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Abstract

We investigate mechanisms underlying binocular combination of visual information within the

context of a visual information acquisition theory proposed by G. Loftus, T. Busey, and their

colleagues (e.g, as described by Busey & Loftus, 1994). A central assumption of the theory is that

of a sensory threshold. By the theory, this threshold engenders an information loss in that

information processing subsequent to the threshold is assumed to occur only when the magnitude

of a sensory representation triggered by the stimulus exceeds the threshold. In this article, we

describe research designed to investigate whether the presumed threshold is situated prior to or

subsequent to the point at which the information from the two eyes combines. We also consider

more general mechanisms of binocular combination and conclude that one must take the location of

the sensory threshold into account when trying to interpret the nature of the binocular combination

mechanisms. Evidence from three experiments provides strong conclusions both about the location

of the sensory threshold(s) and about the mechanisms of binocular combination and binocular

information acquisition.
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Visual information acquisition begins with photons arriving at each of an observer's two eyes.

The information contained in the pattern of arriving photons may represent something as simple as

a monochromatic patch of light or as complicated as a naturalistic scene. Regardless of the stimulus,

however, the geometry of binocular vision and the separation between the two eyes generally

dictates that slightly different versions of this information arrive at each eye. Despite initially

acquiring two separate representations of the visual scene, it is only under rare circumstances that

observers report seeing more than one view of the world. This plus other evidence from the stereo

depth perception literature (e.g. Julesz, 1971) and from the binocular combination literature (e.g.,

Blake & Fox, 1973; Blake, Sloane, & Fox, 1981) implies that the visual system must combine the

outputs of the two eyes into a single unitary sensory representation and then based on this

representation, proceed with further processing to acquire task-relevant information.

Loftus, Busey and their colleagues (Loftus, Busey & Senders, 1993; Loftus & Ruthruff, 1994;

Busey & Loftus, 1994) proposed a theory of visual information acquisition consisting of a sensory

front end followed by information acquisition components. The sensory front end is responsible

for generating the sensory representation sketched above, and subsequent information acquisition

mechanisms are responsible for acquiring task-relevant information. This theory successfully

predicts performance in a number of different information processing paradigms, including digit

recall (Loftus, Busey & Senders, 1993; Loftus, Duncan & Gehrig, 1992; Loftus & Ruthruff, 1994;

Busey & Loftus, 1994); picture recognition (Loftus & McLean, in preparation); and synchrony

judgment and partial report (Loftus & Irwin, under revision). Despite these successes, however, the

current conceptualization of the theory does not specify how information from the two eyes

combines to create a unitary sensory stimulus representation.

We have two goals in this article. Our first goal is to account for the mechanisms that combine

information from the two eyes in information processing tasks. Our second goal is to examine the

sources of information loss that result from a sensory non-linearity that proved essential to account

for similar data. We will demonstrate that these two goals cannot be addressed separately, but are

intimately related. Below we propose an extension of the Loftus and Busey theory, and focus on a

crucial component of it termed a sensory threshold, which entails a specific source of information

loss in the information processing pathway. We address two central questions: First, is the sensory

threshold prior or subsequent to this point at which information from the two eyes combines?

Second, what mechanisms are responsible for combining the two sources of information into a

single unitary representation?

The range of binocular phenomenon is large, and we confine the domain of our theory building

to relatively low-contrast stimuli. The vast majority of binocular summation experiments have been

done with low-contrast stimuli presented for brief durations in detection tasks, and these findings
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provide a good database from which combinatorial theories can be developed.

The major empirical question guiding binocular summation experiments has been: How much

better are two eyes than one eye? The answer has not been simple. As detailed in excellent reviews

by Blake and Fox (Blake & Fox, 1973; Blake, Slone & Fox, 1981), binocular performance may

exceed monocular performance by various magnitudes. Binocular performance above monocular

performance can be expected on statistical grounds, since a binocular stimulus provides two

opportunities to detect a near-threshold stimulus. Blake and Fox (1973) formalized this into the

Probability Summation prediction, with the assumption that the two observations were made

independently. Other models of binocular combination can be produced through consideration of

the neural mechanisms that combine the signals from two eyes, which include super-additive

summation (interaction), additive (linear) summation, and sub-additive summation (inhibition).

Interaction implies that the output of a system combining the inputs from the two eyes exceeds the

sum of the inputs. Linear summation implies that the output is the sum of the inputs, and sub-

additive summation implies that the output is less than the sum of the inputs. The probability

summation prediction has become somewhat of a measuring stick from which conclusions about

the combinatorial mechanisms can be derived. Blake and Fox (1973) conclude that if binocular

performance exceeds a probability summation prediction based on monocular performance, this

implies genuine neural interaction (that is, a super-additive summation mechanism). They argue that

the probability summation model accordingly provides a baseline to detect greater-than-linear-

summation combinatorial mechanisms.

Although the focus of the binocular combination experiments has been on the nature of the

combination mechanisms (e.g. neural interaction, linear summation or inhibition), we will

demonstrate that such questions cannot be addressed without consideration of both pre- and post-

combinatorial sources of information loss. In particular, we will argue that a post-combinatorial

threshold mechanism plays a major role when using binocular combination data to infer the

mechanisms of combination.

The question of the combinatorial mechanisms subserving binocular combination is best

addressed by varying the onsets of the presentations to each eye. For example, consider the

probability summation model, that assumes that each eye provides an independent chance to detect a

near-threshold stimulus. If this model holds, performance will remain constant if the two eyes are

stimulated simultaneously, or if first one eye and then the other eye is stimulated. However, if

binocular performance improves when the two presentations are made simultaneous, we would have

evidence against the probability summation model. Thus the temporal overlap of the two

presentation in a binocular condition provides a strong test of binocular summation models, and

below we review relevant temporal overlap experiments.
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Three important studies of binocular combination demonstrate the utility varying the temporal

onset of the presentations to each eye of a binocular stimulus, and all three sets of authors have

argued for neural interactions (above-linear summation) between the two eyes to produce binocular

performance. Westendorf, Blake & Fox (1972) presented contrast increments to both eyes in a

detection task. The stimulus onset asynchrony (SOA) between the two presentations was either 0

ms or 100 ms. They found binocular performance above a probability summation prediction for the

simultaneous presentations, but binocular performance consistent with probability summation for

the 100 ms SOA. They concluded that binocular performance cannot be predicted solely from

probabilistic considerations, and instead the superiority at 0 ms SOA resulted from neural

interaction between the two eyes.

An earlier study by Matin (1962) demonstrated the utility of varying the temporal overlap of

the two presentations. He varied the interval separating the two flashes of a binocular presentation

over a wide range, and found that SOAs less than 100 ms produced binocular performance that is

superior to the probability summation prediction. He concluded that the two eyes were not

independent detectors, but detection instead resulted from neural summation between the two eyes.

Although much of the work on binocular summation has relied on detection tasks, Eriksen and

his colleagues (Eriksen, Greenspon, Lappin & Carlson, 1966; Eriksen & Greenspon, 1968)

examined letter identification in a three-alternative forced-choice procedure. As with previous

findings, he found that for SOA’s shorter than 50 ms, binocular performance exceeds the

probability summation prediction.

The overwhelming evidence disconfirms a probability summation mechanism, and has lead

many authors to posit neural interaction as the combination mechanism mediating binocular

combination. However, these data also clearly indicate that no single combinatorial mechanism can

account for binocular summation at all SOA’s, since binocular performance changes with SOA.

Thus a complete description must account for the amount of temporal overlap that is produced by a

non-zero SOA binocular stimulus. The present article represents such an approach, although it is

motivated, in part, by extant binocular summation models. Two of the most influential are the

binocular energy detector model of Legge (1984a, 1984b) and the interocular suppression model of

Cogan (1987, 1991).

The binocular energy detector model extends the signal detection model of Green and Swets

(1966, 1974) to binocular summation. The model consists of two monocular channels that are

subjected to input noise before undergoing a squaring function. The results are linearly summed

and the final binocular output results from a compressive nonlinearity and the addition of central

noise. This model predicts a quadratic summation relationship between binocular and monocular

thresholds, which results from the fact that when two noisy signals are added, the standard deviation
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increases by the square root of the number of signals. While this model can account for a diverse

range of low-contrast phenomenon, the lack of temporal coding of the stimuli leaves the model

unable to account for non-zero SOA binocular presentations.

Alexander Cogan (Cogan, 1987; 1991) presents a model that can qualitatively account for the

effects of varying the SOA between the two presentations of a binocular stimulus. We describe this

model and fit it to our data in the General Discussion section; briefly it is as follows. The

combination mechanism chosen by Cogan is relatively complex: information registering in either

eye both provides excitatory input to the monocular channel and inhibits the other monocular

channel. In a separate mechanism, the information from the two eyes combines into a binocular

fused channel, and the final binocular output is the sum of the combined monocular channels and

the binocular fused channel. This model accounts for increments and decrements in binocular and

monocular presentations and will also qualitatively account for the effects of non-zero SOA’s in

binocular presentations. However, Cogan does not provide quantitative fits to the variable-SOA

data. The importance of quantitative fits will become apparent in the discussion section of the

current article, but to anticipate, two models that share similar theoretical structures and thus provide

qualitatively identical predictions do not give the same quantitative predictions. Indeed, we will test

and disconfirm Cogan's model based on poor quantitative fits.

One conclusion is clear from the existing binocular summation data and theories: A complete

account of binocular summation must include both descriptions of how information from two eyes

combines, as well as how this relationship changes as the SOA between the two presentations is

varied. This, along with a description of the sources of information loss that contribute to

performance, is the major theoretical contribution of the current work.

The remainder of this article is organized as follows. First, we explicitly describe the task that

we are trying to model. Second, we briefly outline the Busey/Loftus theory, and propose two (not

mutually exclusive) candidate extensions to it that may account for performance in tasks designed

expressly to investigate binocular combination. Third, we describe data from three experiments

designed to evaluate the two extensions and, more generally, to reveal the nature of the information

combination mechanisms. Fourth, we conclude that neither extension alone will completely account

for all of the observed characteristics of the data, although a combination of the two does provide a

good account of the data. Fifth, we make specific conclusions about the nature of the information

combination mechanisms and, based on these conclusions, describe theoretical implications for

researchers studying the nature of the combinatorial mechanisms. Finally, we apply Cogan’s model

to our data to examine how the choice of combination mechanisms affects our conclusions. We will

argue that the question of the nature of the combinatorial mechanism is intimately tied to the

question of the location of the sensory threshold and that above-probability summation binocular
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performance need not imply neural interactions between the to monocular channels.

An Information Processing Task
The task that we will attempt to model is complex enough to provide generalizability to

everyday tasks, but simple enough to be plausibly described with a relatively simple and concise

theory. In this task, four digits are presented to an observer whose job is to report as many of them

as possible, in their correct order, guessing if necessary. The basic performance measure, p, is the

proportion of correctly-reported digits, in their correct locations, adjusted for the guessing

probability of 0.101.

THEORY
Busey & Loftus (1994) have described a theory that has successfully accounted for

performance in this digit-recall task2. In this section we summarize the theory, while in the next

section, we develop two extensions of it designed to account for the combinatorial mechanisms

involved in binocularly viewed stimuli. This theory conjoins a linear-filter front end, common in the

vision literature, with an independent sampling model that operates on the output of the linear-filter

front end to acquire task-relevant information.

Linear-Filter Front End
The initial response in the visual system to a briefly-presented stimulus can be modeled as the

output of a band-pass or low-pass linear filter (e.g. Sperling and Melchner, 1968; Watson, 1984).

Rapid temporal changes in the stimulus are temporally blurred by a visual system that cannot keep

up with the stimulus; slower temporal changes are better represented. The exact nature of the

response can be derived by assuming an impulse-response function for the linear filter that

describes the severity of the temporal blurring, or, thought of in another way the amount of

response that persists following the termination of the physical stimulus. Under low-luminance

conditions such as the ones used in our experiments, the filter is usually assumed to be low-pass,

meaning that the visual system reproduces progressively higher temporal frequencies progressively

less faithfully.

The shape of the impulse response function, g(t), dictates the type of temporal blurring. In

keeping with previous sensory literature (e.g. Watson, 1979, 1986) I have chosen this function to be

the difference of a two gamma functions, each with a different time constant,

                                                

1The guessing formula is p = (x - 0.1)/0.9 where x is the raw proportion correct and p is the corrected proportion.

2See also, Loftus, Busey, & Senders (1993) and Loftus & Ruthruff (1994).
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g(t) = 
(t/τ)n-1e-t/τ

τ(n-1)!    - s[
(t/rτ)n-1e-t/rτ

rτ(n-1)!  ] Eq. 1

where τ represents the time-constant of the gamma function and provides an estimate of the

temporal response properties of the mechanisms mediating a given task. The sensory response

function component of the LST theory (a(t)) is based on work from Andrew Watson (Watson,

1986), George Sperling (Sperling and Sondhi, 1968) and others working in the temporal domain of

perception. Figure 1, left panel, shows example impulse response functions.

The first term in Eq. 1 represents an excitatory component, while the second term represents an

inhibitory component of the response, which tends to sharpen the response and allows it to respond

to higher temporal frequencies. The parameter r represents the ratio of the time-constant of the

inhibitory component of the response to the excitatory component of the response, and s represents

the magnitude of the temporal inhibition component. The parameter n represents the number of

stages in each process, and for the current modeling we fix it at 9, although the shape of the

impulse-response function is relatively unchanged by the precise value chosen.

Identification data for letter stimuli such as those used in the present study are often modeled

by setting s to 0 (Busey, 1994), which gives a monotonic impulse response function g(t) as shown

as a solid curve in the left panel of Figure 1. An alternative way of representing the same

information is by taking the Fourier transform of the impulse response function g(t), which results

in a temporal contrast sensitivity function (TCSF). The TCSF plot show the sensitivity of a system

to different temporal frequencies. The TCSF corresponding to the solid line in the left panel of

Figure 1 is given by the solid line in the right panel. These curves represent a purely sustained

response, and give a monotonically-decreasing TCSF, as shown in Figure 1, right panel.

INSERT FIGURE 1 ABOUT HERE

Detection data for stimuli containing mainly low spatial frequencies, or stimuli presented on

bright backgrounds, often are modeled by s> 0. In this case the impulse response inhibits

processing after an initial excitatory response, which results in an inhibitory lobe in the impulse

response function g(t) (dashed line in Figure 1, left panel) and a characteristic TCSF with a

decrease in sensitivity at low temporal frequencies (dashed curve in Figure 1, right panel).

The temporal characteristics of the physical stimulus are summarized by a function describing

contrast over time since stimulus onset, called the stimulus input function. For the stimuli discussed

here, the digits simply appeared at some contrast, Φ, for the appropriate stimulus duration, and then

disappeared. Thus the stimulus input function f(t) can be described as:
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Φ ( 0 ≤ t ≤ d)
f(t) = Eq. 2

0 elsewhere

where Φ represents stimulus contrast and t is time since stimulus onset3.

We term the visual system's response to such a stimulus a sensory response function, denoted

a(t), which is computed by convolving the stimulus input function with the impulse response

function:

a(t) = f(t) * g(t) Eq. 3

where “*” represents convolution. The sensory response function represents the output of the

linear-filter stage of the theory, and describes the initial representation of a visual stimulus.

Further information acquisition mechanisms act on this representation to acquire task-relevant

information. However, prior to becoming available for information acquisition, the sensory response

function is assumed to pass through a threshold device, such that only the portion of the sensory

response function that exceeds a sensory threshold is available for information acquisition. Thus

we define a new function aΘ(t):

a(t) - Θ ( a(t) > Θ )
aΘ(t) = Eq. 4

0 ( a(t) ≤ Θ )

where Θ is the magnitude of the sensory threshold. Information acquisition cannot begin until

a(t) exceeds the sensory threshold. As described below, once the information acquisition process

begins it proceeds at a rate that is proportional to aΘ(t). Before turning to this issue, however, some

notes on the nature of the sensory non-linearity are in order. The behavior of the sensory threshold

described in Eq. 4 can be mimicked by other non-linearities, and in particular by a power function

of the form:

a
β
(t) = [ap(t)]β

This power function has be used by Watson (1972) in his probability summation in time

model and by Legge (1984a, b) in a binocular summation model with β = 2. We have chosen to fit

models with both non-linearities, and in general we find the two formulations equivalent. However,

the threshold model gives slightly better fits to the data and is also slightly easier to demonstrate

graphically. In addition, there is neurological evidence in favor of this formulation from Ohzawa &

                                                

3Because the stimuli were displayed on a computer monitor, the actual function f(t) flickered at 75 Hz, albeit at a
rate faster than typically resolvable by the human eye. However, given Appendix C of Busey & Loftus (1994) this
has little implication for our theory.
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Freeman (1986), as discussed in the General Discussion. For these reasons, as well as for

consistency with previous formulations (Busey & Loftus, 1994), we present the model predictions

in terms of the threshold model.

Acquired Information: The Information-Acquisition Rate
Once the sensory response function exceeds the sensory threshold, information acquisition can

begin. At time t following stimulus onset information acquisition proceeds at an instantaneous rate,

termed the information acquisition rate, denoted r(t), which is proportional to the product of (1) the

magnitude of above-threshold sensory response and (2) some decreasing function of already-

acquired information. The particular form of the information acquisition formulation is similar to

independent sampling models proposed by Townsend (1981), Shibuya & Bundesen (1988),

Rumelhart (1970), and Massaro (1970); viz., information is presumed to be acquired at random and

with replacement. The independent-sampling assumption implies that the rate of acquiring

information is constant, and governed by a scaling parameter 1/cs. However, because information is

sampled from the stimulus with replacement, the rate of acquiring new information is proportional

to the amount of not-yet-acquired information.

More specifically, let I(t) be the proportion of acquired information at time t. The information

acquisition rate, r(t), is by definition the derivative of I(t) with respect to time, and is given by:

r(t) ≡ 
dI
dt  = aΘ(t) 



1.0 - I(t)

cs
  Eq. 5

Eq. 5 states that the rate of acquiring new stimulus information is proportional to the product of the

above-threshold sensory response and the remaining stimulus information, with a constant  of

proportionality 1/cs.

It is simple to show (e.g., Busey & Loftus 1994) that with this rate function, the function

relating total acquired information, denoted I(∞), to the above-threshold area under aΘ(t), denoted

AΘ(∞), is given by,

I(∞) = 1.0 − e− AΘ (∞)/c s Eq. 6

One additional linking hypothesis is required to make quantitative predictions, which is that p,

the proportion of correctly-recalled digits, equals the total proportion of acquired information I(∞).

Given this and Eq. 6,

p = 1.0 − e− AΘ (∞) /c s Eq. 7

An important consequence of Equation 7 is that performance, p, is monotonically related to the

above-threshold area under the sensory-response function. This implies that if condition i results in
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more above-threshold area, AΘ(∞) than condition j, the theory predicts that performance from

condition i will exceed that from condition j. In addition, any two conditions that produce the same

above-threshold area AΘ(∞), are predicted to have the same performance. Although Equation 7

provides a stronger description of the area/performance relation than monotonicity, for purposes of

exposition it is convenient to think in terms of the consequences of the monotonicity relation, which

is that more above-threshold-area implies greater performance.

At the risk of redundancy, we emphasize that these relations are a consequence of Eqs. 1, 3, 4,

5 and 6 and are not assumptions of the theory. It is also worthwhile to note that the prediction of

Eq. 7 is also independent of the choice of stimulus wave form, not just the rectangular wave form

given in Eq. 2.

Testing Eq. 7 requires an experimental design that varies AΘ(∞), the above-threshold area

under the sensory response function. We typically vary the stimulus duration of several different

types of conditions, including binocular, monocular and dichoptic stimuli, in order to produce

empirical data that provides a strong test of the theory. When plotted against stimulus duration,

digit-recall performance in a given condition is called a performance curve.

Figure 2 demonstrates the different model components and their relations.

INSERT FIGURE 2 ABOUT HERE

The above model formulations do not explicitly assume the presence of noise, although, as

discussed below, the sensory threshold may be thought of as representing the amount of signal lost

to noise. The binocular energy model of Legge (1984a, b) assumes both input and central sources

of noise, although formulations by Cogan (1987) do no explicitly assume noise. Noise could be

explicitly incorporated into the model without changing the formulations by assuming that the

height of the sensory response function gives the probability that the signal exceeds the noise at that

particular instance. This is the interpretation adopted by Watson’s probability summation in time

(Watson, 1979), and this makes the power-function formulation of the model similar to Legge’s

(1984a, b) model.

Note that complete equations for all model formulations are given in Appendix A.

THE ROLE OF THE SENSORY THRESHOLD IN BINOCULAR
COMBINATION OF OCULAR CHANNELS

The sensory threshold described in the previous section is assumed to exist prior to the

information acquisition components of the information processing pathway. As a result, we

consider it a sensory component. Because no further information processing takes place unless the

sensory response exceeds threshold, the threshold can be considered a source of information loss.

We now ask: Does this information loss occur before or after the information from each eye is
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combined into a central unitary representation?

Below we describe two models that address this question. Each model extends the previously-

described theory by assuming that information enters each eye and engenders in each eye an initial

peripheral sensory response function. These two peripheral sensory response functions then

combine centrally to provide a single central sensory response function. Information is acquired

based on this central sensory response function and further processing, or a task-relevant response,

is made based on the amount of acquired information. We describe these two models within the

context of Experiment 1, which is designed to evaluate them.

Experiment 1: Is the a(t) Threshold Prior or
Subsequent to Binocular Combination?

In Experiment 1 we used monocular, binocular, and dichoptic stimuli. A monocular stimulus is

presented to one eye only. A binocular stimulus is presented to both eyes simultaneously. A

dichoptic stimulus consists of two temporal stimulus halves, presented successively, with zero ISI:

the stimulus is presented first to one eye and then immediately to the other eye.

As we shall see, comparison of performance curves for these three presentation types will allow

us to isolate the location of the presumed sensory threshold. To do so, we must extend our theory

such that it takes these three presentation types into account. We first assume that information from

each eye is carried by a monocular channel, and that each monocular channel generates a

peripheral a(t) curve. The information from the monocular channels combines to produce a central

a(t) curve, upon which memory performance is based. As an extension of linearity, we further

assume that the two peripheral a(t) curves sum to produce the central a(t) curve4.

Support for our assumption of a linear combination mechanism comes from single-cell

recording done with simple cells in cat by Ohzawa and Freeman (1986). Using sine-wave gratings

tuned to the cell’s optimal orientation, they found that the light-evoked neural responses from each

eye are summed linearly to produce the output of a binocular cell. Interestingly, they also found a

minority of cells that deviate from this linearity prediction, which they attribute to a threshold

mechanism that occurs after the linear binocular summation. We will return to this in our

Discussion section.

The linearity assumption also allows quantitative evaluation of the sources of information loss,

both before and after the site of binocular combination. Such a summation mechanism was adopted

                                                

4An alternative formulation has been suggested by Randolph Blake (personal communication). Rather than two
independent monocular channels, Blake suggests thinking in terms of binocularly-tuned neurons that vary in their
ocular dominance. Either formulation allows consideration of the question "is the information loss (due to the a(t)
threshold) pre- or post-binocular combination?"
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by Legge, although his additional assumptions about noise may provide for different predictions of

binocular performance. A more complex combination mechanism developed by Cogan (1987) is

discussed in a subsequent section.

Given the assumptions described above, we are able to ask: is there an a(t) threshold for the

peripheral a(t) functions, for the central a(t) curves, or for both?

Two Models
Figure 3 illustrates these two possibilities. To illustrate them, we show the responses generated

by an 80-ms dichoptic presentation (which, of course, involves a 40-ms presentation to one eye

followed by a 40-ms presentation to the other eye) are shown. The top half of Figure 3 shows the

peripheral a(t) threshold model, by which a peripheral threshold, ΘP, is assumed on the a(t)

functions generated by each monocular channel. Only the above-peripheral-threshold area from the

peripheral a(t) curves combines to form the central a(t) curve. All of the central a(t) curve area

contributes to performance.

INSERT FIGURE 3 ABOUT HERE

The bottom half of Figure 3 shows the central a(t) threshold model, by which a central

threshold, Θc, is assumed on the central a(t) curve. All of the peripheral-curve area contributes to the

central a(t) curve, but only the above-central-threshold area contributes to performance.

Note that all model equations appear in Appendix A.

Predictions: Monocular vs. Dichoptic Conditions

Evaluating these two candidate models entails the following logic. Consider an 80 ms

monocular presentation and its corresponding a(t) curve, shown in the left panel of Figure 4. This

monocular presentation implies the same above-central-threshold area (1.4 in this example) for both

peripheral and central a(t) threshold models. The location of a sensory threshold is irrelevant for

this condition because information is presented to only one eye, and there is no information to

combine from the other eye. This makes the monocular condition a good comparison stimulus

because monocular performance is predicted to be the same by both models.

INSERT FIGURE 4 ABOUT HERE

Now consider a dichoptic presentation in which the 80-ms duration is broken into two 40 ms

presentations, the first to one eye, and the second to the other eye with a zero ISI5. The peripheral

                                                

5Because the stimuli were displayed on a computer monitor, the actual ISI was equal to the monitor's refresh rate, or
15  ms.  However, the monocular and dichoptic displays all had the same presentation time course, e.g. 6 refreshes
to one eye, verses 3 refreshes to one eye followed by 3 refreshes to the other eye.  Given this, we can safely assert
that the effective ISI was zero, a presumption we will make throughout the rest of this article. Appendix C of Busey
& Loftus (1994) discusses this issue in detail.
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and central a(t) threshold models yield different predictions for this condition. The middle panel of

Figure 4 shows the central a(t) curve prediction for the peripheral-threshold model. Only the above-

peripheral-threshold area contributes to the central a(t) curve, but all of the central-a(t)-curve area

contributes to performance. Because the area reaching the central a(t) curve is smaller than the

above-threshold area in the monocular condition, the peripheral-threshold model predicts dichoptic

performance to be lower than monocular performance. As we will show next, a finding of poorer

dichoptic relative to monocular performance is not only consistent with a peripheral-threshold

model, but also disconfirms any model in which the sole threshold is central.

The right panel of Figure 4 shows the central a(t) curve for a dichoptic presentation predicted

from the central a(t) threshold model. The dashed curves are the peripheral a(t) curves before they

combine to produce the central a(t) curve. Because the two peripheral a(t) curves combine before the

central a(t) threshold, the dichoptic central a(t) curve is identical to the monocular central a(t) curve,

and they have the same above-central-threshold area. Thus the central-threshold model predicts

monocular and dichoptic performance to be identical. It is for this reason that a finding of poorer

dichoptic compared to monocular performance disconfirms a purely central-threshold model.

Predictions: Monocular vs. Binocular Conditions

A second set of predictions involves comparison of the monocular and binocular conditions. In

general the means by which information from two eyes is combined to produce binocular

information—and, correspondingly, the relation between performance based on a monocular versus

a binocular presentation—is the source of some debate (Legge, 1984b; Blake & Fox, 1973; Blake,

Sloane & Fox, 1981). Two reasonable propositions have been put forth: first that the combination

occurs via probability summation, and second that the combination occurs via quadratic summation.

In our General Discussion we evaluate a third proposition that assumes neural interaction between

the two ocular channels in a binocular presentation.

The supposition that the information combines via probability summation is easily

incorporated by our theory. In the section below we develop a version of the theory that gives a

prediction consistent with probability summation, and to do so we begin with probability

summation and work backwards. Consider any two information sources (e.g., first and second

presentations; left eye and right eye; etc.) and denote the proportions correct based on these two

sources as p1 and p2. If pB denotes proportion correct given both information sources, then

probability summation implies that,

pB = pL + (1.0 - pL)pR Eq. 8

or,

(1.0 - pB) = (1.0 - pL)(1.0 - pR) Eq. 9
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Substituting 1.0 − e− AΘ (∞) /c s  (Eq. 7) for each p and simplifying we find:

e
− AΘ, B (∞ )/ cs   = (e

− AΘ, L (∞ )/c s )(e
− AΘ, R (∞ )/ cs )

and taking the natural log of each side of the equation,

AΘ,Β(∞)  = AΘ,L(∞) + A Θ,R (∞) Eq. 10

Thus Equation 10 may be interpreted to mean that two separate areas (e.g., two areas

corresponding to performance from the two eyes separately) sum to produce a total area

corresponding to performance in the combined (e.g., binocular) condition. Thus probability

summation entails simply summing the two peripheral a(t) curves over t to generate the central a(t)

curve. Assuming equal contributions from both eyes, i.e. AΘ,L(∞) = AΘ,R(∞) = AΘ,Μ(∞), then

AΘ,Β(∞) = 2AΘ,Μ(∞) and

pB = 2 pM − pM
2 Eq. 11

where pB and pM correspond to binocular and monocular performance respectively. Note that this

assumes that the sensory threshold Θ is assessed before the site of combination, and that the

information-processing rates cs are the same for both eyes. Thus we are considering the peripheral

threshold model for the moment.

We began this section by using the probability summation equation (Eq. 9), and worked

backwards to produce a version of the theory that is consistent with Eq. 9. The goal was to detail

those assumptions necessary to produce the probability summation prediction. To summarize, if, in

addition to the assumptions embodied in Eqs. 4, 5 and 6, we also assume a linear combination

mechanism and no post-combination information loss, then the theory will make a prediction that is

consistent with probability summation (Eq. 11). This is because the above-threshold area

engendered by a binocular presentation is twice that engendered by a monocular presentation under

a peripheral threshold model.

Note that the probability summation prediction is a consequence of the assumptions of a linear

summation mechanism and no post-combinatorial information loss. Other models have adopted a

linear summation mechanism and other assumptions and derive a different prediction of binocular

performance based on monocular data.

Linear summation does not imply a probability summation prediction

At this point we wish to clearly distinguish between a probability summation prediction, which

is a prediction of binocular performance based on monocular data, and a theory that assumes a

linear-summation combination mechanism. The latter is a model of how the information from two

eyes combines. When a linear-summation mechanism is conjoined with additional assumptions of
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no post-combinatorial information loss and an independent sampling information-acquisition

mechanism, then a linear-summation mechanisms will make a prediction that is consistent with

probability summation. However, as we will show below, a theory that assumes a linear-

summation combination mechanism will make predictions that differ from probability summation

if a different set of assumptions about thresholds are made. Thus the question of combination

mechanisms is intimately tied to the question of threshold locations; one cannot simply compare

monocular and binocular data and infer the combinatorial mechanisms without also considering

pre- and post-combination information losses. This is a major theme of the current work. We shall

refer to a model that sums the information from two eyes as a linear-summation combination

mechanism, which under certain assumptions will predict probability summation, but which under

other assumptions will not.

When we refer to predictions of binocular data based on monocular performance, we shall call

this a probability summation prediction. When we refer to a specific model of binocular

information combination that explicitly assumes a linear summation combination mechanisms and

may, under certain assumptions, make a prediction of binocular performance that is consistent with

probability summation, we shall refer to this as a linear-summation model.

We are now in a position to discuss the model’s predictions about the relation between the

monocular and the binocular conditions. First consider the predictions for a peripheral threshold

model, as shown in the top panel of Figure 5. In a monocular presentation, the digits appear in only

one eye and generate only a single peripheral a(t) curve. The area that survives the peripheral

threshold constitutes the central a(t) curve.

INSERT FIGURE 5 ABOUT HERE

In a binocular presentation, the digits are presented to both eyes, and generate two peripheral

a(t) curves. These two curves will both pass through peripheral a(t) thresholds, and because the

contrast of the two presentations is always the same, the two peripheral curves will be identical6. As

a result, the binocular conditions central a(t) curve will always be twice as high as the monocular

condition's central a(t) curve, and thus the binocular area will always be twice as great. This implies

that under a peripheral threshold model binocular performance will fulfill a probability

                                                

6The statement that both eyes contribute identical responses is a simplification, given that most observers have a
dominant eye.  However, any performance asymmetry between the two will simply bring binocular performance
closer to the averaged monocular performance. Consider the extreme case where an observer is blind in one eye.  In
this case binocular performance will be exactly double the across-eye averaged monocular performance: binocular
performance will equal performance from the sighted eye, which is then averaged with zero performance from the
blind eye. Our argument for the existence of a central threshold requires that binocular performance be greater than
twice the monocular performance. However any asymmetry serves to reduce the difference between monocular and
binocular performance, and cannot increase the difference between binocular and averaged-monocular performance.
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summation relation with monocular performance: pB = 2 pM − pM
2 . (see the top panel of Figure 5).

Note that this is in accordance with the probability summation prediction of Eq. 11, although we

have now described a specific model that makes a probability summation prediction. This model

makes two key assumptions: no post-combinatorial source of information loss and a linear-

summation combinatorial mechanism.

By the central-threshold model, however, binocular performance is predicted to be greater than

is predicted by probability summation. The logic underlying this assertion is illustrated in the

bottom panel of Figure 5. In the absence of peripheral thresholds, the two curves are the original

monocular and binocular a(t) curves. As in the top panel the binocular curve is overall twice as tall

as the monocular curve. However, there is now a central a(t) threshold, and only the above-central-

threshold area determines performance.

Note that much of the monocular area falls below the central threshold, leaving only an area of

1.4 above threshold in this example. In contrast the binocular curve, by virtue of being higher than

its monocular counterpart, is relatively less affected by the same threshold; hence the binocular

above-threshold area (4.1 in this example) is greater than twice the monocular above-threshold area

(of 1.4). This implies binocular performance above the probability-summation prediction (i.e.

pB > 2 pM − pM
2 ). This above-probability-summation prediction holds for any non-zero central a(t)

threshold (except for the trivial case when neither curve exceeds threshold and performance is zero

in both conditions). This above-probability summation prediction is a direct result of the central a(t)

threshold.

Prediction Summary
Let us summarize two critical predictions for Experiment 1. First, a finding that monocular

performance exceeds dichoptic performance disconfirms a purely central-threshold model, and

confirms a peripheral-threshold model. Second, a finding that binocular performance exceeds what

would be predicted on the basis of probability summation from the monocular condition

disconfirms a purely peripheral model and confirms a central-threshold model.

Method
There were three main conditions in Experiment 1. In the first (monocular) condition a single

d-ms stimulus was displayed to only one eye. In the second (dichoptic) condition there were two

stimulus presentations, each d/2 ms in duration, separated by a zero-ms ISI. The first d/2 ms was

displayed to one eye, while the second d/2 ms was displayed to the opposite eye. In the third

(binocular) condition a d-ms stimulus was presented to both eyes simultaneously.

Observers

Three experienced vision researchers participated in Experiment 1. Observer TB is the first
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author. Observers GW and TAK were visiting faculty members.

Stimuli and Apparatus

Stimulus presentation (and response collection) in Experiments 1-3 were carried out on a

Macintosh II computer. Stimuli were displayed on an Apple Monochrome monitor in conjunction

with a Modified Wheatstone mirror stereoscope (see Blake & Fox, 1973). The refresh rate (67 Hz)

of the display device was sufficiently fast to eliminate flicker, and poses little interpretational

problem for our theory (See Busey & Loftus, 1994, Appendix C).

Subjects sat approximately 57 cm away from the screen in a dimly lit room, and used the

computer keypad to respond. A chin rest positioned the observer's head in front of two mirror

arrangements that projected each half of the screen to one of the observer's eyes. An enclosing box

eliminated reflections from the screen and assisted with eye fusion.

Considerable effort was taken at the start of each block of trials to fuse the two halves of the

monitor into one image without eye strain. Observers adjusted each of the four mirrors until the

fixation point fused into a single image. They then adjusted the mirrors to create a cross out of two

right angles, each of which was shown only to one eye. Figure 6 shows the experimental apparatus

and the image used to adjust the mirrors. To further enhance eye fusion within a session, the

background was a uniform gray field, and the fixation point never disappeared.

INSERT FIGURE 6 ABOUT HERE

The digits were presented in 24 point Times-Roman font. The digits were each 0.50° high by

0.40° wide, separated by 0.75° vertically and 0.40° horizontally. Table 1 lists the luminances and

contrasts. Darker letters on a lighter background were used to avoid phosphor-decay problems. The

experiment was programmed using a timing and display package described by Ames & Palmer

(1992).

INSERT TABLE 1 ABOUT HERE

Design and Procedure

There were 8 monocular and dichoptic stimulus durations, ranging from 30 - 240 ms in 30-ms

increments. In the monocular condition the entire d-ms duration was shown to either the right or left

eye. In a corresponding dichoptic condition, d/2 ms of a d-ms presentation was shown to either the

right or left eye, followed immediately by the second (d/2)-ms presentation to the opposite eye, with

zero ms ISI. Eye position was randomized across all conditions. In the binocular condition, there

were 7 durations, ranging from 30 ms to 119 ms in 15-ms increments. During monocular and

dichoptic presentations, the eye opposite the stimulated eye saw the blank background field.

Observers completed 18, 72-trial blocks, which provided 54 replications of each conditions per
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observer7.

Results
Figure 7 shows the data for Experiment 1, along with the predictions from the peripheral

threshold model. Details of the parameter fitting procedures and equations are found in Appendix

A. No notable performance differences exist for the three observers, and thus the data shown are

averaged across observers. The upper (binocular) solid line represents the model's prediction of

binocular performance based on probability summation from the monocular condition. In this, as in

all data figures, error bars represent standard errors, and the "RMSE" at the lower right is the root-

mean-square error between the data points and the predicted values.

INSERT FIGURE 7 ABOUT HERE

Two findings and associated conclusions are apparent. First, the finding that dichoptic

performance is below monocular performance allows us to reject a pure central-threshold model.

Second, the finding that binocular performance is above the probability summation prediction

allows us to reject a pure peripheral threshold model.

Discussion
The failure of both single-threshold models to account for performance in all three conditions

leaves open the possibility that there is both a peripheral and a central threshold. Let us summarize

the logic underlying this assertion.

The observed binocular performance above that predicted from probability summation

indicates that a complete model requires a central threshold. This central threshold hinders

monocular performance more than binocular performance, because the two monocular channels of a

binocular presentation combine before the central threshold is assessed. The above-threshold

binocular a(t) curve is therefore more than twice as high as an equal-duration monocular curve.

The observed inferiority of dichoptic relative to monocular performance indicates that a

complete model must also include a peripheral threshold. The performance decrement for dichoptic

presentations relative to monocular performance implies some form of information loss prior to the

combination of the two ocular channels; such loss occurs with a peripheral threshold.

To summarize, we have rejected the pure forms of the peripheral and central a(t) threshold

models, and concluded that both the peripheral and central a(t) thresholds are necessary. We now

                                                

7The experimental design for Experiment 1 originally called for 8 durations for each of the three conditions.
However, during tachistosopic verification of the stimuli, the 15 ms binocular condition actually resulted in a 30 ms
presentation. Therefore the data for this condition was averaged with the 30 ms condition, giving 108 replications of
the 30 ms binocular condition.



BUSEY AND LOFTUS PAGE  20 10/4/96

alter our theory to account for these findings. Essentially, we do this by dividing the formerly single

a(t) threshold into peripheral and central a(t) thresholds.

The Dual-Threshold Model

Figure 8 illustrates this modified model, which we call the dual-threshold model. Each ocular

channel produces an a(t) function, complete with peripheral threshold. The above-threshold areas

from each channel sum to produce the central a(t) function, which includes a central threshold.

Performance is related to the above-central threshold area, AΘc
(∞), by Eq. 7.

INSERT FIGURE 8 ABOUT HERE

ac (t) = a ,L( t) + a ,R (t)

ac(t) - Θc (ac(t) > Θc )
aΘ,c(t) = Eq. 12

0 (ac(t) ≤ Θc )

Figure 9 shows the modified theory's best fit to the Experiment 1 data. The fit is extremely

close, with a RMSE of 0.0189. Table 2 lists the parameter values for each observer and for the fit in

Figure 9. Note that the assumption of a central threshold implies a model that contains a linear-

summation mechanism but no longer makes a probability summation prediction of pB = 2 pM − pM
2 .

INSERT FIGURE 9 ABOUT HERE

Note that the site of information loss is relative to the combinatorial mechanisms. Information

lost during the combination process, such as sub-additive summation, would be considered post-

combinatorial information loss because it would affect both the left- and right-eye information. Pre-

combinatorial information losses affect only the information from a single eye.

INSERT TABLE 2 ABOUT HERE

Accounting for Previous Data

Given the necessity of two thresholds to adequately describe the Experiment 1 data, we might

ask how previous experiments using similar stimuli, such as those described in Busey and Loftus

(1994), could be fit by a single-threshold model. The answer is that, mathematically, the previously

assumed single threshold subsumes both thresholds. The two thresholds simply combined and

were represented by a single threshold. Only when the binocular and dichoptic conditions were

included did the two thresholds reveal themselves. The dual-threshold model would, of course, also

fit the data from Experiments 1-6 of Busey & Loftus (1994), albeit with 100% tradeoff between the

two threshold parameters.



BUSEY AND LOFTUS PAGE  21 10/4/96

Dual-Threshold Model Predictions for
Dichoptic and Gap-Monocular Presentations

A further test of the dual-threshold model comes from comparing three conditions. Experiment

4 of Busey and Loftus (1994) included the present monocular condition, as well as a related

condition called a gap-monocular condition, in which the total duration (d) of the monocular

presentation was split into two temporal (d/2)-ms halves, separated by a 250-ms blank screen.

Observers performed substantially better in the monocular compared to the gap-monocular

condition. As Busey and Loftus showed, this is predicted by the theory, which implies more a(t)

area above threshold in the monocular than in the gap-monocular condition.

The dichoptic condition of Experiment 1 is analogous to a gap-monocular condition, except for

the zero ms ISI and the presentation of each pulse to different eyes. Dichoptic condition

performance is, like gap-monocular condition performance, worse than monocular performance.

This is implied by the theory in part because a dichoptic condition suffers the effects of two

peripheral thresholds, while a monocular presentation suffers from only a single peripheral

threshold.

The dichoptic and gap-monocular conditions are related in that in both, the stimulus is divided

into two temporal halves, and performance in both conditions is worse than monocular

performance. However, the dual-threshold model predicts a performance difference between these

two conditions. The reason will be described in detail below, but briefly it is this. The dichoptic

condition's zero ISI allows the two peripheral a(t) curves to overlap and sum, and thus provides

more above-central-threshold area under the central a(t) curve compared to a gap-monocular

condition. The gap-monocular condition's large ISI prevents the two peripheral a(t) curves from

interacting, leaving less above-central-threshold area. Thus, on the basis of the slightly more area

above the dichoptic curve's central a(t) threshold, the dual-threshold version of the theory predicts a

slight performance advantage for the dichoptic condition, compared to the gap-monocular condition.

Expressed differently, it appears that we cannot treat two separate presentations to separate eyes as

simply independent, to-be-summed events, as would be dictated by a simple, peripheral-threshold-

only model. The peripheral a(t) curves overlap and push more area above the central a(t) threshold,

whereas the two curves from the two pulses in a gap-monocular presentation cannot overlap. The

extra area pushed above the central threshold predicts that dichoptic performance is slightly above

gap-monocular performance.

A comparison of Busey and Loftus's (1994) Experiment 4, and the present Experiment 1

confirms this prediction: the difference between the dichoptic and monocular curves in the present

Experiment 1 is not as great as the difference between the gap-monocular and monocular curves in

Busey & Loftus's (1994) Experiment 4. Subtracting gap monoptic performance from monoptic
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performance reveals that 20-25 percentage points separates the two conditions in Experiment 4 of

Busey & Loftus (1994)8. However, subtracting dichoptic performance from monocular

performance reveals only a 10-15 percentage point separation between the two conditions of

Experiment 1. Monoptic performance was similar in the two experiments, never differing by more

than 10% across experiments.

Although these findings suggest that gap monoptic performance is inferior to dichoptic

performance, this conclusion requires an across-experiment comparison. In Experiment 2 we

reconfirm this finding by comparing the three conditions (monocular, dichoptic and gap-

monocular) in a single experiment. Thus Experiment 2 provides a further test of the dual-threshold

model, along with independent estimates of the model parameters.

Experiment 2: Testing the Independent
Sampling Model with Two Thresholds

From the perspective of the dual-threshold model, the fundamental difference between a

dichoptic and a gap-monocular presentation is that the two peripheral a(t) curves of a dichoptic

presentation are only processed independently up to the point where they combine to produce the

central a(t) function. After this happens, the two peripheral a(t) curves overlap and sum to produce

more area above the central a(t) threshold in a dichoptic presentation, and thus the model predicts

greater dichoptic performance compared to a corresponding gap-monocular condition.

To see why this is, consider Figure 10. The left panel shows the central a(t) curve for a 150 ms

monocular presentation, with the central a(t) threshold. The middle panel shows the central a(t)

curve for a dichoptic presentation consisting of two 75 ms displays with a zero ISI. Even though the

overall exposure duration is identical in the two conditions, the top of the dichoptic a(t) curve

appears bowed when compared to the monocular curve. This happens because presenting all of the

stimulus to the same eye as in a monocular presentation creates an a(t) curve that is wider above the

a(t) threshold than the two dichoptic a(t) curves (see top panel of Figure 10, solid vs. dashed

curves). This results in more above-peripheral-threshold area for the monocular condition. The bow

in the dichoptic central a(t) function (middle panel, Figure 10) results from the narrower dichoptic

peripheral a(t) curves, that tend to lose more area to the peripheral a(t) threshold.

INSERT FIGURE 10  ABOUT HERE

The right panel of Figure 10 shows the central a(t) curve for a gap-monocular presentation

consisting of two 75 ms displays separated by a 250 ms ISI. This panel demonstrates the sensory

                                                

8 The Busey & Loftus (1994) data were graphed using a nonlinear transformation of percent correct, but here we
convert the Experiment 4 data back to percent correct to make this comparison.
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independence between the two curves: the ISI is long enough to prevent the first presentation from

summing with the second. Accordingly, there is less area above the central a(t) threshold, reducing

performance for this condition compared to both the monocular and dichoptic conditions.

The two peripheral a(t) thresholds ensure that dichoptic performance is below monocular

performance, but the interaction of the two dichoptic peripheral a(t) curves at the central a(t) curve

drives more area above the central a(t) threshold. Thus dichoptic performance is predicted to be

above the gap-monocular condition but below the monocular condition.

Predictions Summary
Let us summarize the predictions of Experiment 2. A finding of monocular performance above

dichoptic performance implies a model with a peripheral threshold. A finding of dichoptic

performance is above gap-monocular performance implies a central threshold.

Method
Experiment 2 incorporates three basic conditions. In the monocular condition a single d-ms

stimulus was presented to one eye. In the dichoptic condition there were two (d/2)-ms stimulus

presentations, the first to one eye and the second to the other eye, separated by a zero ISI. In the

gap-monocular condition there were two (d/2)-ms presentations, both to the same eye, separated by

a 250 ms ISI.

Observers, Stimuli and Apparatus

Observers, stimuli and apparatus were identical to those of Experiment 1, except that Observer

TAK was replaced by TK, a male graduate student.

Design and Procedure

The design and procedure were essentially identical to those of Experiment 1 except that the

binocular condition was replaced by the gap-monocular condition. There were 8 durations with each

of the 3 conditions. Observers completed 18, 72-trial blocks, which provided 54 observations per

condition per observer.

Results

Figure 11 shows the results of Experiment 2. Because there were qualitative differences

between observer GW and the other two observers, we present individual data here. Observer TB's

and TK's data (left and middle panels) confirm the foregoing prediction: dichoptic performance

(filled squares) lies between monocular and gap-monocular performance. Observer TK's dichoptic

data is close to the gap-monocular data, although dichoptic performance is significantly greater than

the gap-monocular data, t(1520) = 3.87, p < 0.0001.

INSERT FIGURE 11  ABOUT HERE



BUSEY AND LOFTUS PAGE  24 10/4/96

Observer GW's data are shown in the right panel. The most important difference is that

dichoptic and gap-monocular performance are the same. The dual-threshold model, however, can fit

each data pattern with different parameter values. Consider the comparison between observer TB

and Observer GW. Figure 12 shows the central a(t) curves for observers TB and GW for each

condition, as generated by the best-fitting model parameters. The top three panels demonstrate why

a dual-threshold model predicts dichoptic performance between the monocular and gap-monocular

performances: the low peripheral threshold and the temporal proximity of the two peripheral a(t)

curves combine to produce more above-threshold area relative to the gap-monocular condition.

INSERT FIGURE 12  ABOUT HERE

Observer GW's overall performance is approximately half that of the other two observers

(possibly because GW, at age 50, was approximately twice as old as TB and TK). From the model's

perspective, this is a direct result of a high peripheral a(t) threshold, causing a greater loss of area

compared to observer TB. The bottom three panels of Figure 12 show the central a(t) curves given

by the best-fitting model parameters for GW. A large peripheral threshold does not allow the two

peripheral a(t) curves to overlap centrally as much. Without this large overlap, the two dichoptic

curves will produce the about the same above-threshold area as the gap-monocular curve, and

subsequently similar performance.

Because observer GW's dichoptic and gap-monocular performances were close together, a

dual-threshold model with the central threshold set to zero (equivalent to the pure peripheral

threshold model) will account for the data. However, the best fit to the data comes from peripheral

and central a(t) thresholds that are both positive.

Observer TK's overall performance lies somewhere in between the other observers and he has a

peripheral threshold that is in between TB’s and GW’s. We see a concomitant reduction in the

difference between dichoptic and gap-monocular performance. However, this data pattern is readily

accounted for by the theory. The parameter values for the three observers in Experiment 2 are listed

in Table 2.

Discussion
Experiment 2 confirms the dual-threshold model, which is implied by Observer TB's and TK's

data, and provides the best fit to Observer GW's data. In addition, the fit to Observer GW's data

demonstrates how predictions that seem qualitatively different come from a single theory's different

parameter values.

Experiment 3: Testing the Central Threshold
Experiments 1 and 2 have provided strong support for a peripheral threshold: monocular

performance above dichoptic performance requires some form of pre-combination information loss.
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This information loss is represented in the dual-threshold theory by a peripheral threshold. All three

observers in Experiments 1 and 2 demonstrated a clear superiority for monocular over dichoptic

performance. However, Experiment 2 provides only weak support for a central threshold; only two

of the three observers (Observers TB and TK) demonstrates a difference between dichoptic and

gap-monocular performance. Perhaps the conditions used in Experiment 2 were not powerful

enough to distinguish between a theory that requires a central threshold and a theory that does not.

One goal of Experiment 3 was to test the central threshold component of the theory directly.

To test the central-threshold component of the dual-threshold theory, Experiment 3

incorporates dichoptically presented stimuli, and variation in the interstimulus interval (ISI) between

the two pulses of a dichoptic presentation. To see how this manipulation identifies the existence of a

central a(t) threshold, consider a basic dichoptic presentation consisting of a 60-ms presentation to

one eye followed by a 60-ms presentation of the same stimulus to the other eye. Consider two

conditions that differ in the ISI between the two presentations. In the first condition, ISI is zero ms,

while in the second condition it is 45 ms. Because the two conditions engender two identical

peripheral a(t) curves, they both generate the same above-peripheral-threshold area passed to the

combination mechanisms. As a result of these identical areas passed to the combination mechanism,

any performance difference between the two conditions must be caused by post-combinatorial

mechanisms; that is, a detrimental ISI effect must result from either a loss due to a central threshold

or a loss in the combination of the two peripheral areas via nonlinear summation.

Figure 13 demonstrates the central a(t) curves resulting from monocular, 0-ms ISI dichoptic

and 45-ms ISI dichoptic presentations, and demonstrates that a central-threshold assumption makes

the prediction that as ISI increases, performance will decrease in the dichoptic condition.

INSERT FIGURE 13  ABOUT HERE

Method
Experiment 3 uses the monocular and dichoptic stimuli of Experiments 1 and 2. However, in

the dichoptic condition the ISI between the first and second pulses was systematically varied from 0

to 90 ms. The duration of each of two pulses in each dichoptic presentation was either 30, 45, 60 or

75 ms.

Observers

Three observers participated in Experiment 3: the first author TB, a female graduate student

LM, and a male graduate student MB.

Stimuli and Apparatus

The stimuli and apparatus were identical to those of Experiment 1. The contrast of the digits

was set to 7.1%.
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Design and Procedure

Both monocular and dichoptic stimuli were used. Within the dichoptic condition were 5

different ISI's ranging from 0 to 90 ms. The two pulses were the same duration, which was 30, 45,

60 or 75 ms. Within the monocular condition were 4 stimulus durations: 60, 90, 120 or 150 ms.

Observers completed 24, 72-trial blocks, which provided 72 observations per condition per

observer.

Results and Discussion
Experiment 3 results are summarized in Figure 14. All three observers produced data that

demonstrate the same overall pattern, and thus averaged data are shown. The solid lines represent

the dual-threshold model fit, whose best fitting parameters are provided in Table 2. Two findings in

these data are noteworthy.

INSERT FIGURE 14  ABOUT HERE

First, as ISI is increased in the dichoptic condition, performance decreases. This implies some

form of post-combinatorial information loss, as modeled by a central a(t) threshold in Figure 13.

Prior to the combination of the information from each eye, dichoptic presentations with different

ISI's all provide the same information; the ISI only becomes relevant once the responses from each

eye are combined. However, under a linear-summation mechanism, increasing the ISI still cannot

cause a decrease in performance without something like a central a(t) threshold, because the various

dichoptic conditions have the same overall area under their central a(t) functions. The central

threshold causes a reduction in performance for longer ISI dichoptic conditions because it tends to

eliminate more of the area under the wider, shorter central a(t) curves produced by a longer ISI

dichoptic condition. Thus under the current dual-threshold model conceptualization, the Figure-14

data imply a central a(t) threshold.

The second noteworthy finding in the Figure 14 data is that monocular performance is above

the zero-ISI dichoptic condition's performance. This is most clearly evident for the short-duration

presentations. Overall the magnitude of the effect is somewhat reduced when compared to the

differences observed between these two conditions in Experiments 1 and 2. However, this pattern

held for all three observers, with the exception of the longest-duration condition for Observer TB.

The superiority of monocular performance in this as well as in Experiments 1 and 2, constitutes

clear evidence for some form of pre-combinatorial information loss. Within the context of the dual-

threshold model, this information loss implies a peripheral a(t) threshold.

Taken together the findings shown in Figure 14 confirm the dual-threshold model and

reconfirm the existence of a post-combinatorial source of information loss, modeled within the

theory as a central a(t) threshold.
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To summarize the conclusions of Experiment 3, we have again disconfirmed a version of the

linear-summation model that does not have some form of post-combinatorial information loss, and

we have demonstrated that when this post-combinatorial information loss is modeled by a central

a(t) threshold we can provide good quantitative fits to the data.

GENERAL DISCUSSION
It is generally agreed that two eyes are better than one. For some tasks, binocular superiority is

implied by simple geometry: it is self evident, for instance, that binocular vision can aid in inferring

the three-dimensional structure of the world. What is not so obvious, however, is that binocular

vision also helps when simple, two-dimensional visual information is all that is required to perform

the task at hand, as is the case in our digit-recall task. This means that information must somehow

be acquired faster with two eyes than with only one eye. We have described a theory that accounts

for such speedup. This theory includes sensory thresholds that affect monocular performance more

than binocular performance. In what follows, we make several remarks about the thresholds in

particular, along with general implications of our threshold notions for interpreting binocular

superiority. Note that it is not our intent to provide a complete model of binocular combination that

accounts for the wide variety of phenomenon that exist in the binocular combination literature.

Rather, we have embedded a somewhat simplified binocular combination model within our general

theory. This model is designed to (1) illustrate the implications of the sensory threshold, (2)

examine the mechanisms of binocular combination in conjunction with this threshold, and (3)

demonstrate the role of temporal interactions that result from overlapping sensory-response

functions.

Above-Probability Summation Performance does not
Implicate Neural Interaction

In their review of the binocular-summation literature, Blake and Fox (1973; see also Blake,

Sloane & Fox, 1981) suggested that binocular performance above that predicted via probability

summation from monocular performance implies "genuine neural interaction between the eyes, not

just probability summation" (Blake et al., 1981, p. 266). We conclude that this need not be the case:

we have provided a model that makes an above-probability summation prediction with a linear-

summation mechanism. The existence of a post-combinatorial information loss (modeled by the

central threshold) is completely responsible for this prediction.

Consider the bottom panel of Figure 5. In the absence of a central threshold, the binocular

curve is twice as high as a same-duration monocular curve (with or without a peripheral threshold);

correspondingly, the binocular-curve area is twice as great as the monocular-curve area. In the

absence of additional mechanisms, this would fulfill a probability-summation prediction of

pB = 2 pM − pM
2 . However, when a central a(t) threshold is introduced, binocular performance rises
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above what would be predicted from probability summation. This happens because the monocular

curve's lower height renders it more vulnerable to a central a(t) threshold than a binocular curve.

From this perspective, binocular performance is observed to be above what is predicted by

probability summation not because observers are doing better in the binocular task, but because

they are doing worse in the monocular task. They are doing worse as a direct result of a post-

combinatorial information loss, that differentially affects monocular performance more than

binocular performance, not because of a greater-than-linearity summation mechanism.

Alternative Ocular-Channel Combination Models
An explicit assumption of the current linear-summation model is that the above-threshold areas

from the two monocular channels simply sum to produce the central a(t) function, upon which

performance is based. While this combination mechanism has support from neuroscience (Ohzawa

& Freeman, 1986) and has been adopted by Legge (1984 a, b) and others, alternative mechanisms

have been proposed. We would like to consider in detail a model developed by Alexander Cogan

(Cogan, 1987; 1990). A summary of this model is below; a more complete description is found in

Figure 15. We have adapted this model to the current data, and we discuss the extensions to the

model that are required to account for the present experimental data.

INSERT FIGURE 15  ABOUT HERE

The Cogan model assumes that the two eyes perform transduction on incoming stimuli to

produce ipsilateral excitation (eL, eR) and contralateral inhibition (iL, iR). The amount of inhibition is

proportional to the excitation, such that iR = c • eL and iL = c • eR. The combined either-eye output, bx

is given by:

bx =
eR

(1+ c ⋅ eL )
+

eL

(1+ c ⋅ eR )
Eq. 13

A separate, fused channel, bF, is given by:

bF = k ⋅ eR ⋅ eL Eq. 14

and the net binocular effect is simply the sum of bx and bF.

Components of this model share similarities with the Dual-Threshold model presented here.

Cogan et al. (1990) developed a linear-filter front end and used this model to fit two-pulse detection

thresholds, in which the two pulses could either be the same contrast (++) or opposite contrast (+-

). They systematically varied the stimulus onset asynchrony (SOA) and determined relative

sensitivities to each type of stimulus. Although they did not obtain quantitative model fits, qualitative

model predictions corresponded to the observed data.
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Two-pulse stimuli like those used in the 1990 paper provide good estimates of the parameters

of linear filters (Busey, 1994). Due to the qualitative success of the Cogan model to account for the

two-pulse data, we fit the Cogan model to the present data. Before describing the results of this

modeling, some comparisons between the two models are in order.

A major emphasis of the present work is the effects of post-combinatorial information loss on

binocular and monocular stimulus representations. An example is the ability of the Dual-Threshold

model with a central sensory threshold to account for above-probability-summation binocular

performance, even with a linear summation combination mechanisms. This results from the higher

binocular central a(t) function that allows more area to survive a central sensory threshold. The

binocular channel bF in the Cogan model can in principle have the same effect: if both eL and eR are

active at once, bF will be large, giving a larger response and thus better performance. This is

qualitatively similar to the two peripheral a(t) curves providing more above-central-threshold area

when they co-occur. Thus the free parameter k from Cogan’s binocular channel is somewhat

analagous to the free parameter Θc in the Dual-Threshold model.

The interocular inhibition from the Cogan model serves to reduce the response in the opposite

monocular channel. This pre-combinatorial information loss is somewhat analagous to the

peripheral thresholds in the Dual-Threshold model. There are important differences, in that the

peripheral thresholds act only on a single monocular channel, which the interocular inhibition

crosses channels. However, within the model formulations, pre-combinatorial information loss is

represented by a single free parameter, either c or ΘP.

Qualitatively, the Dual-Threshold model and the Cogan model are similar and have the same

number of free parameters, although perhaps the added complexity of the Cogan model gives it

more explanatory power. Given this, it is reasonable to ask whether the Cogan model can fit the data

from Experiments 1-3. Such fits require an information-processing model component to deal with

the change from a detection paradigm to a letter identification paradigm.

To assist in model comparison, we simply appended the information-processing mechanisms

of the Dual-Threshold model to the output of the Cogan model (Eq 7). Consistent with the Dual-

Threshold model, we assumed that the presentations to each eye engenders a peripheral sensory

response function corresponding to Cogan’s eL or eR. These two response functions inhibit each

other in proportion to their height at each moment in time, according to the free parameter c. A

separate binocular channel was also created from the peripheral sensory response functions

according to the free parameter k according to Eq 14. The sum of these two channels gives a central

sensory response function. The area of this central sensory response function is used to generate a

performance prediction via Eq. 7.
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Surprisingly, the Cogan model could not fit the data as well as the Dual-Threshold model,

despite the added complexity of the model. Parameter values are shown in Table 3. The left panels

of Figure 16 show the fits to the averaged data from Experiments 1 and 3. The data from

Experiment 2 could also not be fit, but are not shown, since the conclusions derived from the data

mirror those from Experiment 1. The reason for these poor fits appears to come from a binocular

excitation channel that cannot completely take the place of a central information loss that accounts

for both the above-probability-summation binocular performance of Experiment 1 and the decrease

in performance with increasing ISI from Experiment 3. When a central nonlinearity such as a

central threshold is added to the Cogan model (Figure 16, right panels), the revised Cogan model

gives very good fits in all cases. However, the addition of a central threshold gives the revised model

one more free parameter that the Dual-Threshold model.

INSERT FIGURE 16  ABOUT HERE

INSERT TABLE 3 ABOUT HERE

To summarize, while the Experiment 1-3 data disconfirm the simple version of the Cogan

model, the model gives excellent quantitative fits if a central threshold or central power function is

added. Such an addition might be required by the additional complexity of the task: detection and

letter identification might require different spatial and temporal frequencies (Busey, 1994) and letter

identification is best thought of as a classification task. The central information loss may result

from inefficiencies or noise in the information processing mechanisms that are not required for

simple detection.

Evidence for Temporal Inhibition
The impulse response function used in the present work (Eq. 1) is monophasic, and therefore

does not allow for temporal inhibition. Busey (1994) found weak evidence for temporal inhibition

in related tasks, and when the theory was modified to include temporal inhibition (via a biphasic

impulse response function, setting s>0 in Eq. 1) it successfully accounted for the data in these

related tasks. However, application of this biphasic model to the present data did not markedly

improve the fit over that provided by the monophasic model that we have described (despite two

additional free parameters). This failure result from the peripheral thresholds, the effects of which

tend to eliminate the inhibitory components of the biphasic peripheral a(t) curves. Similarly, a

version of the theory that includes temporal inhibition but without peripheral a(t) thresholds also did

not provide a markedly better fit to any of the three data sets. A version of the Cogan model with

temporal inhibition did not provide fits better than those shown in Figure 16, despite requiring two

additional free parameters.
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Neuroscience Evidence for a Central Threshold
Using single-cell recording in cat, Ohzawa & Freeman (1986) found overwhelming evidence

for linear summation in binocular cells. However, a minority of cells exhibited deviations from this

linearity, in that the response from the cell was maximal when both eyes were equally stimulated,

but dropped off at a rate faster than would be expected from a linear model when one eye was

reduced. This is quite similar to the behavior of the central threshold observed in the current

modeling (e.g. Figure 13). Indeed, Ohzawa & Freeman attribute this nonlinearity to a threshold

mechanism that comes into play after the linear binocular summation. One possible mechanism for

such a threshold is the threshold for firing on the post-synaptic cell receiving input from both eyes.

Weak stimulation to either eye may not exceed this threshold and cause the cell to fire, although

weak stimulation to both eyes may result in an action potential on the post-synaptic cell.

The importance of a post-combination threshold mechanism has been demonstrated in other

domains as well. For example,

get full paper and see if relevant

Sensory Thresholds: Implications for Cognitive Psychologists
As noted above, the notion of peripheral and central a(t) thresholds is similar to peripheral and

central sources of noise. Denis Pelli (personal communication) has demonstrated that under some

conditions, either the central or peripheral noise dominates the signal, and thus affects performance.

He and Manoj Raghavan (Pelli, Raghavan & Ahuja, 1995; Raghavan & Pelli, 1995) demonstrate

that the visibility of large, long-duration letters is limited by (central) cortical noise, and that

visibility of small, brief-duration letters is limited by (peripheral) photon noise. The important

implication for perception researchers is that a stimulus variable such as size can differentially affect

two stages of processing (peripheral or central). Thus these two stages become important to model

even in experiments that do not use monocular or dichoptic stimuli.

The thresholds as conceptualized above may be thought of as a constant drain on a system that

is attempting to process a signal. Consider a metaphor in which the a(t) function represents the

speed of some system, say the value of the speedometer in a car. The total amount of information,

i.e. the area under the a(t) function, is analogous to the odometer reading after some period. Once

the threshold is added, however, the metaphor changes to a motorboat traveling upriver. The speed

of the current represents the height of the threshold; thus if motorboat speed does not exceed the

current speed, then no upriver progress will be made.

Conclusions
We have extended a previously proposed theory of visual information processing to the

domain of binocular combination. Application of this extended theory to data from three
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experiments helps identify the sources of information loss, both pre- and post-combination. Finally

we have confirmed a version of the extended theory that combines both pre- and post-combinatorial

sources of information loss with a linear-summation combination mechanism and an independent

sampling information acquisition mechanism. This application demonstrates that the question of the

combination mechanisms involved in binocular combination is intimately tied to the question of pre-

and post-combination sources of information loss: one cannot simply look at monocular and

binocular data and infer the combinatorial mechanisms without also considering the potential for

something like peripheral and central sensory-response thresholds. In particular, the existence of a

central threshold implies that binocular performance above a probability summation prediction

based on monocular data need not implicate an above-linear-summation combination mechanism. A

linear summation mechanism and a central threshold will provide an equivalent account.

The linear-filter model components also allows a good quantitative account of the degree to

which the relationship between monocular and binocular performance changes as the asynchrony

between the two pulses of the binocular stimulus changes. Such modeling reveals not only under

what conditions the two monocular channels influence each other, but how they are affected by the

post-combinatorial information loss. Finally, we have demonstrated that such quantitative fits are

important when comparing two models that have similar structure and components and thus give

qualitatively similar results.



BUSEY AND LOFTUS PAGE  33 10/4/96

References
Ames, C. & Palmer, J. (1992). Macintosh Experimental Software. Seattle, WA: unpublished

computer code.

Blake, R. & Fox, R. (1973). The psychophysical inquiry into binocular summation. Perception &

Psychophysics, 14, 161-185.

Blake, R., Slone, M. & Fox, R. (1981). Further developments in binocular summation. Perception

& Psychophysics, 30, 266-276.

Busey, T. A. (1994). Temporal Inhibition in Two-Pulse Character Detection and Identification

Tasks. University of Washington, August, 1994.

Busey, T.A. & Loftus, G.R. (1994). Sensory and cognitive components of visual information

acquisition. Psychological Review , 101, 446-469.

Cogan, A. (1987). Human binocular interaction: Towards a neural model. Vision Research, 27,

2125-2139.

Eriksen, C. W., & Greenspon, T. S. (1968). Binocular summation over time in the perception of

form at brief durations. Journal of Experimental Psychology, 76, 331-336.

Eriksen, C. W., Greenspon, T. S., Lappin, J. & Carlson, W. A. (1966). Binocular summation in the

perception of form at brief durations. Perception & Psychophysics, 1, 415-419.

Green, D., & Swets, J. (1966). Signal detection theory and psychophysics. New York: Wiley.

Green, D., & Swets, J. (1974). Signal detection theory and psychophysics. Huntington, NY: Robert

E. Krieger.

Julesz, B. (1971). Foundations of Cyclopean Perception. Chicago, IL: University of Chicago Press.

Legge, G. (1984a). Binocular contrast summation-I. Detection and discrimination. Vision Research,

24, 373-383.

Legge, G. (1984b). Binocular contrast summation-II. Quadratic summation. Vision Research, 24,

385-394.

Loftus, G. R., Busey, T.A. & Senders, J. (1993). Providing a sensory basis for models of visual

information acquisition. Perception & Psychophysics, 54, 535-554.

Loftus, G. R., Duncan, J. & Gerhig, P. (1992). On the time course of perceptual information that

results from a brief visual presentation. Journal of Experimental Psychology: Human

Perception and Performance, 18, 530-549.

Loftus, G.R. & Irwin, D.E. (1995). Visible persistence and iconic storage are different, but related

things. Cognitive Psychology (under revision).



BUSEY AND LOFTUS PAGE  34 10/4/96

Loftus, G.R. & McLean, J. A theory of the information acquisition that underlies picture

recognition (in preparation).

Loftus, G.R. & Ruthruff, E.R. (1994). A theory of visual information acquisition and visual

memory with special application to intensity-duration tradeoffs. Journal of Experimental

Psychology: Human Perception and Performance, 20, 33-50.

Massaro, D.W. (1970). Perceptual processes and forgetting in memory tasks. Psychological

Review, 77, 557-567.

Matin, L. (1962). Binocular summation at the absolute threshold of peripheral vision. Journal of the

Optical Society of America, 52, 1276-1286.

Ohzawa, I., & Freeman, R. D. (1986). The binocular organization of simple cells in the cat's visual

cortex. Journal of Neurophysiology, 56, 221-242.

Pelli, D. G., Raghavan, M. & Ahuja, S. (1995) The noises that limit visual perception. Paper

presented at the 1995 Association for Research in Vision and Ophthalmology Conference.

Raghaven, M., & Pelli, D. G. (1995) Psychophysical evidence for cortical noise. Paper presented at

the 1995 Association for Research in Vision and Ophthalmology Conference.

Rumelhart, D.E. (1970). A multicomponent theory of the perception of briefly exposed visual

displays. Journal of Mathematical Psychology, 7, 191-218.

Shibuya, H., & Bundesen, C. (1988). Visual selection from multielement displays: Measuring and

modeling effects of exposure duration. Journal of Experimental Psychology: Human

Perception and Performance, 14, 591-600.

Sperling, G. & Melchner, M.J. ( 1978). Visual search, visual attention, and the attention operating

characteristics. In J. Requin (Ed.) Attention and Performance VII. Hillsdale, N.J.: Erlbaum.

Sperling, G., & Sondhi, M.M. (1968). Model for visual luminance discrimination and flicker

detection. Journal of the Optical Society of America, 58, 1133-1145.

Townsend, J. T. (1981). Some characteristics of visual whole report behavior. Acta Psychologica,

47, 149-173.

Watson, A. (1979). Probability summation over time. Vision Research, 19, 515-522.

Watson, A. B. (1986). Temporal sensitivity. In K. R. Boff, L. Kaufman, and J.P. Thomas (Eds.),

Handbook of Perception and Human Performance (Vol I) New York: Wiley.

Westendorf, D. & Blake, R. & Fox, R. (1972). Binocular summation of equal energy flashes of

unequal duration. Perception & Psychophysics, 12, 445-448.



BUSEY AND LOFTUS PAGE  35 10/4/96

Appendix A- Equations for All Model Fits
Parameter fitting was accomplished using a simplex gradient descent method. To avoid the

possibilities of local minima, we computed the best fitting parameters multiple times, each time from

a different starting location in parameter space. The vast majority of parameter searches terminated

at the same ending parameters for a given model fit.

All model fits derive the peripheral sensory response functions, ap(t), via the convolution of the

stimulus wave form with the impulse-response function of the linear filter:

ap(t) = f(t) * g(t) Eq. A1

were g(t) is the gamma function from Eq 1. Note that for monocular and dichoptic stimuli, the left

and right-eye f(t) functions will differ according to which eye is stimulated (or stimulated first in the

dichoptic case).

Predictions for the Dual-Threshold Model
A peripheral threshold, Θp, is assessed on the peripheral a(t) wave form:

ap(t) - Θp ( a(t) > Θp )
aΘ,p(t) = Eq. A2

0 ( a(t) ≤ Θp )

for the hard threshold version of the theory, or a power function is applied to the peripheral a(t)

wave form:

a
β,p(t) = [ap(t)]β Eq. A3

The two peripheral sensory response functions sum to create the central sensory response

function, ac(t):

ac (t) = a ,L( t) + a ,R (t) Eq. A4

or

a c (t) = aβ ,L (t) + aβ,R (t) Eq. A5

for the power function version of the theory.

In the Dual-Threshold model, a central threshold is assessed to create aΘ,c(t):

ac(t) - Θc (ac(t) > Θc )
aΘ,c(t) = Eq. A6

0 (ac(t) ≤ Θc )

for the hard threshold version of the theory, or a power function is applied to the central a(t) wave

form:
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a
β,c(t) = [ac(t)]

β Eq. A7

The area under the a
θ,c(t) function is converted to performance via the following formula:

p = 1.0 − e
−A Θ,c (∞ )/cs Eq. A8

For the power-function version of the theory, performance is a function of the area under the

a
β,c(t) wave form:

p = 1.0 − e
−A β,c (∞ )/c s Eq. A9

Predictions for the Cogan Model
Using the notation of the Busey & Loftus (1994) model, the Cogan model is formulated as

follows:

bx (t) = aR (t)
(1+ c ⋅ a

L
(t))

+ a L (t)
(1+ c ⋅ a

R
(t))

Eq. A10

and

bF (t) = k ⋅a R (t) ⋅a L (t) Eq. A11

where aR(t) and aL(t) represent eR and eL respectively. The central sensory response function ac(t) is

computed via:

a c (t) = bx (t) + bF (t) Eq. A12

If a central threshold is applied after the point of combination, this formulation is added to

create aΘ,c(t):

ac(t) - Θc (ac(t) > Θc )
aΘ,c(t) = Eq. A13

0 (ac(t) ≤ Θc )

for the hard threshold version, or a power function is applied to the central a(t) wave form:

a
β,c(t) = [ac(t)]β Eq. A14

In all three cases, performance is converted from the area under the central sensory response

function via Eq 7:

p = 1.0 − e −A c (∞ )/cs Eq. A15

were Ac(∞) is replaced by Aθ,c(∞) when a central threshold is added or by Aβ,c (∞) when a central

power function is added.
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Figure 1. The temporal frequencies underlying a task may be characterized by an impulse response function
(left panel) that characterizes the time course of the perceptual response engendered by a stimulus, or by the
temporal contrast sensitivity function (right panel), that characterizes the fidelity by which the pathways
subserving a given task pass different temporal frequencies. The TCSF plots are the Fourier transform of the
impulse response functions into frequency space. High spatial frequency stimuli tend to elicit monophasic
impulse response functions, which have no falloff at low temporal frequencies in the TCSF plot. Stimuli
containing low spatial frequencies tend to elicit biphasic impulse response functions that contain an
inhibitory lobe. This temporal inhibition acts to sharpen the response of the visual pathway, allowing it to
respond to faster changes in the visual scene. However, this inhibition causes in a falloff at low temporal
frequencies in the TCSF plot, which results from tendency for the biphasic impulse response function to
inhibit itself when processing slow temporal changes. Parameters used: Monophasic: {τ = 4.38, r = 0}
Biphasic: {τ = 3.58, r = 2.0, s = 0.39}
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Figure 2. Theoretical components of the linear filter model of character identification. Left Panel:
A stimulus is characterized by its changes in contrast over time. Middle Panel: The stimulus
engenders a response in the visual system that is a function of the stimulus input function f(t) and
the impulse response function g(t). A sensory threshold is assessed, such that further information
processing does not proceed unless the sensory response exceeds the sensory threshold. Right
Panel: If the sensory response exceeds the threshold, further information processing takes place at
a rate defined by r(t). This rate is proportional to the product of the above-threshold sensory re-
sponse and the proportion of remaining stimulus information. Performance in terms of proportion
correctly-recalled digits is assumed to be proportional to the area under the information-
acquisition rate function (which represents total acquired information).
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Figure 3. The peripheral and central-threshold models, along with the responses generated by a
dichoptic presentation. Peripheral Threshold Model: Information enters each eye and engenders
two peripheral a(t) curves. These curves pass through the peripheral threshold, ΘP, such that
only the above-peripheral-threshold area combines centrally to form the central a(t) curve. All of
the area under this function determines performance. Central-threshold Model: The two
presentations engender two peripheral a(t) curves, but under the central-threshold model all of the
peripheral area combines centrally. After combination a central a(t) threshold, Θc, is assessed,
such that only the above-central-threshold area determines performance.
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Figure 4. Left panel: a(t) function for a monocular d-ms presentation. Middle panel: Peripheral-
threshold model's prediction for dichoptic presentation which gives less area and thus reduced
performance compared to the monocular condition. Right panel: Central-threshold model's
prediction for dichoptic presentation, which is identical to the monocular prediction and thus
dichoptic performance will be identical to monocular performance.
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Figure 5. Top panel: Binocular and monocular central a(t) curves under a
peripheral threshold model. The binocular area is always twice as great
as the associated monocular area, and thus binocular and monocular per-
formances obey a probability summation prediction: pB = 2 pM − pM

2 .
Bottom panel: Binocular and monocular central a(t) curves under a
central-threshold model. Again the binocular curve is twice as tall as a
monocular curve, but the central a(t) threshold affects the monocular area
proportionately more. This causes a failure of probability summation
because binocular performance would be predicted to be greater than that
expected from a probability summation prediction based on monocular
performance: pB > 2 pM − pM

2 . Under an extreme case, the monocular
curve might not even reach the central a(t) threshold, although a binocular
might. In this case, pM = 0 while pB > 0, which is a clear failure of
probability summation.
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Figure 6. Display apparatus used in
Experiments 1-3. Care was taken at the start
of a block of trials to fuse the two “L’s” into
a cross to ensure that during the presentation
view the digits overlapped on the same retinal
area. The fixation point never disappeared,
allowing maintenance of the fused condition.



BUSEY AND LOFTUS PAGE  44 10/4/96

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

Monocular
Dichoptic
Binocular

RMSE = 0.0870

Peripheral Threshold Fit

p:
 p

ro
po

rt
io

n 
co

rr
ec

t
d = Stimulus Duration (ms)

Figure 7. Experiment 1 results: data averaged for three observers, along with best-fitting
predictions of the peripheral threshold model. For illustrative purposes, the model fit given in
Figure 7 minimizes error around only the monocular and dichoptic presentations. This
demonstrates the inadequacy of the probability summation assumption, implicit in the
peripheral-threshold model, to describe binocular performance based on monocular
performance.
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Figure 8. The dual-threshold model. Above-peripheral-threshold area from the peripheral a(t)
curves combines to produce the central a(t) curve.
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Figure 9. Experiment 1 results. Data are averaged for three observers; the solid line shows the best
fit of the dual-threshold model to the averaged data.



BUSEY AND LOFTUS PAGE  47 10/4/96

0.00

0.01

0.02

0 100 200 300 400 500

Sensory Response
Individual Contributions

S
en

so
ry

 R
es

po
ns

e:
 a

(t
)

150 ms monocular display

Central a(t) threshold

Total Area = 0.40

0.00

0.01

0.02

0 100 200 300 400 500

Monocular (Comparison)
Individual Responses
Sensory Response

S
en

so
ry

 R
es

po
ns

e:
 a

(t
)

150 ms monocular display
75 ms to one eye, 0 ms ISI,
75 ms to the opposite eye

Area lost to 
peripheral 
thresholds

Central
a(t) thresholdTotal Area = 0.25

Area gained over
a gap monocular
display

0.00

0.01

0.02

0 100 200 300 400 500

S
en

so
ry

 R
es

po
ns

e:
 a

(t
)

Central a(t) Threshold

150 ms gap monocular display:
75 ms to one eye, 250 ms ISI,
75 ms to the same eye

t = Time Since Onset (ms)

Total Area = 0.22

Figure 10. Left panel: Central a(t) curve for a 150 ms monocular presentation. Middle panel: Central
a(t) curve for a 150 ms dichoptic presentation. Right panel: Central a(t) curve for a 150 ms gap-
monocular presentation. The dichoptic and gap-monocular curves have less above-central-a(t)
threshold area than the monocular curve, predicting lower performance for the dichoptic and gap-
monocular conditions. However, the dichoptic area is slightly greater than the gap-monocular area,
which implies that dichoptic performance will be slightly above the gap-monocular performance.
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Figure 11. Experiment 2 results. Data for three separate observers along with best fits from the
dual-threshold model.
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Figure 12. Central a(t) curves for Experiment-6 observers TB and GW, showing how different
model parameters generate "qualitatively different" predictions with the same theory. GW's large
peripheral thresholds allow less overlap of the peripheral dichoptic curves (middle panel) and thus
they do not provide much more above-central-threshold area than the above-central-threshold area
derived from the gap-monocular condition.
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Figure 13. Linear-Summation dual-threshold Model. Central a(t) curves for 0-ms ISI dichoptic, 45-ms
ISI dichoptic and monocular presentations for a 60 ms/60 ms condition. The two dichoptic condition
central a(t) curves have the same overall area (panels A and B), because the individual peripheral
contributions are the same for both conditions. However, because the 45 ms ISI dichoptic condition has
area that is more spread out in time, the central threshold affects it more giving it less above-central-
threshold area (3.86 vs. 2.09). This leads to the prediction that as ISI is increased in the dichoptic
condition, performance will decrease. This decrease is solely due to the central a(t) threshold because the
peripheral a(t) thresholds affect both pulses equally in all conditions. The right panel shows the curve
resulting from a monocular presentation; the monocular area is slightly larger than the 0-ms ISI
dichoptic area because the taller peripheral a(t) curve for the monocular condition puts more area above
the peripheral a(t) threshold. The combination of peripheral and central threshold leads to the prediction
that monocular performance will be above the 0-ms ISI dichoptic performance (as was seen in
Experiments 1 and 2), and that performance will decrease as ISI is increased in the dichoptic condition.
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Figure 14. Experiment 3 results. Data are averaged for three observers; the solid line shows the best
fit of the dual-threshold model with a linear combinatorial mechanism. The data show two important
features. First, as ISI increases, performance in the dichoptic condition decreases. This finding
provides evidence for a post-combinatorial information loss, modeled within the theory as a central
a(t) threshold. Second, Monocular performance is above the zero-ISI dichoptic condition's
performance, most markedly at the short-duration presentations of 30/30 ms and 45/45 ms. This
provides evidence for a pre-combinatorial information loss, modeled within the theory as a periph-
eral a(t) threshold.
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Figure 15. Cogan (1987) model applied to the Experiment 1-3 data. The height of the peripheral a(t) curves at
each point in time is used to construct a Net Binocular Effect curve that is similar to the  central a(t) curves in
the previous modeling. Each eye contributes an excitatory response that is reduced by an inhibitory response
from the other eye (bx1 and (bx2). A separate binocular fused channel (bF) combines information from the
two eyes in a mechanism that allows for facilitation to take place. The either-eye inhibition (iL and iR) act as
pre-combination information loss, while the binocular fused channel allows interactions that can act in
principle imitate a post-combinatorial information loss such as the central a(t) function. However, this model
cannot account for the Experiment 1-3 data.
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Figure 16. Fits from the Cogan (1987) model to the Experiment 1 and 3 data. Left Panels: The
Cogan model cannot completely account for the above-probability summation binocular performance
(top left panel) nor the decrease in dichoptic performance with increasing ISI (bottom left panel).
Both of these effects require a post-combinatorial source of information loss. Which such an
information loss such as a central sensory threshold is added, the revised model gives very good fits
at the expense of one more free parameter than the Dual Threshold model.
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TABLES

TABLE 1
Luminances And Contrasts For all Experiments.
All Luminances are in Candles/m2. Contrast is
Defined as

contrast = 
Lb - Lf

Lb + Lf
 

Where Lb is the Background Luminance, and Lf
is the Foreground Luminance.

Experiments 1  and 2

Digits Fixation Point

Background 3.502 3.502

Foreground 3.252 1.472

Contrast 0.037 0.408

Experiment 3

Digits Fixation Point

Background 8.521 8.521

Foreground 7.392 2.011

Contrast 0.071 0.618
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Table 2
Summary of Best-Fitting Linear Summation Model Parameters for Experiments 1-3. Threshold
parameters P and C are in units of percent contrast, and t and cs are in units of  ms.  Note that the
RMSE's for Combined Data may not Agree with Figure RMSE's. Table 3 Combined RMSE's are Derived
from Parameter Searches on Averaged Data, while  Figure RMSE's are computed by comparing
averaged model fits and averaged observed Data. The units of RMSE are percent correctly-recalled
digits. Note that n =9 for all fits.

Experiment 1:
Threshold Model

Experiment 1:
Power Function Model

Observer τ cs ΘP ΘC RMSE Observer τ cs βP βC RMSE

GW 12.95 4.065 0.463 1.606 0.0333 GW 13.46 0.00869 1.36 2.29 0.03130

TB 7.27 2.373 1.261 1.177 0.0329 TB 7.27 0.000116 2.26 1.92 0.03821

TAK 6.73 2.234 1.316 0.619 0.0367 TAK 5.06 0.000100 3.16 1.35 0.04306

Average 8.02 3.113 0.971 1.103 0.0189 Average 6.13 0.000165 2.54 1.70 0.02056

Experiment 2:
Threshold Model

Experiment 2:
Power Function Model

Observer τ cs ΘP ΘC RMSE Observer τ cs βP βC RMSE

GW 28.55 6.498 0.649 0.159 0.0324 GW 8.39 0.00000150 1.98 2.88 0.02876

TB 24.56 5.154 0.206 0.549 0.0401 TB 13.12 0.0145 1.20 2.35 0.03852

TK 22.39 3.608 0.533 0.370 0.0498 TK 7.99 0.00000465 1.48 3.49 0.04853

GW- No
ΘC

22.16 6.096 1.019 - 0.0318 GW- No
βC

8.74 0.00001292 5.06 - 0.02872

Experiment 3:
Linear-summation Model

Experiment 3:
Power Function Model

Observer τ cs ΘP ΘC RMSE Observer τ cs βP βC RMSE

TB 17.09 3.868 0.143 1.894 0.0482 TB 19.42 0.02846549 1.00967 2.7408 0.0512

LM 15.78 2.245 0.684 0.848 0.0362 LM 2.98 0.00000191 266.209 0.0241 0.0536

MB 14.48 7.565 0.307 1.657 0.0376 MB 10.99 0.09153333 1.16578 2.3177 0.0324

Average 15.33 4.384 0.323 1.414 0.0262 Average 12.22 0.08679971 1.13515 2.1934 0.0387

Note: TAK's Experiment 1 Power Function Model fit was best fit by very small cs value coupled with a large βP

value. This resulted from trying to fit the . However, when cs was fixed to a reasonable value (0.0001), the fit was
not markedly worse. The best-fitting parameter values were: τ = 2.84, cs = 1.38E-21, βP = 12.023, βC = 1.33,
RMSE = 0.04077.
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Table 3
Summary of Best-Fitting Cogan Model Parameters for Experiments 1-3. Threshold parameter c is in
units of percent contrast, and t and cs are in units of ms.  Model parameters c and k are from Cogan's 1987
model. Note that n =9 for all fits.

Experiment 1:
Original Cogan Model

Experiment 1:
Cogan Model With Central Threshold

Observer τ cs c k RMSE Observer τ cs c k ΘC RMSE

GW 4.62 19.51 1.98E
-06

33.27
5

0.0943 GW 14.10 4.769 82.71 52.21 1.840 0.0330

TB 6.66 9.67 1.16E
+04

82.27
6

0.0747 TB 6.47 1.900 48.17 20.82 2.673 0.0327

TAK 31.33 12.77 2.15E
+18

433.5
38

0.0634 TAK 5.66 1.435 32.05 11.36 2.500 0.0370

Average 25.19 9.91 3.44E
+06

186.3
42

0.0563 Average 8.03 3.058 65.13 31.97 2.084 0.0172

Experiment 2:
Original Cogan Model

Experiment 2:
Cogan Model With Central Threshold

Observer τ cs c k RMSE Observer τ cs c k ΘC RMSE

GW 2.33 17.52 1.39E
+05

0.003 0.0946 GW 17.85 5.283 33.6 0.000 1.320 0.0284

TB 0.65 11.71 2.27E
+06

0.292 0.1107 TB 23.13 5.036 73.7 57.52 0.808 0.0413

TK 1.60 9.62 2.48E
+05

0.004 0.1384 TK 22.22 3.314 34.4 3.585 0.958 0.0469

Experiment 3:
Original Cogan Model

Experiment 3:
Cogan Model With Central Threshold

Observer τ cs c k RMSE Observer τ cs c k ΘC RMSE

TB 28.12 15.72 5.36E
-03

49.72 0.1403 TB 30.00 6.361 4383 152.3 0.687 0.0330

LM 58.84 5.02 4.24E
+11

250.4 0.0786 LM 27.08 2.708 649.5 118.4 0.779 0.0297

MB 0.80 21.75 9.41E
-06

78.97 0.0953 MB 14.10 6.892 5.497 0.000 2.153 0.0376

Average 31.06 12.95 2.46E
-04

19.95 0.1221 Average 20.96 5.629 446.1 97.78 0.891 0.0202

Note: All model fits were substantially worse than the corresponding Dual-Threshold fits of Table 2. As a result of
this lack of fit, the best-fitting parameter values are often extreme values as the model is stressed to accommodate the
data. When a central non-linearity is added, the values for c and k exhibit much more regularity.


