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Sensory and Cognitive Components of
Visual Information Acquisition

Thomas A. Busey and Geoffrey R. Loftus

We describe a theory of visual information acquisition and visual
memory. The theory has two major components. First, the visual system's
initial sensory response to a short-duration, low-contrast stimulus is generated
by a linear, low-pass temporal filter that operates on the stimulus's temporal
waveform. Second, information is acquired from a stimulus via a random-
sampling process whose sampling rate at time t following stimulus onset is
jointly proportional to (1) the magnitude by which the sensory response exceeds
some threshold and (2) the proportion of still-unacquired information. The theory
was successfully tested in five variants of a digit-recall task in which temporal
waveform of the stimulus was systematically manipulated. In a final experiment,
the theory simultaneously accounted for performance in detection and
identification tasks. Implications for visual information-processing, low-contrast
detection and binocular combination of information are discussed.

Consider an observer looking at a visual
stimulus with the intent of being able to
remember it later on. The stimulus might be
small or large; it might be dim or bright; it
might be as simple as a single digit or as
complicated as a natural scene. Regardless of
the stimulus's nature, however, there are some
fundamental processes that must always occur.
First, there must be some registration of the
stimulus in the visual system. Second, this
registration must produce some sensory
response that is intimately tied to stimulus
presence. Third, based on this sensory
response, information about the stimulus must
be acquired and stored in some more permanent
memory where it can be used as a basis for
further processing and/or subsequently
demonstrating knowledge about (remembering)
the stimulus. 
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The major goal of this article is to present a
simple theory of these fundamental processes.
The article is organized as follows. First we
describe the task that we are trying to account
for, along with past data that have been obtained
in this task and our rationale for why the task is
useful for studying sensory processes,
information acquisition, and memory. Second,
we propose a theory to account for data in this
task. Third, we present a very simple
experiment designed to demonstrate the
generality of certain crucial aspects of these
past data and to elucidate the meanings of the
theoretical parameters. Fourth, we present four
experiments designed to test specific aspects of
the theory. Finally, having demonstrated that the
theory provides an adequate description of our
task, we extend it to a new task, the detection of
the presence of an alphanumeric character.

A Digit-Recall Task
The task to which we apply our to-be-

described theory is simple: four digits are
presented to an observer whose job is to report
as many of them as possible, in their correct
order, guessing if necessary. The basic
performance measure, p, is the proportion of
correctly-reported digits, in their correct
locations, adjusted for the guessing probability
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of 0.101.

Performance Curves
In the present experiments, stimulus

exposure duration was varied over a range of
approximately 20 - 200 ms. It is useful to
present the data in the form of what we call a
performance curve which is a curve relating
performance to exposure duration. Loftus,
Duncan, and Gehrig (1992) report that such
curves can be described almost perfectly by the
function,

                                                
1The guessing formula is p = (x - 0.1)/0.9 where x is
the raw proportion correct and p is the corrected
proportion.

0 for d < L
p = Eq. 1

Y (1.0− e− (d− L )/ cr ) for d ≥ L

which is illustrated in the top panel of Figure 1.
Here d is exposure duration, and Y, L and c are
free parameters: cr is the exponential growth
constant for the regression model, L (for
"liftoff") is the maximum duration that gives
chance-level performance (that is, the duration
at which performance "lifts off" from chance);
and Y is asymptotic performance. As much as
possible we ignore Y in this article. The reason
for this is that the four-digit stimuli in our task
are easily within the span of short-term
memory. Therefore, given sufficient duration, a
subject could, in principle, be perfect in this
task, i.e., Y could be 1.0. (as it was in all the
Loftus et al, 1992 experiments). For this reason,
a less-than-1.0 value of Y represents keypress
errors, lack of vigilance, etc., and is theoretically
uninteresting from the perspective of the
present treatment. In all experiments, we
estimate Y and remove its effects from the data
using Equation 1 (effectively setting Y to 1.0, as
illustrated in Figure 1).

Given that performance curves can be
adequately described by Equation 1, it is
convenient to define a new dependent variable,
P, as: P = -ln (1.0 - p/Y). With P as the
performance measure, Equation 1 can be
rewritten as,

0 for d < L
P = Eq. 2

d/cr - d/L for d ≥ L

Thus, in terms of P, post-liftoff performance is
linear with duration with a slope of 1/cr and a d-
intercept of L ms, as illustrated in the bottom
panel of Figure 1.

Appropriateness of the Digit-Recall
Task  for Studying Perception and

Memory
We argue that this digit-recall task is

useful for studying perception and the relation
between perception and memory for several
reasons. First the task, while simple, still
requires the basic components involved in
complex cognitive processing, including
sensory registration, acquisition and transfer of
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Figure 1. Top panel: a typical exponential
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line for the above-chance points and estimate
the Liftoff and cr parameters.



VISUAL INFORMATION ACQUISITION 3

information to a more permanent memory, and
generation of a response based on a memory
representation (in contrast, for example, to a
simple detection task). Second, the task does
not require extraneous processes (such as
registration of a probe in a partial report task);
hence a theory of the task can be focused and to
the point. Third the observed linearity of the
performance curves (see Figure 1) strongly
constrains the nature of the theories that can
account for performance in the task. Finally, the
parameters cr and L have, as we shall see, direct
and intuitive counterparts in the theory that we
shall present.

Variants of this task, along with variants of
Equation 1 to describe them are common in the
information processing literature. For example,
Shibuya and Bundesen(1988), Townsend
(1981), Rumelhart (1970) and Schurman,
Eriksen, and Rohrbaugh (1968) all present one
or more characters for brief durations, usually
followed by a visual noise mask. Often the data
are characterized by models that make
predictions similar to that embodied in Equation
1. Both Shibuya et. al. and Townsend explicitly
include a model parameter, analogous to L, that
represents the "processing delay." Rumelhart
(1970) concluded that such a model parameter
was probably necessary, although he did not
explicitly include one. In past investigation,
such a model parameter has been included
simply to account for some aspect of the data;
that is, it was not derived from more
fundamental principles. Our first experiment
(described in a later section) was motivated by
the ubiquity of this processing delay and a
desire to model it using principles that are
intimately tied to known visual-system
behavior.

THEORY
In this section we develop a theory that

generates quantitative predictions for all aspects
of the Figure-1 performance curve, and for
other similar paradigms. The theory conjoins
two subtheories or models that have been used
to describe low-level perceptual and higher-level
cognitive processes. We provide a brief
overview of these models and then describe
them in detail. The Glossary at the end of this
article summarizes our notation.

Overview
The first model, termed the linear-filter

model, generates an initial sensory
representation in the nervous system. Briefly,
this model represents the stimulus as a temporal
waveform, i.e., as a function relating stimulus
contrast to time since stimulus onset. The
model then assumes that the initial stages of the
visual system act as a low-pass linear temporal
filter on the stimulus waveform to produce a
sensory-response function, referred to as a(t).
The sensory-response function relates the
magnitude of some stimulus-signaling neural
process to time since stimulus onset.

The second model, termed the acquisition-
rate model, describes how stimulus information
is acquired and transferred to some more
permanent memory and used as a basis for a
memory response. The acquisition-rate model
has been described by Loftus and his
colleagues to account for temporal-integration
tasks (Loftus & Hanna, 1989), for relatively
high-level picture-processing tasks (Loftus &
Hogden, 1988; Loftus, Hanna, & Lester, 1988)
and for the digit-recall tasks used in the present
Experiments (Loftus et al, 1992; Loftus &
Busey, 1992; Loftus, Busey, & Senders, 1993;
see also Di Lollo & Dixon, 1992). The
acquisition-rate model begins with the
presupposition that the stimulus engenders
some sensory-response function that rises
following stimulus onset, and decays following
stimulus offset2. It then assumes (1) that
information is randomly acquired from the
stimulus and placed in a memory store where it
forms the basis of subsequent memory
performance, and (2) that subsequent memory
performance is determined by the amount of
acquired information.

We now describe each component in
detail. We begin by showing how the sensory-
response function is generated by the linear-
filter model. We then use the acquisition-rate
model to combine the sensory-response
function with already-acquired information to
derive predictions.

                                                
2Thus, only a weak definition of a(t), the sensory-
response function, is needed by the acquisition-rate
model. The linear-filter model's job is to specify a(t)
precisely.
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A Linear-Filter Model to Generate a
Sensory-Response Function

The linear-filter model describes the visual
system's initial response to a briefly-presented
stimulus.

The Stimulus-Contrast Function: f(t)
The stimulus can be defined as a stimulus-

contrast function, f(t), that relates physical
stimulus contrast to time t since stimulus onset
as indicated in Figure 2, top panel. The f(t)
shown in Figure 2 is rectangular, corresponding
to the actual stimuli used in many experiments.
However, the theory applies without
modification or additional assumptions to any
arbitrary nonnegative f(t).

Assumption 1: The Impulse-Response
Function

The stimulus-contrast function, f(t), may be
mathematically expressed as a series of

instantaneous3 impulses, each of which
generates what is called an impulse-response
function, (scaled by stimulus contrast). Along
with others, we assume the impulse-response
function to be gamma function of the form,

g(t) = 
(t/τ)n-1e-t/τ

τ(n-1)!  Eq. 3

where n and  are free parameters: n is a
positive integer, and  is a positive real number.
This function can be interpreted as representing
the output of an n-stage system where the input
to Stage 1 is the stimulus, the input to each of
Stages 2 through n is output of the previous
stage, and the output of each stage decays
exponentially with decay constant τ. It will turn
out that the fit of the theory to our data is
relatively unaffected by the value of n. We set n
to 2 for all the theoretical fits associated with
Experiments 1-4, and to 9 for fits associated
with Experiments 5 and 64.

This impulse-response function represents
a subset of all possible impulse response
functions, and differs from similar functions in
the literature in that it is monophasic; that is, it
has a single relative maximum. Others have
proposed biphasic (Sperling & Sandhi, 1968;
Watson, 1986) and even triphasic (Roufs &
Blommaert; 1981) impulse-response functions.
Adding additional relative maxima to the linear-
filter model would require additional
assumptions for negative-going sensory-
response functions.

Assumption 2: The Sensory-Response
Function: a(t)

 We define the sensory-response function,
a(t), as the convolution of f(t), the stimulus
input function, and g(t), the impulse-response
function:

a(t) = f(t) * g(t) Eq. 4

                                                
3An impulse is a mathematical fiction defined to be a
stimulus of infinitesimal duration, infinite intensity,
and unit area.
4An n of 1 provides an exponential impulse-response
function, and does not adequately predict the data. Early
experiments used an n of 2 to improve computation
time during parameter estimation. Later experiments
were fit with an n of 9 to conform with generally
accepted values in the vision literature.
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Figure 2. The f(t) (top panel)and a(t) (bottom
panel) curves for a 50 ms presentation at
contrast 0.033. The total area under the a(t)
curve equals: 50 ms x 0.033 = 1.65.
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This definition is based on fundamental
principles issuing from linear systems theory
(see Groner, Bischof, & Di Lollo, 1988; Loftus,
et al, 1992; Sperling, 1964; 1979; Watson, 1986
for discussions of linear-system applications to
perceptual processes). Essentially, it results
from the proposition that each of the impulses
comprising f(t) generates an individual impulse-
response function, and that these impulse-
response functions are then summed to produce
a(t).

One implication of Eq. 4 and our choice of
a monophasic impulse-response function is that
the total area under the sensory-response
function, which we call A(∞), equals the total
area under the stimulus-contrast function, which
we call F(∞), i.e. A(∞) = F(∞). This property
does not hold for multiphasic impulse-response
functions, which may give negative-going
impulse-response functions, and imply A(∞) ≤
F(∞).

Implicit in this definition of the sensory-
response function is the notion of a linear
transducer function, which means that the
internal effect of the stimulus is directly
proportional to the stimulus contrast, f(t).
Others working in low-contrast visual detection
and discrimination have assumed that the
sensory-response function is proportional to
the square of contrast (Nachmias & Sansbury,
1974; Carlson & Klopfenstein, 1985). This has
been generalized to a power law of the function
by Legge et al. (Legge, 1980; Gottesman, Rubin
& Legge, 1980) of the form ∆C ∝ CN.
However, a linear transducer function has been
successfully applied by Sachs et al. (1971) and
Graham (1977). A quadratic transducer
function was attempted for the current theory,
with distinctly poorer fits.

In Experiments 1-4 we used a rectangular-
function display shown in the top panel of

Figure 2: to display the stimulus, the projector-
shutter opened, essentially instantaneously,
remained open for the duration of the stimulus,
and then closed, again essentially
instantaneously. For a d-ms rectangular
function whose maximum contrast is φ, the
resulting f(t) function is,

φ 0 ≤ t ≤ d
f(t) =

0 elsewhere

The convolution of the impulse-response
function (or indeed any function), g(t) with
such a rectangular f(t) function is quite simple.
The resulting a(t) function is,

φG(t) t ≤ d
a(t) = Eq. 5

φ[G(t) - G(t-d)] t > d

where G(x) is the integral of g(x) from 0 to x.
The a(t) function shown in Figure 2 was
generated from Equation 7 with φ = 0.033, d =
50 ms, τ = 20 ms and n = 2.

Assumption 3:The Threshold
Assumption

We make one additional assumption that is
quite standard in the application of linear-filter
models to sensory data: we assume there to be
some threshold sensory response, Θ, such that
information acquisition does not occur unless
a(t) > Θ. Thus, an effective sensory-response
function may thus be defined as,

a(t) - Θ a(t) > Θ
aΘ(t) = Eq. 6

0 a(t) ≤ Θ

where Θ represents the sensory threshold in
units of stimulus contrast.
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Acquisition-Rate Model
The acquisition-rate model uses the

sensory-response function as input. It generates
an instantaneous information-acquisition rate,
along with predictions for our tasks.

Assumption 4: Information is Acquired
Independently

Stimulus information is acquired by the
observer and placed into some short-term store.
In particular, the stimulus is conceived to be a
bundle of features that the observer samples
over time. Sampling is assumed to occur
independently, such that the probability of

acquiring one feature is independent of
acquiring another feature. Models based on this
assumption have appeared in Townsend (1981),
Shibuya & Bundesen (1988), Rumelhart
(1970), and Massaro (1970).

At time t following stimulus onset, some
proportion, I(t), of the total information has
been acquired. We assume that the
instantaneous information-acquisition rate at
time t, designated r(t), is the product of two
quantities: first, the magnitude by which the
sensory response exceeds the sensory
threshold, aΘ(t), and second, some
monotonically-decreasing function of already-
acquired information.

The particular monotonically-decreasing
function of already-acquired information is
implied by the logic of independent sampling.
The raw feature-sampling rate, designated as
1/cs, remains constant; however, the rate at
which new (i.e., previously unsampled) features
are sampled decreases over time as the number
of old (i.e., already sampled and stored)
features increases. In particular, as shown in
Appendix A, independent sampling implies
(ignoring for the moment, the contribution of
aΘ(t)) that new information is sampled at a rate
of [1.0 - I(t)]/cs.

We note also that r(t) is, by definition, the
derivative over time of I(t). Thus,

r(t) = 
dI
dt  = aΘ(t) 



1.0 - I(t)

cs
  Eq. 7

Appendix A also shows that, with this rate
function, the equation relating total acquired
information, which we designate I(∞) , to the
above-threshold area under aΘ(t), AΘ(∞),
becomes,

I(∞) = 1.0 − e− AΘ (∞)/c s . Eq. 8

Figure 3 summarizes three major components
of the model: the stimulus input waveform, f(t),
the resulting sensory-response function, a(t)
and the information-acquisition rate function,
r(t).

Assumption 5: Performance is
Equivalent to Acquired Information

To provide predictions for our tasks, we make
the simplifying assumption that p, the
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proportion correct digits is equal to I(∞) the
total proportion acquired information. Thus,

p = 1.0 − e− AΘ (∞) /c s

Note that, in terms of P = -ln (1.0 - p),

P = AΘ(∞)/cs Eq. 9

Equation 9 summarizes an important prediction:
that performance is directly proportional to the
above-threshold area under the a(t) function.

Relationship to Probability
Summation

he equation p = 1.0 − e− AΘ (∞)/c s  bears a striking
resemblance to Watson's Probability
Summation Over Time model (Watson, 1978).
His model (using our notation) assumes that
probability p is a function of the integral of the
impulse response function raised to some
power β:

p = 1 − (1− )e
− [a ( t )/ cs ] dt∫

where γ is a guessing parameter, and aΘ(t) is the
sensory-response function. The current theory
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The equation p = 1.0 − e− AΘ (∞)/c s  bears a striking resemblance to Watson's Probability
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is similar to the probability summation model,
with β set to 1, and the explicit assumption of a
sensory threshold. The probability summation
model implicitly assumes a threshold through
the β parameter.

The probability summation model was
applied to the current experiments, and
produced qualitatively good fits. However, the
current theory produced consistently better fits
based on comparisons of root-mean-square
errors (RMSEs).

Performance-Curve Predictions
To illustrate the effect of the threshold, Θ,

on the shape of the predicted performance
curves, Figure 4 shows five a(t) curves resulting
from five different stimulus durations for
contrast φ = 0.033, and the associated predicted
performance curves. The top panel shows a
truly linear system without a sensory threshold:
here P, assumed proportional to AΘ(∞), is
plotted as a function of d, and the curve is linear
with zero intercept. The bottom panel shows the
a(t) curves that result with the sensory threshold
Θ added, which violates the strict linearity of the
system: here P, assumed proportional to
AΘ(∞), is plotted as a function of d5. The curve
is almost linear, with an above-zero d-
intercept.Generating Theoretical Predictions

To summarize, the theory has four free
parameters: n and τ determine the impulse-
response function (although recall that n is set
to either 2 in Experiments 1-4 or to 9 in
Experiment 5 and 6); Θ is the sensory-response
threshold, and cs is the proportionality constant
that maps AΘ(∞) to P. To fit the theory to our
data, we used grid search procedures to provide
estimates of the three parameter values (τ, Θ
and cs) and to assess the adequacy of the fits.
The parameter values andRMSEs for all fits to
all experiments are in Table 1. Theoretical
predictions are shown as solid lines through the
data points in all figures that depict
experimental results. Additional procedures are
required to apply the theory to each individual
experiment, and these details are summarized in
Appendix C.

                                                
5The constant of proportionality is 1.8, a value
characteristic of that estimated in our experiments.

Parameter Value Interpretations
The value of the sensory-threshold

parameter, Θ, was in the general range of 1%
for Experiment 1 and for all experiments. From
our theory's perspective, Θ is expressed in units
of stimulus contrast. To see why this is so,
recall that a stimulus is only recalled with an
above-chance probability if a(t) exceeds Θ.
Now imagine a stimulus of constant contrast, φ,
and indefinite duration. By Equation 5, as t
increases, G(t) would asymptote at 1.0, the total
area under g(t) and, correspondingly a(t) would
asymptote at φ, the stimulus contrast. The
threshold is thus interpreted as the lowest
stimulus intensity such that a(t) never exceeds
threshold. An estimated value of around 1%
implies that if a stimulus were shown at around
1% contrast level, performance would not rise
above chance, no matter how long the stimulus
were displayed.

Finally, as noted, cs is the proportionality
constant that maps AΘ(∞) to P. This cs is
related to the cr of Equation 2 which, recall,
provides the best linear fit between stimulus
duration and P. The two differ because (1)
duration and A(∞) differ by a factor equal to
stimulus contrast and (2) AΘ(∞) differs from
A(∞) in that the former includes only above-
threshold area.Individual Data and Averaging
Techniques

For Experiments 1-5 we focus, for
expositional efficiency, on data averaged over
observers. These data were obtained as follows.
The means for each of the various conditions
for each observer were averaged to provide the
observed data points in the data figures. Each
observer's data was then fit by the theory. These
fits were averaged in the same manner as the
observed data, and are shown as solid curves in
the data figures. The RMSE's reported for the
averaged-data figures were computed from the
averaged observed data and the averaged model
fits. To obtain "average" model parameters, the
grid-search procedures were applied directly to
the averaged data.

In some cases there were qualitative or
otherwise interesting individual differences. In
these cases, we present data separately for
individual observers.
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TESTING THE THEORY:
EXPERIMENTS 1-6

Each of Experiments 1-5 tests the theory
as a whole, i.e., each tests the conjunction of
models that comprise the theory. However
different experiments focus on different aspects
of the theory: In particular, Experiment 1
partially replicates previous work; Experiment 2
focuses on the independent-sampling
assumption; and Experiments 3-5 focus on the



10 BUSEY AND LOFTUS

TABLE 1

Summary of Best-Fitting Model Parameters.  Experimexnts 1-5Average  Gridsearchs  are Derived from
Gridsearchs on Averaged Data. RMSE's are in units of -ln(1-p) for Experiments 1-5, and units of contrast
for Experiment 6a,b.

Experiment 1 (n=2)

Observer τ c Θ RMSE

AB 5.8 0.052 1.779 0.317

DA 9.1 1.008 2.527 0.089

KC 7.0 0.340 2.600 0.191

TB 10.9 1.727 1.264 0.090

Average 8.6 0.919 1.642 0.083

Experiment  2 (n=2)

Observer τ c Θ RMSE

DA 8.8 0.549 2.704 0.215

KC 17.7 0.86 1.412 0.120

TB 46.7 1.542 0.564 0.067

AB 33.9 1.119 0.412 0.282

DA, KC, TB 10.7 0.594 2.050 0.086

Experiment 2- Different First and Second 

Observer τ c Θ(1) Θ(2) RMSE

AB 7.5 0.45 1.948 2.447 0.077

Experiment 3 (n=2)

Observer τ c Θ RMSE

TB 11.6 0.358 1.201 0.042

TK 14.3 0.122 1.087 0.095

DA 14.2 0.277 0.987 0.069

Average 13.9 0.306 1.027 0.045

Experiment 4 (n=2)

Observer τ cs Θ RMSE

GW 24.1 0.830 0.757 0.029

TB 58.4 0.880 0.380 0.054

TK 16.6 0.400 0.920 0.046

Average 29.2 0.647 0.666 0.028

Observer τ cs Θ RMSE

CW 6.5 0.744 1.793 0.0966

LM 7.3 0.565 1.899 0.1087

TB 6.4 0.836 1.860 0.0750

SB 6.4 1.217 2.673 0.0725

Average (MB,
TB, LM)

6.6 0.704 1.866 0.0584

Experiment 6 (n=9)

Observer τ Detect
cs

Ident
cs

Θ RMSE

MB 8.3 0.106 0.774 1.505 0.00400

TB 4.3 0.183 0.777 1.479 0.00421

LM 8.1 0.202 0.284 2.016 0.00202

LM: 1cs 8.1 0.247 0.247 2.014 0.00299

aUnits are as follows:
c: ms
τ: ms
aΘ: % contrast

bDesignations of various thresholds:
Θ (1): first threshold

Θ (2): second threshold

cExperiment 6 notation:
Detect cs: Detection task cs

Ident cs: Identification task cs

1cs: One cs was used to model both tasks
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y-response threshold and the assumption that
performance, P, is proportional to AΘ(∞), the
total above-threshold area under the a(t)
function. Experiments 1-5 follow a similar
theme: in all of them, the stimulus-input
function, f(t), is manipulated.

Experiment 1: Does
Performance-Curve Shape

Depend on Whether a Mask is Used?
Past work (e.g., Loftus et al., 1992; Loftus,

Busey & Senders, 1993; Shibuya & Bundesen,
1988; Sperling, 1963) has shown that
performance curves in the digit-recall paradigm
(1) were linear and (2) showed above-zero
liftoffs. These two characteristics of the data are
both fundamental predictions of the theory that
we have described. Experiment 1 is designed to
investigate the generality of these two
characteristics. In particular, these past
experiments all involved use of a random-noise
mask to eliminate part or all of the iconic image
that normally follows a briefly-presented
stimulus. Thus performance has depended not
only on seeing the stimulus, but also on
escaping the masking effect (e.g., Turvey, 1973;
see Eriksen, 1980 for problems in data
interpretation when a mask is used). Perhaps
the characteristic performance-curve shape
described by Equations 1 and 2 depends on the
mask's inclusion in the display. Our goal in
Experiment 1 was to ascertain whether or not
this was true.

Method
An experimental session consisted of a

series of trials, on each of which a four-digit
array was presented. The observer's task on
each trial was to report the digits in their correct
locations, guessing if necessary.

Observers
Four observers participated in the

experiment: the first author (TB), one
undergraduate (KC) and two graduate students
(AB and DA). All observers had participated in
a minimum of 500 trials prior to beginning the
experiment, and were all familiar with the nature
of the research.

Stimuli and Apparatus
Stimuli were prepared as 35-mm slides

each containing a 4 (columns) x 3 (rows) array
of black digits on a white background. Seventy-
two such stimuli were prepared and used
repeatedly. The 4 x 3 x 72 = 864 digits
comprising all stimuli were selected randomly
from the set of ten digits, with the restrictions
that (1) each digit appeared 96 times over the
entire digit set and (2) no digit appeared more
than twice in a given row. Each digit subtended
a visual angle of 0.68° vertically, and 0.35°
horizontally. Digits were separated by 0.27°
vertically and 0.76° horizontally. (The
presentation view of Figure 10 shows a sample
stimulus.) On a given experimental trial, either
the top or the bottom four-digit row of one
stimulus was the to-be-reported target. Target
row was blocked over trials; accordingly, an
observer always knew in advance which row
was the target and there was therefore no
positional uncertainty6.

Stimulus contrast was substantially
reduced in order to avoid ceiling performance.
Contrast reduction was accomplished by (1)
attenuating stimulus luminance with a Wrattan
neutral-density filter and (2) superimposing a
uniform adapting field over the entire stimulus.
A summary of luminances and contrasts for all
experiments is provided in Table 2.

All stimuli were displayed via Kodak
projectors equipped with Gerbrands
tachistoscopic shutters. A random-access
projector was used to display the stimuli, and
standard carousel projectors were used to
present the adapting field and a fixation slide
that initiated each trial. All equipment was
enclosed in a soundproof box. All stimulus
display and response collection were under the
control of an AT-compatible computer system
described by Stoddard and Loftus (1988).

                                                
6A stimulus slide consisted of three rather than one row
in order that the slides could be used repeatedly, with
different rows as the to-be-remembered array on
successive viewings without the observers' being able
to memorize the trial-to-trial sequences. In previous
experiments using these stimuli, all three rows were
used, with the relevant row changing on each block.
However, the fixation point caused masking problems
when the middle row was relevant; hence in the present
experiments, we used only the top and the bottom rows.
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TABLE 2

Luminances And Contrasts For all Experiments.
All Luminances are in Candles/m2. Contrast is
Defined as

contrast = 
Lb - Lf

Lb + Lf
 

Where Lb is the Background Luminance, and Lf
is the Foreground Luminance.

Design and Procedure
Eight conditions were defined by 8

stimulus durations, which ranged from 20 to
136 ms in 17 ms increments.

Each observer participated in 8, 72-trial

blocks, thereby providing 72 observations per
condition per observer. On each trial an
observer reported the four digits in either the
top or bottom row. The to-be-reported row was
constant within a block, and alternated between
blocks. Assignment of conditions to trials
within a block and slide-presentation order also
changed over blocks. Each block began with
eight practice trials.

The sequence of events within a trial was
as follows. First, there was a 500-ms fixation
point, accompanied by a warning tone.
Warning-tone frequency was 2000 or 500 Hz,
and reminded the observer which row (top or
bottom) was the target during the current block.
The fixation point was always positioned in the
middle of the upcoming slide, i.e., between the
second and third digits of row 2. Following the
fixation point/warning tone was the stimulus,
presented for its appropriate duration, followed
by a tone commanding the observer to respond.
The observer then typed four digits into a
response box, guessing when uncertain.
Following the responses were four 150-ms
feedback tones: each tone was 2000 Hz if the
corresponding digit had been correct, and 500
Hz if it had been incorrect. Following feedback
was a 300-ms interval prior to the start of the
next trial. The adapting field remained present
throughout the experimental session.

Results  and Discussion
The primary goal of Experiment 1 was to

replicate the essential features of the Loftus et
al. (1992) and Loftus et al. (1993) performance
curves using unmasked stimulus presentations.
Figure 5 shows the performance curve averaged
over the four observers. Here the dashed line
indicates the best linear fit, and the solid line
indicates the fit of our theory. The best linear fit
was obtained by finding the values of the
parameters c, L, and Y (from Equations 1 and 2)
that produced the lowest root-mean-square
error between obtained and predicted data.
Standard error bars are shown for the Figure-5
data, as they are for all experimental data in this
article; however, the error bars are often
occluded by plot symbols.

It is clear that the linear fit to the Figure-5
data is quite good; the Pearson r2 is 0.988 for
the mean data, and the worst individual r2 is
0.958. Although in this article we will be
primarily concerned with model predictions

Experiments 1 and 2

Digits Fixation Point

Background 19.73 31.07

Foreground 18.47 17.00

Contrast 0.033 0.293

Intensity 0.651 9.103

Experiments 3 and 4

Digits Fixation Point

Background 3.502 3.502

Foreground 3.383 1.472

Contrast 0.017 0.408

Intensity 0.061 1.429

Experiments 5 and 6

Digits Fixation Point

Background 3.502 3.502

Foreground * 1.472

Experiment 5 Contrasts by Condition

Maximum
Contrasts

Subjects TB,
LM and MB

Subject SB

Rectangular
Function

0.025 0.034

Ramp On 0.05 0.068

Ramp Off 0.05 0.068

*notes:
Intensity is contrast * background luminance and has
units of cd/m2.
Experiment 5 varies contrast by condition.
Experiment 6 varies contrast to find a contrast
threshold.
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generated from our theory, we always provide
the linear-fit parameters to performance curves
as these statistics are potentially useful for
testing other theories besides ours. The linear
parameter values along with the Pearson r2

values for performance curves from this and
subsequent experiments are provided in Table
3.

Despite the absence of the pattern mask,
the performance-curve linearity remains, as
does the above-zero d-intercept (liftoff). The
predictions of our theory are shown as the solid
line in Figure 5. The RMSE for the averaged
data was 0.0833. Parameter values for all
experiments for the our theory can be found in
Table 1. It is evident by inspection that our
theory's fit is quite good.

Experiment 2: Testing the
Independent Sampling Model
Consider a condition in which a stimulus is

displayed, followed by a blank interstimulus
interval (ISI) for 250 ms, followed by the exact
same stimulus again. Compare this condition to
two control conditions, one of which consists of
just the first presentation, and the other consists
of just the second. Independent

 sampling implies that performance for two
exposures of a stimulus, presented within a
single trial and separated by some ISI, should
be equal to the probabilistic sum of
performance for each separate exposure
presented alone.

We use probability summation to quantify
the notion of independent sampling. Probability
summation is incorporated by our theory quite
gracefully. Consider any two information
sources (e.g., first and second presentations;
left eye and right eye; etc.) and suppose that
proportions correct based on these two sources
are p1 and p2, respectively. If p represents
proportion correct given both information
sources, then probability summation implies
that,

p = p1 + (1.0 - p1)p2 Eq. 10

or,

(1.0 - p) = (1.0 - p1)(1.0 - p2)

Given performance in terms of Pi = -
ln(1.0 - pi), probability summation can be
expressed as

P = P1 + P2 Eq. 11

Thus probability summation using our
transformed variable P is accomplished by
simply adding individual performance values to
obtain the probabilistically-summed
performance value.

In Experiment 2, we explicitly tested the
independent sampling assumption, using the
methodology described above. In the critical
condition, stimulus presentation was split into
two parts: a 50-ms initial stimulus presentation
was followed by a 250 ms ISI, and then by a
variable-duration second stimulus presentation.
Performance in the critical condition was
compared with two control conditions: the first
consisted of just the 50-ms initial presentation,
while the second consisted of just the variable-
duration "second presentation." The
independent sampling

0.0

0.5

1.0

1.5

2.0

2.5
P

 =
 -

ln
(1

.0
 -

 p
)

0 20 40 60 80 100
Stimulus Duration

120 140

Performance: P
Theory Fit
Regression Fit

RMSE = 0.0833

Figure 5.  Experiment 1 data. The dashed line
is the best-fitting regression curve for the
above-chance points. The solid curve is the
best fit of the theory. As in all data figures in
this article, standard-error bars are included.
Here, however, they are approximately the
size of the curve symbols.
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TABLE 3

Linear Regression Parameters for Experiments 1,2, 4 and 5

Experiment 1
Observer L = Liftoff cr r2 Asymptote

AB 12 34.6 0.970 0.990

DA 24 63.8 0.989 0.859

KC 24 50.0 0.958 0.925

TB 17 85.5 0.979 0.931

Average 16.6 53.4 0.988 0.892

Experiment 2

Experiment 2

Dual-Presentation Condition "Second" Presentation Condition Asym-tote First Only

Observer ReL cr r2 L cr r2 Y P

AB 22 53.2 0.992 15 34.9 0.991 0.991 0.911

DA 28 33.2 0.959 13 49.8 0.792 0.804 0.600

KC 28 55.9 0.976 32 41.9 0.973 0.848 0.498

TB 28 70.2 0.977 27 61.2 0.991 0.896 0.339

Average of

DA, KC, TB

28 20.7 0.995 24 20.1 0.951 0.848 0.481

Experiment 4

Experiment 4

Monoptic Gap Monoptic Asymptote

Observer L cr r2 L cr r2 Y

GW 60.3 180.4 0.992 92.7 252.8 0.990 0.762

TB 65.5 112.7 0.996 98.8 170.8 0.958 0.860

TK 61.2 128.0 0.993 94.5 152.9 0.959 0.993

Average  65.2 117.0 0.999 107.7 146 0.991 0.827

Experiment 5
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Experiment 5
Rectangular Function Ramp On Ramp Off Asym-

tote

Observer L cr r2 L cr r2 L cr r2 Y

CW 34 123.6 0.989 42 60.0 0.971 35 75.2 0.962 0.995

LM 43.5 111.8 0.973 43.9 56.7 0.907 44.2 56.6 0.993 0.993

TB 30 160.7 0.940 42 59.3 0.989 37 87.7 0.990 0.998

SB 42 192 0.851 37 99.4 0.992 43 85.4 0.933 0.997

Average (MB,
LM, TB)

37 126.3 0.997 43 60.1 0.990 39 70.2 0.995 0.981
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assumption makes a simple prediction: for each
second-duration value performance in the two
control conditions sum to performance in the
critical condition.

Sensory Independence
To use the two control conditions in this

probability summation comparison, the critical
condition must meet one additional criterion.
The two presentations in the critical condition
must remain independent at the sensory level;
that is, the a(t) curve from the first presentation
must not overlap the a(t) curve from the second
presentation. To see why this is so, recall first
that performance, P, is proportional to AΘ(∞),
the total above-threshold area under the
sensory-response function. Thus the additivity
in P (discussed above) can be viewed
equivalently in terms of additivity of AΘ(∞).

Suppose that the presumed threshold were
zero. Then by any linear model, AΘ(∞), which
would equal A(∞), would be proportional to
F(∞), the total area under the stimulus-contrast
function. Because the summed F(∞)'s for two
control conditions equals F(∞) for the critical
condition, additivity would hold in terms of
both AΘ(∞) and P.

However, this chain of logic breaks down
when threshold is greater than zero: now
additivity between the two control conditions
requires a long enough ISI separating the first
and second critical-condition presentations that
the sensory response engendered by the first
presentation has essentially decayed to zero
prior to the second presentation's onset. Figure
6 demonstrations this assertion using one real
and one hypothetical condition. Both panels
depict a critical condition in which a 50-ms first
presentation is followed by a 100-ms second
presentation. In the top panel, which represents
an actual condition used in Experiment 2, the
ISI is long (250 ms) and the two a(t) curves do
not overlap, thereby satisfying sensory above-
threshold area (0.39), and the second-
presentation above-threshold area (1.24).

The hypothetical condition represented in
the bottom panel contains a shorter ISI (15 ms),
causing the first- and second-presentation a(t)
curves to overlap, thereby violating sensory
independence (note that the dashed lines show
the individual a(t) functions engendered by the
first and second presentations separately). The
summation process leaves more area above the
sensory threshold (1.81) than do the summed
control conditions.

Because it is critical to the much of the
logic we will present, we risk redundancy here
to reiterate the effect of a non-zero threshold on
additivity. The top and bottom panels of Figure
6 both show a(t) functions engendered by a 50-
ms presentation followed by a 100-ms
presentation; the only difference between the
panels is the ISI that separates the
presentations. The theory's linear nature dictates
that the total areas (i.e., the above-zero areas)
are the same (4.95 as it happens) for both
panels, even though the shapes are obviously
quite different. However, when an above-zero
threshold is introduced, the rules change.
Because higher parts of the function are more
likely to exceed threshold, the height of the
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Figure 6. Top panel: a(t) curves for the same
two presentations separated by a 250-ms ISI.
Although total area is the same for both
curves, above-threshold area is greater for the
top-panel curve. Bottom panel: a(t) curve
produced by a 50 ms and 100 ms presentation
separated by a 15-ms ISI. Dashed lines show
the individual contributions of the two
separate stimuli, while solid lines show the
summed response.



VISUAL INFORMATION ACQUISITION 17

summed function—and ipso facto, the shape of
the function—influences above-threshold area.
When the first- and second-presentation a(t)
functions overlap as they do with a short ISI
(bottom panel) the summed-function height
increases, and more of the function falls above
threshold.

Accordingly, to maintain sensory
independence in Experiment 2, the gap between
the first and second presentations of the control
condition was always 250 ms.

Method
The methodology, stimuli and equipment

were very similar to that of Experiment 1. The
main change was that the single-presentation
condition of Experiment 1 was compared to a
new, double-presentation condition.

Observers
Four observers participated in the

experiment: the first author (TB), one
undergraduate student (KC) and two graduate
students (AB and DA). All observers were
highly practiced, having participated in a
minimum of 1700 trials prior to beginning this
experiment.

Stimuli and Apparatus
Stimulus presentation was the same as in

Experiment 1, save for one difference. First,
during the initial warning tone for each trial, a
fixation point appeared briefly over the
permanent fixation point mounted to the
projector screen. The fixation point consisted of
a white square superimposed over the adapting
field. Fixation-point luminance and contrast are
provided as part of Table 2.

Design
Three different conditions were used, each

involving 6 durations. These conditions are
schematized in Figure 7.

Dual-presentation critical condition
In the dual-presentation condition, the digit

array was presented for 50 ms, followed by a
250-ms adaptation-field exposure, followed by
a second presentation of the exact same digits.
This second presentation ranged in duration
from 17 ms to 100 ms, and was followed
immediately by an adapting field for 300 ms.

First-only control condition
The first-only condition consisted of the

50-ms first presentation, presented alone,
followed by a variable-duration adaptation field
before the onset of the warning tone. The
adaptation-field duration ranged from 250 ms
to 333 ms, and varied to remain as close as
possible to the conditions of the dual-
presentation condition. This first-only condition
provides a baseline performance level for the 50
ms first presentation in the dual-presentation
condition.

Second-only control condition
The second control condition consisted of

just the variable-duration second stimulus,
presented alone for a duration that ranged from
17 to 100 ms. This presentation was preceded
by 300 ms of the adapting field. We call this
condition the second-stimulus condition, and it
provides a performance curve similar to that
generated in Experiment 1.

As is graphically evident in Figure 7,
combining the two control conditions yields the
dual-presentation stimulus condition.

Procedure
Each observer participated in 24, 72-trial

Duration 
(ms)

Variable Duration
17-100 msec

50 250 300

Adapting
Field

Dual-Presentation 
Stimulus Stimulus + 

Adapting Field

Variable Duration
0 - 83 msec

50 250 300

Adapting
FieldFirst-Only

Stimulus

Duration 
(ms)

Adapting
Field

Variable Duration
17-100 msec

50 250 300

Adapting
FieldSecond-Only 

Stimulus

Stimulus + 
Adapting Field

Duration 
(ms)

Critical 
Condition

A
da

pt
. F

ie
ld

Control 
Conditions

Adapting
Field

Adapting
Field

Adapting
Field

Response
Tone

Response
Tone

Response
Tone

Figure 7. Display conditions for Experiment
2. Combining the two control conditions
(bottom two panels) equals the critical, dual-
presentation condition (top panel).



18 BUSEY AND LOFTUS

blocks, which provided 96 observations per
condition per observer. Within each block, the
18 stimulus conditions were randomly
intermingled over the 72 trials. The sequence of
events both within a block and within a trial
were the same as in Experiment 1 except for the
minor changes described earlier. As in
Experiment 1, the adaptation field was on
continuously.

Results
The results of Experiment 2 are shown in

Figure 8; recall also that regression parameters
are in Table 3 and theory parameters are in
Table 1. Three observers (DA, KC and TB)
showed similar data patterns, and accordingly
we present their results averaged together (top
panel). A fourth observer (AB) had a somewhat
different data pattern; her data are shown in the
bottom panel, and will be discussed below. In
all cases, the solid lines represent the best fit of
the theory.

Observers DA, KC, and TB
As anticipated, the first-only condition data

(solid squares) were essentially flat: adding
additional time prior to the response cue did not
affect performance.

The dual-presentation condition (open
circles) is conceptually the sum of the two
control conditions: both observed and predicted
performance reflect this in the sense that the
dual-presentation condition curve is shifted
upward relative to the control curve by an
amount approximately equal to the 50-ms, first-
only performance. Correspondingly, the
theoretical prediction for the dual-presentation
condition (upper solid line) is the sum of the
two predicted control-condition curves (bottom
two solid lines).

In short, for these three observers, the
independent-sampling model, along with the
overall theory, is strongly confirmed.

Observer AB
Observer AB differs from the other three

observers in an important respect: the slope of
the dual-presentation curve is shallower than
that of the second-only control curve. This
finding is inconsistent with the simple version
of our theory. The theory could be modified in
one of two ways in order to account for AB's
data pattern. First, it might be assumed that the
first presentation caused a slower feature-
sampling rate during the second presentation.
Second, it might be assumed that the first
presentation caused a higher sensory threshold
on the second presentation. Either of these
modifications allows the theory to account
reasonably well for AB's data, although only the
higher-second-threshold accounts for certain
somewhat minute aspects of the data. As an
illustration of how the increased-threshold
assumption would account for the data, we
estimated two thresholds for AB's dual
presentation condition: one for the first
presentation, and one for the second
presentation. The two control conditions both
used the first threshold. These two threshold
values are included in Table 1, and the data fits
shown at the bottom of Figure 8 result.

Using an additional piece of notation, we
can directly test the proposition that AB's
differing slopes result from a threshold change

0.0
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Figure 8. Experiment 2 results. Top panel:
averaged data and model fit for three observers.
Bottom panel, results and model fit from
observer AB, assuming a higher second-
presentation Θ.
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from the first to the second presentation. Earlier
we described the liftoff parameter as the
maximum stimulus duration that gives chance
performance. For the second-only presentation,
this stimulus duration represents the minimum
duration at which an observer can begin
acquiring information from the second-only
stimulus. An analogous parameter exists for the
dual-presentation condition, which is the point
at which the dual-presentation curve rises above
the first-only baseline. This point, which we call
"re-liftoff" or ReL, represents the minimum
second-only duration at which an observer
could acquire information from just the second
presentation in the dual-presentation condition.
If independent sampling holds, then liftoff and
re-liftoff should be equal. As Table 3 shows, re-
liftoff is longer than liftoff for two observers,
one of whom is AB7.

This slightly longer re-liftoff is a direct
prediction of the slightly higher second
threshold. As threshold increases, the shortest
duration that elicits an above-chance response
increases. Both AB's data and the theoretical
predictions generated from a dual-threshold
model to her data have a difference between
liftoff and re-liftoff of 6-7 ms. Such a
difference would not be predicted by a model
that assumed a slower feature-sampling rate
during the second presentation.

Discussion
For three of the four observers, we could

predict dual-presentation performance based on
the sum of the first and second presentation
performances. The 250 ms ISI is long enough
to allow the first a(t) function to decay to zero
and avoid sensory interactions, and the first
presentation does not markedly influence the
processing of the second presentation.

The general theory accounts well for these
data. Two implications emerge from the
theoretical fit. First, the two events of the dual-
presentation stimulus condition appear to be
processed independently. Second, our current
conceptualization of the sensory threshold is
tenable. This conceptualization explains not
                                                
7Interpreting the liftoff and re-liftoff values obtained
from the regression analyses is somewhat
problematical, however as, by the theory, the
performance curves are slightly nonlinear at short
durations.

only the above-zero d-intercept (liftoff) for the
second-only stimulus, but also the above-zero
first-only intercept (re-liftoff) for the dual-
presentation stimulus.

With a small modification, the theory also
accounts for differences between observers. For
three observers, independent sampling was
supported, and the theory fit the observed data
patterns. Independent sampling failed for
Observer AB, however. The theory can account
for this failure with the addition of a second,
higher sensory threshold for the processing of
a second presentation in a dual-presentation
condition. From this we conclude that while the
general theory accounts for the majority of
observers, the theory must remain flexible
enough to account for individual differences.

Experiment 3: ISI Manipulation and
Sensory Independence Failure
In Experiment 2, we focused on the

independent-sampling assumption. To test this
assumption as directly as possible, we used a
250 ms ISI to avoid sensory interactions
between the first and second presentations in
the critical condition. In discussing the logic
underlying this procedure (see Figure 6) we
pointed out that, given a non-zero threshold, the
shorter the ISI between the first and second
presentations in the critical condition, the
greater the value of AΘ(∞); thus the higher
performance should be.

In Experiment 3, we test this assertion
directly, thereby focusing on the critical role of
the sensory threshold. Experiment 3's design
was simple: on all trials, there was a 30 ms
presentation followed by a 45 ms presentation,
separated by a variable-duration ISI, that ranged
from 0 ms to 105 ms. This design is similar to
a detection experiment by Roufs and
Blommaert (1981) that was designed to
describe the shape of the impulse-response
function.

Method
Stimulus presentation (and response

collection) in Experiment 3 were carried out on
the Macintosh II computer. Care was taken to
match contrast, luminance, and stimulus
conditions as much as possible to those of
Experiments 1-2. One major difference between
the two displays was the display medium.
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Whereas the tachistoscopic shutter afforded an
(almost perfect) rectangular wave, the computer
monitor displays an image by "refreshing" the
phosphor screen 67 times a second (see Busey,
1992). Appendix B details the implications for
our theory of using a computer monitor as a
display device. To summarize, the linear-filter
model virtually equates steady displays with
flickering displays, provided the flicker occurs
faster than some threshold rate. The flicker rate
(67 Hz) of the display device exceeds the
threshold rate necessary for flicker-free
displays.

Observers
Three observers, the first author (TB),

Observer DA from Experiment 2, and an
undergraduate student (TK) participated in
Experiment 3. All observers had participated in
a minimum of 1000 trials prior to participating
in Experiment 3.

Stimuli and Apparatus
The Experiment was controlled by a

Macintosh II computer and stimuli were
displayed on an Apple Monochrome monitor.
Observers sat approximately 57 cm away from
the screen in a dimly lit room, and used the
computer keypad to respond.

The same font (Times-Roman) used to
create the stimulus slides for previous
experiments was scaled to present the same
image size in Experiment 4. The letters were
each 0.50° high by 0.40° wide, separated by
0.75° vertically and 0.40° horizontally. Table 2
lists the luminances and contrasts. Darker
letters on a lighter background were used to
avoid phosphor-decay problems. The
experiment was programmed using a timing
and display package described by Ames &
Palmer (1992).

Design
In all trials, a 30-ms stimulus presentation

was followed by a variable-duration, blank ISI,
which was followed by a 45-ms stimulus
presentation. Interstimulus interval (ISI) ranged
from zero ms8 to 105 ms in eight 15-ms

                                                
8Because we are using a computer monitor, the
smallest ISI was equal to the refresh rate, or 15 ms.

increments.

Observers completed 8, 72- trial blocks,
which provided 72 observations per condition
per observer.

Procedure
The procedure was similar to that of

Experiments 1-2. A trial began with a 250-ms
warning tone, that reminded observers of the
current to-be-reported row for the current
block. Following the tone, the digit array was
displayed in its appropriate temporal
configuration, followed 375 ms later by a
response tone. The observer then tried to type
in the digits in their proper order, guessing
when necessary.

Results  and Discussion
Figure 9 shows the mean results for 3

observers, along with the corresponding model
fits. Longer ISIs produced a performance
decrement. The decrement is entirely consistent
with the proposition, central to the theory, that
there is a sensory threshold, and that
performance is determined by AΘ(∞), the
above-threshold area.

As usual, the theoretical parameters are
provided in Table 1, and the solid line in Figure
9 shows the best theoretical fit. The fit is quite
good, with a RMSE of 0.045.

Experiment 4: One vs Two Onsets
In Experiment 4, we systematically

investigate a question that was raised in both
                                                                    
However, given Appendix C and the inability of the
visual system to temporally resolve the flicker rate of
the monitor, we assert that the effective ISI was zero.
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Experiments 2 and 3: what is the effect of
displaying a stimulus that has a single onset vs
two distinct onsets? In particular, in Experiment
4, we examine stimuli presented for d ms that
are either shown all at once (which we term a
single-onset condition) or that are shown in the
form of 2 (d/2)-ms halves separated by a 250-
ms ISI (which we term a dual-onset condition).

Kowler and Sperling (1980) reported a
similarly motivated experiment that was carried
out to test the possibility that stimulus onset
may play an important role in visual
information processing. Based on data showing
strong positive effects of number of eye
fixations on visual processing (Loftus, 1972) as
well as data showing stimulus onset to be more
important than stimulus duration (Sperling,
Budiansky, Spivak, & Johnson, 1971; Sperling
& Melchner, 1978), Kowler and Sperling
reasoned that, a dual-onset condition would
produce better memory performance relative to
a single-onset condition. However, Kowler and
Sperling found no effect of stimulus onset at
all, positive or negative.

As argued earlier (see Figure 6) our theory
predicts that, as long as there is a greater-than-
zero sensory threshold, the single-onset
condition will produce superior performance to
the dual-onset condition. Although taken at face
value, the Kowler and Sperling data appear at
odds with this prediction, their design carries
some interpretational problems. First, their
stimuli were of relatively high contrast which
could render the hypothesized threshold small
and irrelevant compared to the total magnitude
of the a(t) function. Second, and more
important, Kowler and Sperling's single- and
dual-onset conditions involved presentations
that entailed different amounts of total

presentation time. In their single-onset
condition, the stimulus was on continuously for
d ms, while in the dual-onset condition, the
stimulus was turned on and off quickly, then,
following a (d/2)-ms SOA, was turned on and
off quickly a second time. Accordingly, the
physical stimulus display time was less in the
dual-presentation than in the single-presentation
condition. (We do note that while this confound
poses interpretational problems in the present
treatment, the original Kowler et. al. design is
appropriate given their empirical question.)

In Experiment 4, we refer to the single-
onset condition as the monoptic condition, and
the dual-onset condition as the gap-monoptic
condition, as each of the conditions involves
stimulus presentation to only a single eye. The
reasons for presenting stimuli monoptically will
unfold as we discuss extensions of the linear-
filter model to binocular combination tasks.

Method
Stimulus presentation (and response

collection) in Experiment 4 were carried out on
the Macintosh II computer in conjunction with
a mirror stereoscope that is depicted in Figure
10.

There were two basic conditions in
Experiment 4. In the monoptic condition, a
single d-ms presentation was displayed to one
eye. In the gap-monoptic condition, two (d/2)-
ms presentations were separated by a 250 ms
ISI, shown, again, to only one eye. There were 8
exposure durations within each of these two
monoptic/gap-monoptic conditions, for a total
of 16 conditions.

Observers
Three observers, the first author (TB), one

graduate student (TK) and one Dartmouth
College faculty member (GW) participated in
Experiment 4. All observers had participated in
a minimum of 1000 trials prior to the
experiment.

Stimuli and apparatus
The Experiment was controlled by the

Macintosh II computer used in Experiment 3.
Stimuli were displayed on an Apple
Monochrome monitor in conjunction with a
Modified Wheatstone mirror stereoscope (see
Blake & Fox, 1973). Observers sat

Computer 
Monitor

Mirror
Stereoscope

Front Surface 
Mirrors

Top View Front View

Fused View Presentation 
View

5  3  6  7
2  7  5  8
4  8  9  8

Figure 10. Display apparatus for Experiments
3-5.
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approximately 57 cm away from the screen in a
dimly lit room, and used the computer keypad
to respond. A chin rest positioned the
observer's head in front of two mirror
arrangements that projected each half of the
screen to one of the observer's eyes. An
enclosing box eliminated reflections from the
screen and assisted with eye fusion.

Considerable effort was taken at the start
of each block of trials to fuse the two halves of
the monitor into one image without eye strain.
Observers adjusted each of the four mirrors
until the fixation point fused into a single
image. They then adjusted the mirrors to create
a cross out of two right angles, each of which
was shown only to one eye. Figure 10 shows
the experimental apparatus and the image used
to adjust the mirrors. To further enhance eye
fusion within a session, the background was a
uniform gray field, and the fixation point never
disappeared.

Design
Stimulus duration ranged from 30 ms to

240 ms in eight 30-ms increments. In the
monoptic condition a stimulus was shown once,
for d ms to either the right or left eye. Eye
position was randomized across all conditions.
In a corresponding gap-monoptic condition, a
stimulus was presented for d/2 ms to either the
right or left eye, followed by a 250 ms ISI
during which the digits were absent, followed
by another d/2-ms presentation to the same eye.
During the presentation to one eye, the other
eye saw the blank background field.

Each observer participated in 18, 72-trial
blocks, which provided 81 observations per
condition per observer.

Procedure
The procedure was similar to that of

Experiments 1-3. A trial began with a 250 ms
warning tone, that reminded observers of the to-
be-reported row for the current block.
Following the tone, the digit array was

displayed in its appropriate temporal
configuration, followed 540 ms after stimulus
onset by a response tone. The observer then
tried to type in the digits in their proper order,
guessing when necessary.

Results  and Discussion
Figure 11 shows the results averaged over

the three observers, with the corresponding
model fit. Several aspects of the data are
notable. First, it is clear that, as in past
experiments, both performance curves are
highly linear. Second, as the theory predicts and
Experiment 3 demonstrated, inserting a gap in
the middle of the stimulus presentation
substantially reduces performance. This latter
finding is superficially counter to that of
Kowler and Sperling (1980); however, as we
noted earlier, their null effect could be as a
result of two factors. First, the higher stimulus
contrast that they used could have placed their
task in a "resource-limited" domain, whereas
the current experiment, with its much lower
contrast, is in a "data-limited" domain (Sperling,
1979). Performance in resource-limited tasks
depends upon the total stimulus exposure time,
with longer stimulus presentations providing
more time for stimulus processing such as
transfer to more permanent memory.
Performance in data-limited tasks depends on
the total energy in the stimulus, with longer
stimulus presentations providing
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Figure 12. Experiment 5 design.

more above-threshold energy.

The second factor could have involved
Kowler and Sperling's procedure of
confounding two onsets with less physical
exposure duration: the total contrast energy was
different in the two conditions, which makes
comparisons difficult within the context of the
current data-limited theory.

The theory fits the data well: as indicated in
Figure 11, the RMSE is 0.0279. Table 1
summarizes the best-fitting parameters for
individual observers and for the combined data.

Experiment 5: Ramped Stimuli
In Experiment 5 we dramatically altered the

shape of the f(t) function. Experiments 1-4 all
used rectangular-function presentations, in
which a stimulus abruptly appeared, remained
on for the requisite duration, and then abruptly
disappeared. Experiment 5 introduced two new
f(t) functions: a ramp-on function in which the
stimulus appeared gradually before
disappearing abruptly, and a ramp-off function
in which the stimulus appeared abruptly before
disappearing gradually.

Method
The methodology, stimuli and equipment

of Experiment 5 were very similar to that of
Experiment 4. The main change was that the
rectangular-function presentation condition of
Experiment 4 was compared to two new,
ramped-presentation conditions. Stimuli were
viewed binocularly, without the use of a mirror
stereoscope.

Observers
Four observers, the first author (TB), one

male graduate student (MB), one female
graduate student (LM) and one male
undergraduate student (SB) participated in
Experiment 5. All observers had participated in
a minimum of 1000 similar trials prior to the
experiment.

Stimuli and apparatus
The Experiment was controlled by the

Macintosh II computer used in Experiment 4.
Stimuli were displayed on an Apple
Monochrome monitor. The ramping-on stimuli
followed a linear contrast gradient from zero
contrast up to a contrast of twice the
rectangular-function's contrast. The ramping-
off stimuli followed a linear contrast gradient
from a contrast of twice the rectangular-
function's contrast down to zero contrast. This
equalized the amount of contrast energy
between the three types of stimuli for a given
duration. Because the display device was a
CRT, the ramping functions were sampled at 15
ms intervals to approximate a true ramping
function9. Subsequent modeling procedures

                                                
9Simulating ramping functions with a CRT has the
unfortunate result of leaving the first (for ramp-on
stimuli) or last (for ramp-off stimuli) refreshes of the
stimulus duration at zero contrast, effectively reducing
the duration of these stimuli by one screen refresh (15
ms) in relationship to the same-duartion step function.
To account for this, we added a small correction factor
of 0.2 % contrast units to the first or last refreshes, and
adjusted the rest of the contrast steps in each
presentation to account for this. Care was take to
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took this approximation into account. Figure 12
provides a graphical summary of the three types
of stimuli.Design

Stimulus duration ranged from 30 ms to
145 ms in eight 15-ms increments.

Each observer participated in 24, 72-trial
blocks, which provided 72 observations per
condition per observer.

Procedure
The procedure was similar to that of

Experiments 1-4. A trial began with a 250 ms
warning tone, that reminded observers of the to-
be-reported row for the current block.
Following the tone, the digit array was
displayed in its appropriate temporal
configuration, followed 540 ms after stimulus
onset by a response tone. The observer then
tried to type in the digits in their proper order,
guessing when necessary.

Results  and Discussion
Figure 13 shows the results averaged over

the four observers, with the corresponding
model fit. Several aspects of the data are
notable. First, it is clear that, as in past
experiments, both performance curves are
highly linear.

The theory provides a good fit to the data:
as indicated in Figure 13, the RMSE is 0.0584.
The one significant violation occurs at the three
longest stimulus durations for the ramp-on and
ramp-off conditions. The data show a slight
                                                                    
equalize the amount of contrast energy between the three
types of stimuli for a given stimulus duration.

superiority for the ramp-on stimuli. We
investigated the possibility that this result could
be accounted for with a multi-phasic impluse-
response function, but this extension to the
model was unsuccessful.

Table 1 summarizes the best-fitting
parameters for individual observers and for the
combined data.

Experiment 6: Detection and
Identification: Two Tasks Sharing a

Common Percept?
Our theory successfully accounts for data

in character-identification tasks. Similar linear-
systems models have been applied by Watson
(1986) and others to the detection of sinusoidal
patches, in the study of low-contrast detection.
Experiment 6 tests whether the our theory can
simultaneously account for data in both
domains.

In Experiment 6 we presented a single digit
in two-alternative-forced-choice (2AFC)
paradigm. Two responses were recorded on
each trial: one indicating which of two temporal
intervals contained the digit, and the other
indicating the digit's identity. We then
determined the contrast that yielded 81%
correct for both the detection and identification
tasks. Separate contrast thresholds were
estimated for each task. These contrast
thresholds were then modeled by our theory to
see if the same parameters could account for
performance in both tasks.

Method
Stimulus presentation and response

collection in Experiment 6 was similar to that of
Experiment 5. Contrast thresholds for eight
stimulus durations were measured using an
adaptive threshold determination procedure
(Quest) developed by Pelli and Watson
(Watson and Pelli, 1983) in a two-temporal-
alternative forced-choice procedure. A single
digit (either a 2 or a 5) was presented for one of
eight stimulus durations: 15, 30, 45, 60, 75, 90,
105 or 145 ms. Stimulus presentation occurred
in one of two temporal intervals designated by
warning tones. Observers made two responses:
the first indicating which of the two temporal
intervals contained the digit, and the second
indicating the digit's identity.
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Observers
Three observers, the first author (TB), one

male graduate student (MB), and one female
graduate student (LM) participated in
Experiment 6. All observers had participated in
a minimum of 1000 similar trials prior to the
experiment.

Stimuli and apparatus
The Experiment was controlled by the

Macintosh II computer used in Experiment 5.
The stimuli were the same size as each digit of
the Expt 1-5 stimuli. The digit always appeared
in the same location, centered vertically on the
screen and 0.27° below the fixation point.
Stimulus contrast was varied on a trial-by-trial
basis. The stimulus-contrast function was
rectangular.

Design
Each observer participated in 20, 64-trial

blocks, which provided 160 observations per
condition per observer.

Procedure
The procedure on a single trial was as

follows. Observers heard a warning tone,
signifying the start of the first temporal interval.
After a 30-ms delay, the stimulus appeared with
a 50% probability. Seven hundred ms after the
end of the first warning tone, a second warning
tone indicated the end of the first temporal
interval and the beginning of the second
interval. The second interval was the same
duration as the first, again contained the
stimulus with a 50% probability, and was
terminated by a response tone.

Observers made two responses, one
indicating the temporal interval that contained
the digit, guessing if necessary, and a second
response indicating the digit's identity, again
guessing if necessary. Each response was
followed by feedback in the form of a high or
low tone.
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Results  and Discussion
Figure 14 shows the individual results for

the three observers, with the corresponding
theory fits, plotted on log-log axes for reasons
to be described below. Several aspects of the
data are notable. First, for two of the three
observers, the identification task contrast
thresholds were greater than the corresponding
detection task thresholds; that is, these
observers required more contrast in the
identification task than in the detection task to
achieve a given performance level. To fit these
data, requires an additional assumption: that
while both tasks have the same amount of
information available in the sensory-response
function, they make use of that information at
different rates. Thus we ascribe different
sampling rates, cs, to each task (although we
assume them to share common τ and Θ
parameters). Given this additional assumption,
our theory provides an excellent fit to the
Experiment 6 data, as demonstrated by the data
and model fits in Figure 14.

Performance in the two tasks was nearly
identical for subject LM, as demonstrated by
the lower panel of Figure 14. Our original
theory with a single cs provides an adequate
description of the data, although adding the
additional cs for the Identification task data
decreases the RMSE to 0.00202.

These detection data are quite similar to
data reported in experiments designed to
determine the critical duration, defined as the
duration at which the slope first changes on a
log-log plot such as those of Figure 14. The
estimated critical durations for all three subjects
are in the range of 45 to 60 ms, and are similar
to those reported by others. The contrast
thresholds below the critical duration have a
slope of approximately -1.0 when plotted on
log-log coordinates, as predicted by Blochs
Law. (The Figure-14 plots have lines with -1.0
slopes for comparison.) The contrast thesholds
for longer durations have a slope that is greater
than -1.0 but less that zero, which corresponds
to predictions made by Watson (1986, Figure
6.13) for a probability summation model with a
similar monophasic impulse-response function.

The linear-filter model, with a single τ and
Θ, provides an adequate description of both
detection and identification performance. Thus
it appears that the two tasks can be construed as

sharing a common sensory input in the form of
the sensory-response function, and differ only
in their respective information-sampling rates.

GENERAL DISCUSSION
Our major goal in this article was to

develop and test a theory of early visual
processes and their relation to performance in a
simple memory task. Below we discuss the
success with which this goal has been achieved,
examine several implications for low-contrast
detection research, and preview how the theory
may be extended to account for performance in
binocular summation tasks.

Theory
The theory that we have presented has

roots in two past traditions. The proposition
that the initial visual stages constitute a linear
low-pass temporal filter has proved fruitful in
many domains of vision science (Watson, 1986,
provides a comprehensive review of application
of such models to temporal processes). The
proposition that information acquisition
consists of random feature sampling has proved
similarly fruitful in various domains of
perception, learning, and cognition. The uniting
of these two traditions has resulted in a theory
that allows precise and simple predictions based
primarily on physically measurable stimulus
waveform characteristics. The theory has
proven capable of handling a reasonably wide
range of data within the limited domain of the
digit-recall paradigm that we have used here.
Other work (Loftus, Busey & Senders, 1993;
Loftus & Ruthruff, in press) has been shown to
it to be capable of handling other variants of the
digit-recall paradigm (involving masked stimuli
and stimulus intensity manipulation) and of
serving as a basis for long-term recognition of
complex naturalistic pictures.

The one theoretical component that
prevents us from relating memory performance
directly to the stimulus waveform is the sensory
threshold, which is an unobservable construct
that must be inferred from the data. However
the existence of such thresholds has long been
recognized, and has been central in the
application of other linear-filter theories to low-
level sensory data. For instance, detection of
near-threshold stimuli is often explained by
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assuming that detection occurs when some
threshold is exceeded by a stochastically-
varying response signal (Watson, 1979; 1986).
In our Experiments 1-3, the findings of (1) an
above-zero liftoff, (2) the dependence of
performance on first-second presentation ISI,
and (3) the superiority of single-onset relative
to dual-onset stimuli are all readily explained by
the assumption of a sensory threshold.

One current deficiency in the
conceptualization of the sensory threshold Θ is
its deterministic nature: if a stimulus's a(t) curve
fails to rise above Θ, performance will always
be at chance for that stimulus. However, there is
clear empirical evidence that performance rises
with a sigmoidal function rather than a step
function as contrast is increased. Fortunately
for our current conceptualization, this sigmoidal
function is quite steep, rising to asymptote over
only a one-octave contrast range. Thus our
conceptualization serves as a reasonable
approximation (Denis Pelli, personal
communication, 9/20/93).

Implications for Low-Contrast
Detection

Models of low-contrast detection typically
characterize the energy of a stimulus as the
squared signal function, integrated over space,
spatial frequencies, time, or a combination of all
three (e.g. Legge, Kersten & Burgess, 1987;
Carlson & Klopfenstein, 1985). In general,
such contrast discrimination experiments
empirically derive an estimate of threshold
contrast energy following the seminal pedestal
experiment of Nachmias and Sansbury (1974):
two gratings are presented in a temporal 2AFC
procedure, one of contrast C and the other of
contrast C + ∆C. The increment contrast ∆C is
then varied to find a value that produces a
criterion (e.g. 75%) level of performance. This
procedure is then repeated for gratings of
different contrasts to provide a contrast-
discrimination function relating contrast C to
change in contrast ∆C.

These models typically have not
considered the temporal characteristics of the
stimulus signal, instead focusing on the level of
internal noise (Legge et al., 1987; Pelli, 1981)
or the effects of different spatial frequencies
(Graham, 1977). We have found it useful to
include a definition of the temporal response of

the visual system to a stimulus within our
theory, and the theory presented in this article
provides a framework for such a
conceptualization. Any low-contrast detection
model that assumes that performance is related
to the extent to which a response exceeds some
threshold (e.g. the threshold-transducer model
of Foley and Legge, 1981) requires
computation of some threshold-dependent
response. However, this threshold-dependent
response depends on the temporal
configuration of the original stimulus, which
our theory can provide.

The current data do not imply clear
conclusions about the nature of the transducer
function that relates the physical stimulus
energy to the magnitude of the visual system's
response. The current theory proposes a linear
transducer function, which is contradicted by
some (e.g. Legge, 1980; Gottesman, Rubin &
Legge, 1980) but not all empirical findings (e.g.
Sachs et al., 1971; Graham, 1977). A square-
law transducer function was applied to some of
our data, but produced distinctly poorer fits.
Loftus & Ruthruff (in press) varied contrast as
well as stimulus duration, and concluded that a
linear transducer function could account for
performance for contrast up to 21%. We
conclude that while our theory provides a good
description of the temporal interactions of the
stimulus, it does not discriminate very well
between various alternative transducer
functions.

Recent detection task work with externally-
added noise has successfully distinguished
between the level of an observer's internal noise
and the observer's sampling efficiency in the
presence of that noise. These models assume
that the stimulus is sampled in the presence of
intrisic internal noise, but at a level that is less
than optimal. Either a higher internal noise level
or poorer sampling efficiency will result in
higher observed thresholds. However, the
addition of external noise to the stimulus
distinguishes between these two factors, leading
to the conclusion that the level of internal noise,
rather than changes in sampling efficiency, is
responsible for contrast discrimination
performance (Legge, Kersten & Burgess,
1987). The sensory threshold, Θ, will be
proportional to the square root of the sum of
the unknown internal noise and the added
external noise (Denis Pelli, personal
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communication 10/13/93). Added-noise
experiments may help refine the current
conceptualization of the sensory threshold and
the sensory-response function a(t). We are
currently undertaking such work.

Extending the Theory to Binocular
Combination

The theory presented here can be readily
generalized to the domain of binocular
combination. We normally view the world
binocularly, and somehow the information from
each eye combines to give us a cyclopean view
of the world. The theory stresses the temporal
aspects of visual perception, and can be quite
useful to examine the temporal interactions
between the sensory information coming from
each eye. A forthcoming paper will describe
research carried out on this topic; we briefly
preview it here.

Additional Assumptions
To account for the added complexity of the

binocular combination domain, three additional
assumptions are required. For the binocularly-
and monocularly-viewed stimuli of Experiments
1-6, the current theory is a special case of these
assumptions.

We assume that each eye acts as a linear
temporal filter on the stimulus to produce
individual a(t) functions. These functions are
termed the peripheral a(t) functions and are
designated by the notation ap(t). The peripheral
ap(t) functions combine in some fashion to
produce a single central a (t) function, from
which information is extracted via the
acquisition-rate model. The sensory threshold,
Θ, is assessed either prior to the combination of
the peripheral ap(t) curves, subsequent to the
combination, or in both locations.

Empirical Questions and Conclusions
The linear-filter model, in conjunction with

the preceding assumptions, can be used to
address a number of questions. The first is the
location of the presumed sensory threshold Θ.
Based on the emperical data, we concluded that
two thresholds are required, one prior and one
subsequent to the combination mechanism.

 A second issue addressed by the our
theory is the method by which the peripheral
ap(t) curves combine. Candidate mechanisms

include linear combination, in which the two
ap(t) functions are simply added at each point in
time, or quadratic summation, in which the two
functions combine via the formula,
aq (t) = ap,l (t)

2 + ap,r (t) 2  where ap,l(t) and
ap,r(t) are the sensory-response functions from
the left and right eyes respectively. Based on
the evaluation of the model predictions, neither
mechanism was clearly superior. However,
based on a number of considerations we
conclude that a variant of the quadratic-
summation model best characterizes the data.

A Final Puzzle
We conclude with a brief discussion of

what we consider to be the weakest component
of our theory. Recall that the information-
extraction rate, r(t) is assumed proportional to
aΘ(t), the magnitude by which a(t) exceeds
threshold (see Equation 3). While one could
easily design a physical analog to such an
assumption10, there is no a priori reason (that
we know of) to expect it to be what it purports
to be here, namely an accurate description of the
interface between the visual and cognitive
systems. One would feel more comfortable with
a weaker assumption, e.g., that r(t) is simply
monotonically related to aΘ(t). However, no
assumption except the strong one of
proportionality implies our theoretical
cornerstone: that memory performance is
determined by AΘ(∞)11.

And yet, the theory describes the data

                                                
10Imagine, for example an urn filled with a gas whose
density varies over time by some function a, such that
at time t, density is a(t) molecules/m3. Every c sec,
some constant volume, V (V in m3), of gas from the
urn is captured and placed somewhere else. The rate r(t)
of capturing gas molecules would then be

r(t) =(V/c)a(t) molecules/sec

i.e., rate of molecule extraction, r(t) would be
proportional to a(t).
11The phrase "determined by" warrants some
explanation. In the present theory, as we have seen,
performance, P, is proportional to above-threshold area.
Such proportionality depends on the information-
acquisition rate, r(t) being proportional to a specific
function of acquired information: [1.0 - I(t)]. Elsewhere
(e.g., Loftus, et al., 1993) we have shown that even
when the assumed relation between r(t) and I(t) is
weakened substantially, performance is still
monotonically related to above-threshold area.
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extremely well, not only for the present
experiments, but also for other experiments
described by Loftus and Ruthruff (in press),
involving stimulus intensity-stimulus duration
tradeoffs) and by Loftus, Busey, & Senders
(1993, involving masked stimuli). This means
that one of two things is true: (1) that the
proportionality assumption has some basis in
neurological reality, or (2) that neurological
reality involves some other set of principles
which imply a close approximation to
proportionality. Both of these possibilities
warrant investigation and, indeed, the latter is
currently undergoing rather extensive scrutiny
in our laboratory.
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Appendix A
Proof that the independent sampling model

implies Eq. 8

Let the raw sampling rate be aθ(t)(1/cs):
that is, features are always sampled at a rate of
1/cs per unit time modulated by the degree to
which a(t) exceeds threshold. Whenever a
feature is sampled, it is transferred to short-term
memory. At time t following stimulus onset,
some proportion, I(t) of the features have been
sampled and are in short-term memory.

The remaining proportion, [1.0 - I(t)], are
new features, i.e., features that have never been
sampled. Accordingly, at time t following
stimulus onset, the proportion of the (1/cs)
sampled features that are new is [1.0 - I(t)],
which means that the rate of sampling new
features, r(t) is

r(t) = aΘ(t) 
[1.0 - I(t)]

cs
 Eq. A1

Because r(t) is the derivative of new features,
I(t) with respect to time, Equation A1 may be
rewritten as,

d[I(t)]
dt   = aΘ(t) 

[1.0 - I(t)]
cs

 

Rearranging terms,

d[I(t)]
[1.0 - I(t)]  = aΘ(t) 

dt
cs

 Eq. A2

Integrating both sides of Equation B2,

-ln[1.0 - I(t)] = AΘ(t) 
t
cs

  + k Eq. A3

where k is the constant of integration. When t =
0, I(t) = 0, which implies that k = 0. Moreover,
following the mask that occurs at stimulus
offset (time d) no more information is acquired.
Thus, the total information acquired from the
stimulus is obtained by setting t to d. Setting t
to d, setting k to 0 and exponentiating Equation
A3 yields,

1.0 - I(t) = e− AΘ (∞)/c s

or, rearranging terms,

I(t) = 1.0 - e− AΘ (∞)/c s

which is the text equation with t = ∞.
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Appendix B
Theoretical implications of using a computer

monitor as a display device.

At the heart of the our theory is a temporal
low-pass filter, that transmits low, but not high
temporal frequencies. The system's response to
these high frequencies is indistinguishable from
its response to constant stimuli (such as a slide
projector).

A computer display monitor changes the
image at 67 Hz, which, as we demonstrate
below, produces temporal frequencies that are
translated by the visual system into
phenomenologically stable images. The exact
shape of the sensory-response function a(t)
depends somewhat on the value of the model
parameter τ: for large τ's (> 30), the sensory-
response functions to a computer display and a
projector display are virtually identical. As τ
decreases to around 10, the response to a
computer display begins to "scallop" somewhat
(see Figure B1).

Although there appears to be a dramatic
difference, the two curves share the same overall
area, and have nearly identical above-threshold
areas. The only difference between the two
curves arises where each curve crosses the
sensory threshold. This difference appears
slight, and appears as though it should not
affect the model's predictions. To check the
implications precisely, the combined
Experiment 3 data were fit by a version of the
model that incorporated the computer display

assumptions12. The results from this analysis
are found in Table B1, and show that while the
model parameters changed slightly due in part
from trade-offs between the parameters, there
was no real change in the RMSE. Thus we
conclude that from the theory's perspective the
visual system's response to a computer display
may be treated as essentially identical to its
response to a slide projector.

tails of parameter estimation

In general, parameter fitting was done
using a gridsearch procedure that computed the
RMSE for the fit of a given parameter set. A
systematic, full-factorial search of all
parameters provided the parameter set yielding
the lowest RMSE. Table 1 provides a summary
of the best-fitting model parameters for all six
experiments.

Experiments 1, 2 and 3
When fitting the Experiment-2 data, we

assumed that each of the two presentations was
processed independently, i.e., that the a(t) curve
                                                
12We assumed that the computer display generated a
spike 3-ms in duration, scaled appropriately in contrast.
Thus for the first 3 ms, the f(t) function had a contrast
of 0.0865, and then had a contrast of 0 for the
remaining 12 ms of the display. Note that this is an
extreme assumption: most points on the screen are not
updated until the middle of the 15 ms interval, and
altering the model to account for this would make
computer display a(t) functions more like projector
display a(t) functions.
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Time Since Stimulus Onset

a(t) for computer monitor (area = 0.606)
a(t) for constant stimulus (area = 0.602)

Figure A1. Sensory response curves generated
by a constant stimulus (e.g. slide projector)
and a flickering stimulus (e.g. CRT). Despite
differences in the overall shapes of the two
curves, the areal differences are quite small.

TABLE A1

Best Fitting Parameters for the Combined Data
for Experiment 3, Demonstrating the Similarity
of the Linear Filter's Response to a Slide
Projector Display and a Computer Display

Experiment 3
Quadratic Summation Model

τ c Θ RMSE

All Data-
Slide
Projector

13.9 0.306 1.027 0.035

All Data-
Computer
Display

14.3 0.286 1.055 0.037

Appendix C
Details of parameter estimation
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for one presentation did not interact with the
a(t) curve for the second presentation. The use
of a 250-ms ISI justifies this assumption, since
a 50-ms presentation's a(t) curve is essentially
zero 250 ms after stimulus offset. This
assumption was not made for Experiment 3
data.

Experiment 4
Experiment 4's gap-monoptic model fit

 required the same independent observations
assumption as Experiment 2. Again, this
assumption was justified by the long ISI.

Experiment 5.
To fit the Experiment-5 data , we explicitly

assumed the CRT model, necessary because the
stimuli were ramped on and off.

Experiment 6.
To fit the Experiment-6 data , we assumed

that the detection and identification tasks
extracted information at different rates. Thus we
modeled the detection task with a Detect cs and
the identification task with an Ident cs


