complex,
naturalistic scenes, tested by delayed recogni-
tion. Of some importance is that these pictures
were presented at much higher intensities than
were the present digit stimuli14. We reasoned
that, with high-intensity stimuli, the presumed
sensory threshold would be low relative to
overall intensity and accordingly, any threshold-
driven effect—such as the gap effect—would
be substantially diminished. We discovered,
indeed, that there was no significant gap effect.
Power analyses indicated that any actual gap
effect couldn't have been greater than about 2%
as gap size was increased from 0 to 250 ms.

Thus, in accord with the predictions of the
simplest—i.e., threshold-less—linear-filter

                                                
14Because the pictures involved different areas of
different intensity and color, "intensity" could not be
precisely measured. But roughly speaking, a the contrast
of a typical object in a typical picture, against a typical
background, was an order of magnitude greater than the
contrasts used in the present experiments.
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model, the gap and no-gap conditions produced
memory representations that we have just char-
acterized as memory metamers, To determine
whether the two conditions were perceptually
distinguishable, we also asked observers to
distinguish between gap and the no-gap stimuli
at the time of original viewing. Observers were
able to make this distinction perfectly, which
meant that the gap and no-gap conditions did
not produce perceptual metamers. The ability to
perceptually distinguish gap and no-gap stimuli
destined to be indistinguishable in a later
recognition test is quite understandable within
the context of our theory. It is, in particular, a
consequence of the gap and no-gap stimuli
having two entirely differently shaped sensory-
response functions (see Figure 6 above) which
led to different (nonmetameric) sensory experi-
ences—but with the same areas under the sen-
sory-response functions, which led to identical
(metameric) memory representations. In short,
these two salient aspects of perception—phe-
nomenological appearance and information ac-
quisition—are united as two aspects of the
same sensory-response function.
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Appendix A
Proof that performance is monotonically related to area under the a(t) function.

Information extraction rate, r(t) is the derivative of
acquired information, I(t) with respect to time. Also, r(t)
is assumed to be the product a(t) and h[I(t)]. Thus,

r(t) = 
d[I(t)]

dt
  = a(t)h[I(t)]

or,

d[I(t)]
h[I(t)]

  = a(t)dt Eq. A1

Integrating both sides of Equation A1,

H[I(t)] = A(t) + k

where A(t) is the integral of a(t), H[I(t)] is the integral
of {1/h[I(t)]}, and k is the constant of integration. When

t = 0, A(t) = 0 and I (t) = 0; hence k = H(0). Therefore,

H[I(t)] = A(t) + H(0)] Eq. A2

Because H is an integral, it is monotonically increasing
and has an inverse, H-1, which is also monotonic.
From Equation A2,

I(t) = H-1[A(t) + H(0)]

or, when t = ∞,

I(∞) = H-1[A(∞) + H(0)]

Therefore I(∞) is a monotonic function of A(∞). Because
p is assumed to be a monotonic function of I(∞), and P
is assumed to be a monotonic function of p, P is a
monotonic function of A(∞). This completes the proof.



THEORY OF INFORMATION ACQUISITION/BLOCH'S LAW

23

Appendix B
Linear performance curves result from the assumptions that h[I(t)] is linear and that m is the

identity function.

Let h[I(t)] = [1.0 - I(t)]/c', where c' is a constant.
Substituting into Equation A1 (Appendix A, above),

d[I(t)]
[1.0 - I(t)]

  = 
a(t)dt

c'
 Eq. B1

Integrating both sides of Equation B1,

-ln[1 - I(t)] = 
A(t)

c
 ' + k

where k is the constant of integration. When t = 0, A(t)
= 0 and I(t) = 0; thus k = 0, and

-ln[1 - I(t)] = 
A(t)
c'

 

Because p = I(∞),

-ln[1 - p] = 
A(∞)

c'
 

Substituting P = -ln(1 - p) and A(∞) = F(∞) = φd,

P = 
φd
c'

 

Letting c be proportional to 1/φ , or c = (1/φ)c',

P = 
d
c
 

This completes the proof.

Appendix C
Proof that when r(t) is proportional to the magnitude by which a(t) exceeds threshold, at, P is

monotonically related to area under a(t) above threshold.

We have already shown (Appendix A) that when r(t)
= a(t)H[I(t)], performance, P is a monotonic function of
A(∞). We define a new function,

at(t) = a(t) - at

and let r(t) = at(t)H[I(t)], as assumed in the text. Then
by the arguments in Appendix A, P must be a
monotonic function of At(∞), the total area under at(t).
This is equal to the area under a(t) that is above the
threshold, at.
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