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RESEARCH PLAN
I include ten appendices. While they shouldn’t be nec-

essary for understanding this proposal, they do provide
auxiliary details and examples. References in the proposal
to grant-supported articles are of the form [n] or [n, Am]
where n is the reference number listed on proposal pp. 28-
29 and, when the reference is included as an Appendix, m
is the Appendix number. Proposal Section B.2.e below
provides background information that is particularly im-
portant for understanding much of the proposed research.

A. SPECIFIC AIMS
I propose to continue work in several ongoing areas

and to launch work in several new areas. The primary re-
search focus is on visual perception and visual memory. A
secondary focus is on theoretical, methodological, statisti-
cal, and data-presentation issues, with an ultimate goal of
substantially changing how research problems are con-
ceptualized and how data sets are thought about, analyzed,
and interpreted. These two foci underlie seven intertwined
specific aims. The first five aims involve specific content
areas, while the other two are more general and pervade
much of the proposed research. The aims are these.
1. Stimulus contrast effects. Measurement of stimulus
contrast has long been a staple of basic vision research. I
propose to continue investigating contrast effects on
higher-level cognition. Three sub-aims are (a) demon-
strating how a form of Bloch’s Law (that low-level detec-
tion performance depends strictly on the product of dura-
tion and contrast) can be applied to short-term and long-
term memory for complex visual material, (b) testing the
proposition that stimulus contrast scales visual processing
rate (however defined) in a manner that is independent of
the stimulus, observer, or task, and (c) assessing contrast
effects on eye-fixation durations (see Aim 5).
2. Spatial-frequency decomposition. I propose to con-
tinue investigating how visual information corresponding
to different spatial frequencies is combined and used in
visual memory tasks. Of particular interest are (a) repre-
sentation of global and local information by low and high
spatial frequencies (see [10, A5]) and (b) the role of spatial
frequencies in face processing (see [15, A10] and Aim 3).
3. Face processing. During the present granting period, I
have begun to focus on several aspects of face processing.
This research has developed partly in response to current
scientific and practical interests in face processing (see
e.g., [7, A4]; Wenger & Townsend 2001; Rakover, 2001)
and partly because faces provide a limitless collection of
homogeneous stimuli that are methodologically useful for
various kinds of visual-memory investigations. Particular
planned foci of investigation are (a) effects of viewer-
person distance on face perception (see [15, A10]), (b) the
face-inversion effect (see [14, A9]), and (c) processing
differences between faces of familiar and unfamiliar peo-
ple (see [12, A8]; [14, A9]).
4. Confidence and accuracy. I propose to continue inves-
tigating the relation between confidence and accuracy in
visual memory. Our work on this problem so far has con-
cerned how well people can estimate the effects of certain
variables on eventual visual memory. We have discovered
for instance that people overestimate the degree to which

visual rehearsal affects memory ([3, A2]), but estimate al-
most perfectly the degree to which stimulus contrast af-
fects memory ([12, A8]). Why is this? We propose that ef-
fects of low-level, sensory variables such as contrast are
assessed using the same invariant responses of the per-
ceptual system that underlie actual memory performance,
whereas effects of higher-level cognitive variables such as
rehearsal are assessed partly on such responses, but partly
also on biased metacognitive beliefs.
5. Acquisition of information within eye fixations. David
Irwin and I plan to investigate how visual information is
acquired within each of a series of eye fixations on scenes.
We will base our initial work on a proposition by Loftus
(1972) that a single eye fixation is designed to acquire one
“quantum” of information from a picture—and that
while various manipulations (e.g., stimulus contrast varia-
tion) can affect the time to acquire such quanta, a particu-
lar quantum, once acquired, is always worth the same in
terms of its contribution to memory.
6. Testing specific quantitative theories. During this
funding period, we have developed quantitative theories of
various phenomena, including (a) the relation between
global and local processing ([10, A5]), (b) representation
of observer-image distance in terms of image spatial-
frequency composition ([15, A10]), and (c) configural
versus featural information in face processing ([14, A9]).
Also, over the past 10 years, we have been developing,
evaluating, and extending a theory called the Sensory Re-
sponse/Information-Acquisition (SRIA) theory (see [1,
A1]). I plan numerous studies to test these theories, to de-
velop new ones, and to measure specific assumed parame-
ters of the human perceptual-cognitive system.
7. General theoretical/methodological issues. The final
aim which, like Aim 6, permeates the present and planned
work, is to critique widespread theoretical, methodological,
and statistical practices within psychology (and other
fields) and to develop alternatives. Grandiose though this
aim may sound, it is one on which progress has been made
over the past decade. My own contribution to this progress
has been a series of articles describing (a) problems with
null hypothesis significance testing as a basis for statistical
inference (e.g., Loftus, 1991; 1996; [6, A3]), (b) problems
with using the omnipresent linear theory as a basis for
thinking about problems, designing experiments, and
drawing conclusions from particular data patterns (e.g.,
Loftus, 1978; 1985c; Loftus & Bamber, 1990; [6, A3]; [14,
A9]), and (c) development of solutions to these problems
(e.g., Loftus & Masson, 1994; [8]; [6, A3]; [12, A7]; [14,
A9]).

B. SIGNIFICANCE AND PROGRESS REPORT
Because the significance of the proposed work is

closely intertwined with the work done during the current
funding period, I commingle the Significance and Pro-
gress Report sections. There is no Section C.

During this funding period, we have done research in
diverse areas that are summarized in the article list on pp.
28-29 below. Regarding dissemination, I have published
mostly lengthy, integrative, theory-laden articles, includ-
ing four Psychonomic Bulletin & Review theory/review
articles, one Psychological Review article, and one Stevens
Handbook chapter.
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B.1. Overview
Much of the current and proposed research is con-

cerned with the numerous perceptual and cognitive activi-
ties that come into play when a person observes a visual
stimulus with the intent of being able to later remember
something about it. Some of these activities—those at the
sensory end of the system—occur always, and occur inde-
pendently of the nature of the stimulus and of the to-be-
performed task. Other activities—attention, short-term
memory encoding strategies, and recognition decision
processes—do not always occur in the same fashion, are
under the observer’s control, and do depend on the nature
of the stimulus and the task.

These various processes occur repetitively during nor-
mal visual behavior, wherein the eye presents the brain with
successive discrete chunks of information in the form of
eye fixations. Questions about how the processes operate
and mesh together therefore divide themselves naturally
into two categories: those concerned with how information
is acquired within an eye fixation e.g. Sperling, 1960) and
those concerned with how information is integrated across
eye fixations (e.g., Irwin, 1991). This dichotomy has
played a central role in much of my work for the past 30
years (e.g., Loftus, 1972; Christianson, Loftus, Loftus, &
Hoffman, 1991).

B.2. Topic Areas
We have investigated a variety of sensory, perceptual,

and cognitive activities, and the research proposed here
continues this work in the following areas.
B.2.a. Stimulus Degradation

Any driver who has tried to decipher the environment
through a mist-covered windshield on a damp October
morning has experienced having to cope with degraded
visual stimuli. Indeed many real-life situations entail visual
degradation in one form or another: For a colloquium
audience, low-contrast slides are difficult to read if the
room lights have been left on; for a commuter arriving
home at night, the house key is difficult to find if the porch
lights have been left off; and for skiers, terrain texture dis-
appears in the flat light of a foggy day.

Although effects of these and other forms of degrada-
tion have been extensively investigated by vision scientists
(see e.g., Hood & Finkelstein, 1986; Olzak & Thomas,
1986 for overviews), such investigations have typically
involved simple stimuli such as monochromatic light
patches or sine-wave gratings, and have mostly addressed
factors that determine visual threshold, rather than those
that affect processing in everyday suprathreshold situa-
tions. Fewer still such investigations have been carried out
using complex and/or natural, stimuli. Two kinds of deg-
radation are relevant to my past and proposed research.

B.2.a.i. Stimulus-Contrast Reduction: Bloch’s-Law-
Like Effects. While stimulus contrast has been a central
variable in vision research, there is surprisingly little work
on contrast effects in higher-level cognition. We have
found that Bloch’s Law provides a convenient starting
point for understanding such higher-level effects. In its
classic form, Bloch’s Law states that for durations less than
about 100 ms, low-level performance, e.g., detection, de-

pends only on the product of stimulus luminance and
stimulus duration. This is consistent with the proposition
that, below this threshold, the visual system simply inte-
grates incoming photons over time, and that the system’s
response depends only on total photons. Bloch’s Law has
been extended to similarly describe the relation between
contrast and duration, although the duration threshold is
lower (Gorea & Tyler, 1986; Musselwhite & Jeffreys,
1982; Spekreijse, Van der Twell, & Zuidema 1973).

We have reported numerous experiments investigating
the relation between contrast and duration as it affects
higher-level processes such as long-term picture recogni-
tion. To conceptualize this relation, it is useful to think of
Bloch’s Law as stating that variation in stimulus contrast
causes an associated variation in the rate at which proc-
essing occurs. The lowest-level such “processing,” to
which Bloch’s Law was originally applied, is just photon
accumulation. But for higher-level processing, e.g., edge
detection, object recognition, etc., we can also entertain
and stringently test the hypothesis that contrast variation
causes associated variation in processing rate, no matter
how “processing” is defined. These notions are formal-
ized in [12, A7, pp. 198-200]. For illustrative purposes, I
consider here two nested theories. First, by a weaker, multi-
plicative theory, processing rate is proportional to some
monotonic function, f, of stimulus contrast; thus if contrast
is changed by some factor x, processing rate is changed by
a factor, f(x). Second, by what is referred to in [12, A7] as a
stronger Bloch’s-Law theory, f is the identity function; i.e.,
f(x) = x. As reported in [12, A7] we evaluated these two
theories by comparing memory performance for stimuli
shown at two contrast levels, C2 and C1 , whose ratio can be
expressed as C2/C1 = rC (e.g., in [12, A7, Experiment 2],
C2=0.077 and C1=0.047; thus rC=1.638). We then meas-
ured (using techniques described in [12, A7, pp. 203-204]
and in Section B.2.e.ii.(e), p. 26 below) the ratio of visual
processing rates given the two contrasts, which may be ex-
pressed as rP. The Bloch’s-Law theory prediction is that
these two ratios be the same, i.e., that rP/rC = 1.0. In fact,
rP/rC ranged from about 1.3 to 1.7, thereby allowing us to
reject the Bloch’s-Law theory. In [12, A7] we also found,
however, that rP remained constant over a wide range of
circumstances, thereby confirming the multiplicative the-
ory and implying, at the very least, that f(rC) > rC.

Despite rejecting Bloch’s Law, we did not consider it
prudent to abandon Bloch’s Law altogether. Because
Bloch’s Law holds in some low-level tasks, it provides a
starting point—a kind of plausible null hypothesis—for
predicting the precise effect of contrast on perception and
memory tasks. The nature of departures from Bloch’s
Law—e.g., that rP/rC systematically exceeds 1.0—provide
instructive clues as to how the system is working.

In particular, it is useful to consider the possibility that
Bloch’s Law indeed governs the effect of contrast on in-
formation acquisition, but in a disguised fashion. As an
analogy, consider Newton’s law of gravitation which states
that a falling object accelerates at a constant rate. In fact, an
object falling in an atmosphere will be observed to acceler-
ate at a decreasing rate (eventually ceasing to accelerate
when it reaches terminal velocity). However, no one would
conclude from this observation that Newton’s laws are dis-
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confirmed; rather one would note that an additional factor,
air friction, is preventing the Newton’s-law prediction
from being met.

Perhaps in similar fashion Bloch’s Law truly describes
the way in which contrast and duration combine to pro-
duce the information that underlies visual recognition, but
its workings are obscured by some other factor. One such
possibility, consistent with the finding that rP/rC > 1.0, is
that there is a contrast threshold involved in perception of
our stimuli such that the effect of contrast “begins a t ”
some greater-than-zero contrast level. To gain a rough
intuition about what is meant by this, suppose that from the
visual system’s point of view, a stimulus contrast of 0.03
corresponded to zero—i.e., that the system did not re-
spond to contrasts less than 0.03. Now consider two con-
trasts, 0.12, and 0.06. From the experimenter’s point of
view, the ratio of these two contrasts is rC = 2:1, while from
the visual system’s point of view, the ratio is (0.12 -
0.03):(0.06 - 0.03) = 3:1. Therefore, the visual system
could be responding linearly to its representation of con-
trast, but not to the experimenter’s representation of con-
trast—and by this logic, rP, the ratio of the two processing
rates (3.0 in this example) would exceed rC, the ratio of the
two contrast levels (2.0 in this example).

Over the past decade, my colleagues and I have devel-
oped a theory, the SRIA Theory, that makes exactly this
kind of assumption. This theory, sketched below in Sec-
tion B.2.f has accounted for copious duration x contrast
visual-memory data essentially perfectly (e.g., Busey &
Loftus, 1994; Olds and Engel, 1998). We have concluded
that the visual system treats the relation between duration
and contrast in a Bloch-Law fashion, but that the contrast
threshold systematically obscures the Bloch’s-Law be-
havior in the actual data. We can, however, use the SRIA
Theory as a tool to “correct” for the threshold and re-
cover, if they exist, any Bloch’s-Law properties that un-
derlie the data.

B.2.a.ii. Spatial Filtering. It is well known that any vis-
ual image can be represented equivalently in image space
(the standard representation) or frequency space, i.e., con-
trast energy and phase as functions of spatial frequency
and orientation. It is similarly known that the visual system
is in some fundamental respects, frequency-space ori-
ented, in that it separates information into different spatial
frequencies at an early stage and then re-integrates them at
a later stage (Blakemore & Campbell, 1969; Campbell &
Robeson, 1968; Graham, 1989; Olzak & Thomas, 1986;
De Valois & De Valois, 1980; 1988). The broader impli-
cations of these processes for memory and cognition have
been studied in a variety of domains (see e.g., for reading,
Legge, Pelli, Rubin, & Schleske, 1985; Parish & Sperling,
1991; Solomon & Pelli, 1994; for picture perception, Olds
& Engel, 1998; Schyns & Oliva, 1994). Our recent and
proposed work involves two aspects of such spatial-
frequency decomposition.

B.2.a.ii.(a). Global and Local Processing. Since the
time of Neisser’s (1967) classic Cognitive Psychology,
visual scenes have been conceptualized as being
decomposable into global and local information: Global
information corresponds to overall scene structure, while

local information corresponds to fine details. “Global”
and “ local” can be operationalized in many ways. One of
them is in terms of spatial frequencies (e.g., Hughes, No-
zawa, & Kitterle, 1996; Schyns & Oliva, 1994, but see Mor-
rison & Schyns, 2001) where low spatial frequencies
(LSF’s) correspond to global information, and high spa-
tial frequencies (HSF’s) correspond to local information.

In [10, A5] (see also Section D.3.a below), we orga-
nized, formalized, quantified, and specified the logical re-
lations among three broad theories of the relation between
global and local processing. By independence theories
(e.g., Olds and Engel, 1998), global and local information
are acquired independently and combined additively. By
global-precedence theories (e.g., Loftus, Nelson, & Kall-
man, 1983; Navon, 1977; Parker & Costen, 1999; Schyns
& Oliva, 1994; Watt, 1987), acquisition of global informa-
tion precedes acquisition of local information, but the two
are still combined additively. By interactive theories (e.g.,
Navon, 1977; Sanocki, 1991; 1993; 2001), not only does
global information precede local information, but acqui-
sition rate of local information depends on the amount of
already acquired global information. That is, acquired
global information provides a spatial framework, within
which local information can be interpreted and inte-
grated—and the more complete the global information,
the more efficient is such local processing. Thus, by inter-
active theories, LSF and HSF signals do not combine addi-
tively—LSF and HSF information presented together are
more effective than the sum of their individual contribu-
tions. In [10, A5] we showed that in relatively simple digit-
recall tasks (as used in [10, A5]) and object-identification
tasks (as used by Olds and Engel, 1998), the relations
among low spatial-frequency only, high spatial-frequency
only and complete (low plus high spatial-frequency) ver-
sions of the stimuli can be accounted for by a global-
precedence theory, and we developed a quantitative ver-
sion of such a theory.

B.2.a.ii.(b). Face Perception: Observer Distance
Simulated by Resizing or Filtering an Image. The role of
spatial frequency in face perception has increasingly been
a topic of investigation, with different researchers demon-
strating that face recognition can be carried out either with
low or with high spatial-frequency information (e.g., Cos-
ten, Parker, & Craw, 1994; 1996; Fiorentini, Maffei, &
Sardini, 1983) but suggesting various spatial-frequency
ranges, on the order of 8-12 cycles/face (c/face), that are
optimal for face processing (see Morrison & Schyns,
2001, pp. 462-464, for a summary).

A project in our laboratory involving spatial frequen-
cies and face processing was triggered by a legal case in
which an eyewitness to a crime claimed to have identified
the perpetrators from a distance of 450 ft. The resulting
research, described in [15, A10], was designed to account
for and quantify the effect of viewer distance on face rec-
ognition in particular and on visual processing in general.
The logic relied on a well known property of the human
visual system: that like any image-processing system, it
progressively removes higher spatial frequencies in a
manner that is governed by some modulation-transfer
function (MTF). The MTF is a spatial filter: It assigns an
amplitude scale factor that modulates the contrast of each
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1 This argument ignores potential image degradation by pixel loss
when image size is reduced on a computer screen. Our solution is to
present the size-varying pictures on a 10-ft distant, high-resolution
monitor (see [15, A10], p. 11, “Apparatus” section).

spatial frequency by a factor ranging from 1.0 for spatial
frequencies that are completely passed by the filter to 0.0
for spatial frequencies that are completely blocked by it.
Although the suprathreshold human MTF is not precisely
known, it is reasonable to expect, based on various kinds of
data (e.g., Georgson & Sullivan, 1975; Hayes, Morrone,
and Burr, 1986; Parish & Sperling, 1991) that spatial fre-
quencies lower than about 10 cycles/degree (c/deg) are
completely passed by the filter, spatial frequencies as high
as 60 c/deg are completely blocked, and that the MTF de-
clines in some systematic fashion in between.

These observations suggest a quantitative incarnation
of a general proposition about the relation between dis-
tance and face processing. The general proposition is that
at progressively greater distances, progressively coarser
facial features become unavailable to the visual system. To
understand the quantitative instantiation of it, consider a
particular facial feature, such as a mouth. The representa-
tion of such a feature, viewed from a particular distance, is
carried by a spatial-frequency range that depends both on
the feature’s distance and its size. For instance, from a
distance of 40 ft, a mouth would subtend (vertically) ap-
proximately.04 deg of visual angle, which means that in-
formation about it would be carried in the reasonably per-
ceptible spatial-frequency range of 1/.04 = 25 c/deg. Now
suppose that the face is moved further away by a factor of
4, to 160 ft. The mouth would then subtend a visual angle
of .04/4 = .01 deg, and would be carried by spatial fre-
quencies in the range of 1/.01 = 100 c/deg, which are fil-
tered out; thus the mouth wouldn’t be perceptible at that
distance.

We developed these ideas in [15, A10] as follows. Sup-
pose the relevant MTF is some function, M(F) where F is
absolute frequency, that is, frequency in c/deg. Now con-
sider the MTF in terms of image frequency, i.e., in c/face,
which we termed M(f). If a face is viewed from a distance
of 43 ft (actually, technically 43 ft/(face/deg)), it subtends a
visual angle of 1 deg, which means that M(f) = M(F). In
general, for distance D, f = F x (43/D). For instance, if a
face is viewed from a distance of D = 86 ft, it would sub-
tend a visual angle of 43/86 = 0.5 deg/face and an absolute
frequency of, say, F = 60 c/deg would correspond to an
image frequency of, f = 60 c/deg x 0.5 deg/face = 30
c/face. In other words, the visual system can be construed
as spatially filtering a face seen from distance D by M(f) =
M[F x (43/D)].

We can thus represent a face viewed from distance D in
two ways. The most straightforward way—dictated simply
by geometry—is to resize the face’s image so that it sub-
tends to the viewer a visual angle of 43/D deg. The second
way, whose validity depends on the logic I have just
sketched, is to filter the image by a MTF whose form is
M(f) = M[F x (43/D)]. Because M, for reasons described in
[15, A10]), is assumed to be low-pass, i.e., to decline over
spatial frequency, such filtering results in a blurred image
whose degree of blur increases with D. By this reasoning, a
general equivalence prediction emerges: In any sort of
visual-processing task, performance on a face seen from
distance D ft should equal performance on the same face
close up, but filtered by M[F x (43/D)].

Making use of this logic assumes that we know the form

of M(F) to begin with. As I noted, we don’t, at least not
very well, but we can begin with some rough guesses and
then bootstrap our way to a better estimate by determining
the rules governing the distances and degrees of filtering
that lead to the same performance. If these rules are found
to be robust, then we have some scientific certainty that the
resulting MTF estimate is reasonably accurate. The first
goal of the experiments reported in [15, A10] was to
quantitatively test the equivalence prediction just de-
scribed. Two very different experimental paradigms pro-
vided converging evidence in this quest. I will describe
these paradigms and their results in Section D.4.a; suffice
it to say here that the prediction was confirmed essentially
perfectly, thereby allowing the form of M to be estimated.
Figure 1 shows an example: Julia Roberts’ face both sized
and filtered to produce equivalent representations of the
effect of two distances1.
B.2.b. Face Processing

Because of forensic relevance, the need for artificial
face-recognition systems, as well as intrinsic scientific in-
terest, face processing has lately become a major topic of
scientific scrutiny (the list of relevant references could go
on for pages, but see, e.g., Gauthier, Curran, Curby, &
Collins, 2003; Kanwisher, McDermott, & Chun, 1997; re-
views in Wenger & Townsend, 2001; Rakover, 2001). Past
and proposed work in my laboratory has increasingly fo-
cused on face-perception and face-memory problems.

I have just sketched one face-processing project: a spa-
tial frequency representation of distance. Three additional
interrelated face-processing topics are also relevant. The

D = 43 ft

D = 172 ft

Figure 1. Two theoretically equivalent representations of a face
viewed from 43 and 172 ft: resizing (left) and filtering (right).
With caveats indicated in Footnote 1, left panels are valid if
viewed from 11” away.



II Principal Investigator/Program Director (Last, first, middle):  Loftus, Geoffrey R.

PHS 398/2590 (Rev. 05/01) Page 22 Continuation Format Page

first is the face-inversion effect (FIE) which refers to a
finding first reported by Yin (1969) and subsequently by
many others (see, e.g., Bradshaw, Taylor, Patterson, & Net-
tleton, 1980; Diamond & Carey, 1986; Ellis & Shepherd,
1975; Leehey, Carey, Diamond, & Cahn, 1978; Phelps &
Roberts, 1994; Phillips & Rawles, 1979; Valentine &
Bruce, 1986) that the processing disadvantage of inverting
a visual stimulus is worse for faces than for other kinds of
visual stimuli, e.g., houses. The FIE is one of the primary
bases for the claim that face processing is special, i.e., is
qualitatively different from processing other visual stim-
uli: As noted in a classic review article, for example, “…the
evidence from the effect of inversion…provides the most
direct indication that face recognition may involve a
unique process” (Valentine, 1988, p. 472). The FIE is also
observed when defined as relative activity to upright and
inverted faces and non-faces in the face fusiform area
(Kanwisher, Tong, & Nakamaya, 1998; Rossion & Gauth-
ier, 2002). We have carried out a number of FIE experi-
ments ([14, A9]), two of which are described below in Sec-
tion B.2.e.ii.(c).

The second topic is an oft-noted distinction between
two types of visual processing that are presumed to be par-
ticularly relevant for face perception: Depending on the
specific theory, upright face processing is assumed to be,
more than other kinds of visual stimuli, based on “second-
order features” or on “configural information” (e.g.,
Carey & Diamond, 1977; Collinshaw & Hole, 2000; Rho-
des, 1988), or on “second-order relational information”
(e.g., Diamond & Carey, 1986), or on “holistic” or “ge -
stalt” information (Farah, Tanaka, & Drain, 1995; Farah,
Wilson, Drain, & Tanaka, 1998; Sargent, 1984), or “car-
ried out in parallel” (e.g., Bradshaw & Wallace, 1971).
This processing mode is contrasted to “featural” or “se-
rial” processing that is assumed to be relatively more im-
portant in processing non-face and/or inverted stimuli.
Despite the pervasiveness of this kind of distinction, pre-
cise quantitative instantiations of it are rare, and we have
attempted to fill this gap. As I describe in Section D.4.c, we
have developed a theory that quantifies the contributions
of configural and featural information to face processing,
and demonstrates how the relative contributions determine
when a FIE does or does not occur.

The third topic involves processing of familiar versus
unfamiliar faces, particularly in anticipation of a subse-
quent recognition test. It would seem obvious that these
two kinds of processing must differ in that while a verbal
label (“Oh, it’s Julia Roberts”) might suffice to eventually
recognize a familiar face, storage of visually based infor-
mation is required to eventually recognize an unfamiliar
face. Some work, much of it with a practical-applications
slant has been done on this topic (e.g., Bruce, Henderson,
Newman, & Burton, 2001; Collinshaw & Hole, 2000; Han-
cock, Bruce, & Burton, 2000). In our own lab, we have de-
termined that, although familiar and unfamiliar faces are
different with respect to the FIE ([14, A9]), they are af-
fected in the same way by stimulus contrast ([12, A7]). The
distinction between familiar and unfamiliar faces forms a
theme that weaves through much of the proposed face-
processing work.

B.2.c. Confidence and Accuracy in Visual Memory
Recently, we have carried out experiments concerning

relations between confidence and accuracy that have inte-
grated our methodologies and content questions with work
in forensic psychology and in metacognition. This re-
search was motivated partly by an intrinsic interest in the
relations between confidence and accuracy and partly by
real-life consequences in legal cases. Often, a critical issue
in a court of law is the accuracy of some witness’s memory
(of, for example, a criminal, an accident, or the exact de-
tails of some event). Unlike a scientist in a laboratory, a
trier of fact, i.e., a judge or jury, does not have the luxury
of knowing what the correct answers are in this “memory
test.” Accordingly the major means by which the trier of
fact judges accuracy is to assess the confidence expressed
by the witness in his or her memory, under the dubious
assumption that such confidence directly reflects the re-
ported memory’s underlying accuracy.

Whereas there has been much work done concerning
inter- or intra-observer correlations between confidence
and accuracy (e.g., Deffenbacher, 1980), our own research
has focused on observers’ ability to assess the effects of
certain independent variables on eventual accuracy. Many
such variables affect confidence; for instance, Wells,
Ferguson, and Lindsay (1981) reported that being inter-
viewed about a previously viewed crime increases wit-
nesses’ confidence that they had correctly identified the
culprit. The tack we have taken is to manipulate some vari-
able in the study phase of a recognition test, collect pro-
spective confidence ratings at the time of study, and then
determine the degree to which such prospective confi-
dence correctly predicts the variable’s effect on eventual
recognition performance. We have determined that ob-
servers overestimate the benefit of visual rehearsal ([3,
A2]) but correctly assess the effects of contrast ([12, A7]).
Part of the proposed research is to investigate, and to de-
velop a theory of, the general proposition that effects of
low-level variables such as contrast are correctly predicted,
while effects of higher-level variables such as visual re-
hearsal, are subject to all manner of metacognitive strate-
gies that distort prediction.
B.2.d. Eye Fixations

In most visual memory experiments, stimulus durations
fall naturally into those that are shorter than an eye fixa-
tion duration (i.e., less than around 300 ms) and those that
are longer. When eye movements are not recorded, results
from experiments in which longer durations are used be-
come difficult to model because of loss of control over,
and knowledge about how many eye fixations have been
made and where on the stimulus they have fallen.

These limitations can be addressed by recording eye
fixations and/or by guiding them (e.g., Henderson &
Hollingworth, 1998; Hollingworth, in press). David Irwin
and I have planned a series of picture-processing experi-
ments in which eye movements will be recorded, and the
scope of some of our theories will thereby be extended to
presentations involving multiple eye fixations. Irwin has
the equipment and the expertise to run such experiments.
Logistically, Irwin and I will design the experiments, I will
create the stimuli, Irwin will collect the data at the Univer-



II Principal Investigator/Program Director (Last, first, middle):  Loftus, Geoffrey R.

PHS 398/2590 (Rev. 05/01) Page 23 Continuation Format Page

sity of Illinois, I will analyze them, and we will jointly use
the results to arrive at conclusions and evaluate theories.
Irwin and I have successfully completed such a collabora-
tion in the past (Loftus & Irwin, 1998).

We have recently launched this project: I have written
software and created stimuli (heterogeneous complex
scenes) for a simple picture-recognition pilot experiment.
Irwin is in the process of implementing the software in his
eye-movement laboratory. This pilot study, in which only
stimulus duration is manipulated at study, will allow us to
fine-tune our logistics and to ensure that we get the same
basic results in experiments done in Irwin’s lab in Illinois
as in my lab in Seattle. After any kinks are ironed out of
our methodology, we will proceed to eye-movement stud-
ies, an example of which is described below in Section
D.2.b.
B.2.e. Linear Theory, Dimensional Theory, and Unidi-
mensional Theory

Specific Aim 7, which pervades most of the present and
proposed research, revolves around theory and methodol-
ogy in psychology. In this section I describe more spe-
cifically what this aim is all about. I first summarize the
almost-universally used linear theory. I then sketch a less
used alternative, dimensional theory, emphasizing its sim-
plest form, unidimensional theory. These issues are dis-
cussed at length in Bamber (1979) and Dunn and James
(2003). An upcoming Psychological Review article ([14,
A9]) is devoted largely to the relation between these theo-
ries. Most of the proposed work will be interpreted within
the context of dimensional theory.

B.2.e.i. Linear Theory. The vast majority of experi-
ments in many disciplines, including psychology, are de-
signed, analyzed, and interpreted within the context of lin-
ear theory. Linear theory, described at least implicitly in
any statistics text, and explicitly in any mathematically-
based statistics text (e.g., Hays, 1973), holds that the de-
pendent variable in an experiment is computed as the sum
of terms corresponding to main effects of, and interactions
among independent variables, plus any error terms appli-
cable given the experimental design. Conclusions are
based on the inferred presence or absence of such effects.
For example, in face-processing experiments, a FIE would
be inferred from a statistically significant stimulus type x
orientation interaction.

While linear theory has been a standard tool in under-
standing myriad data sets, it has some serious disadvan-
tages. Briefly, they are these. First, linear theory is entirely
linear, hence its name. While linearity may bear an ap-
proximation to some actual psychological relations, many
other such relations are decidedly nonlinear, which means
that interpreting them within the context of linear theory
can produce profoundly misleading conclusions. A classic
example of this problem involves interpretations of inter-
actions (see, e.g., Bogartz, 1976; Loftus 1978; 1985;
Loftus & Bamber, 1990): As interpreted within the context
of linear theory, nonordinal interactions observed with one
dependent variable (e.g., recognition performance) can
disappear or reverse with another dependent variable (e.g.,
d’) or a theoretical construct (e.g., “memory strength”)
that is monotonically, but nonlinearly related to the de-

pendent variable.
A second disadvantage of linear theory is more subtle

but also more insidious: Because linear theory is both se-
ductively plausible and almost universally welcomed, it
blinds investigators to alternative theories that might better
elucidate underlying psychological processes.

B.2.e.ii. Dimensional Theory We have argued that di-
mensional theory is one such theory. The general idea of
dimensional theory is that independent variables combine
at various stages into internal psychological dimensions
that directly underlie performance. By determining (1)
how many such dimensions are necessary to account for
performance in a given situation, along with (2) the nature
of the mathematical functions that describe how the inde-
pendent variables combine to produce the dimensional
values, the underlying nature of the relevant psychological
structures can be unveiled.

Dimensional theory is related to conjoint measurement
(e.g., Krantz, Luce, Suppes & Tversky, 1971; Krantz &
Tversky, 1971; Tversky & Russo, 1969), functional meas-
urement (e.g., Anderson 1974; 1979), multidimensional
scaling (e.g., Kruskal, 1964; Shepard, 1962), the concept
of integral and separable dimensions (Garner, 1964), and
the concept of “mental modules” (Pinker, 1997). The
incarnation of it on which we have focused was independ-
ently described by Bamber (1979) and Dunn and Kirsner
(1988). Dimensional theory has proven useful in illumi-
nating various psychological phenomena, including visual
displacement discrimination (Palmer, 1986a, b), the rela-
tion between iconic memory and visible persistence
(Loftus & Irwin, 1998), the relation between confidence
and accuracy in face recognition ([3, A2]), the relation
between degree of original learning and forgetting rate
(Loftus, 1985b; Loftus & Bamber, 1990), the relations
among stimulus duration, stimulus contrast, confidence,
and accuracy in visual recognition ([12, A7]), the genesis
of the FIE ([14, A9]), and the logical, theoretical, and em-
pirical underpinnings of the dissociation technique (Dunn
& Kirsner, 1988). Dunn and James (2003) have recently
developed a technique founded on dimensional theory
called “signed difference analysis” and have illustrated its
use in addressing classic problems within cognition, such
as: Does the “remember-know” distinction in recognition
memory reflect qualitatively different cognitive states, or
different regions on some unidimensional scale?

Dimensional theory is central within vision science:
Two examples of its use there are color metamers (that an
indefinitely large number of independent variables, in the
form of different monochromatic hues, reduce, in the
form of cone quantum-catch values, to three retinal-output
dimensions whose values determine color perception) and
Bloch’s Law (that, as described earlier, the two independ-
ent variables of stimulus duration and stimulus intensity
combine multiplicatively into a single dimension of “total
intensity” whose value determines brightness perception).

B.2.e.ii.(a). D-Dimensional Theory. By dimensional
theory, a particular combination of M independent vari-
ables in some experiment yields D values, one on each of D
internal psychological dimensions. The value, Vd on the
dth dimension is,
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† 

Vd = fd (IV1,IV2,..., IVM ) (1)
where the IVm’s are the independent variables and fd is an
unconstrained function. The D values are then mapped to
N dependent variables, the nth of which is computed as,

† 

DVn = gn (V1,V2,...,VD ) (2)
When D=1, i.e., when there is only a single dimension, gn is
monotonic. When D > 1, the situation is somewhat more
complicated, but the gn’s are still constrained in a manner
described by Dunn and James (2003). Equations 1-2
thereby define a D-dimensional structure. If the inferred
number of internal dimensions, D, is less than the number
of independent variables, M, one concludes that at least two
of the independent variables have lost their unique repre-
sentations somewhere in the structure, when they merge
into fewer dimensions.

An illustration of a dimensional structure is found in
color metamers mentioned above. Suppose that a mixture
of M monochromatic hues of differing intensities is pre-
sented to the visual system. Each hue acts as an independ-
ent variable; thus the different experimental conditions
correspond to the different combinations of hue intensity.
It has long been known that the sensory result of any com-
bination of such hue intensities can be described com-
pletely by the three numbers corresponding to the three
cone quantum catches engendered by that combination.
Therefore, any dependent variable used to measure color
perception in this kind of experiment depends only on
D=3 dimensions corresponding to the output of the three
cone classes. This finding, embodied in the classic color-
matching experiment, was pivotal in color science: It
formed the basis for the trichromacy theory of color vi-
sion, and laid the groundwork for the eventual discovery
of cone photoreceptors.

B.2.e.ii.(b). Unidimensional Theory. The simplest di-
mensional theory is a unidimensional theory in which
D=1, i.e., only a single dimension is required to account
for a data set. An illustration of unidimensional theory is
Bloch’s Law. As described earlier, Bloch’s Law states that
when duration is below around 100 ms, perception, meas-
ured e.g., by detection, depends only on the product of
duration and intensity; in other words, the two independent
variables, duration and intensity, combine (multiplica-
tively) to produce a value on the D=1 dimension of
“summed intensity.” This is consistent with the simple
proposition that neither the physical value of duration nor
the physical value of intensity is represented within the
sensory system; rather, only their product is represented.
Bloch’s Law is useful in understanding how the sensory
system processes intensity, viz., for about 100 ms, the sys-
tem simply integrates arriving photons over time and
maintains a representation of the photon sum.

B.2.e.ii.(c). Example Experiments. Developing and
testing unidimensional theories will be, as it is now, an ever-
present activity in the proposed research. In this, and the
next three  subsections I describe how this is done.

To provide context for these descriptions, consider two
old-new recognition experiments investigating the FIE,
reported as Experiments 1 and 2 in [14, A9]. In each ex-
periment, three variables were manipulated: the duration at
which a stimulus was presented at study, stimulus orienta-

tion at study (upright or inverted), and stimulus type (faces
or houses). In Experiment 1, unfamiliar faces were used as
stimuli, while in Experiment 2, familiar (celebrity) faces
were used. The main results are shown in Figures 2AB
(Experiment 1) and 2DE (Experiment 2). Each panel
shows recognition performance as a function of study ex-
posure duration for faces (Panels A and D) and houses
(Panels B and E). In each experiment, we found a classical
orientation x stimulus type interaction; the difference be-
tween the upright and inverted curves was greater for faces
than for houses. However, we argued (strenuously) that
conclusions based on such interactions are ephemeral at
best (see also Loftus, 1978), and that a more productive
course of action would be to interpret the results within the
context of dimensional theory.

Accordingly, we constructed a to-be-tested unidimen-
sional theory in which there was no FIE. By this theory, the
two “perceptual” variables, duration and orientation,
combine into some unidimensional value (call it
“Strength”). Recognition performance for the two
stimulus types, faces and houses is then determined by
monotonic functions, mF and mH of Strength. Note that
such a theory implies no FIE, in that the orientation value
(as well as the duration value) is lost when duration and
orientation are combined into Strength; thus there is no

Experiment 1:
Unfamiliar Faces

Experiment 2:
Familiar Faces

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 60 120 180 240 300

Upright
Inverted
Theory

Stimulus Duration (ms)

Experiment 1: Unfamiliar Faces

 p
ijF

 =
 R

ec
og

ni
tio

n 
Pe

rfo
rm

an
ce

A

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700 800

Upright
Inverted
Theory

Stimulus Duration (ms)

Experiment 2: Celebrity Faces

 p
ijF

 =
 R

ec
og

ni
tio

n 
Pe

rfo
rm

an
ce

D

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 60 120 180 240 300

Upright
Inverted
Theory

Stimulus Duration (ms)

Experiment 1: Houses

 p
ijH

 =
 R

ec
og

ni
tio

n 
Pe

rfo
rm

an
ce

B

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700 800

Upright
Inverted
Theory

Stimulus Duration (ms)

Experiment 2: Houses

 p
ijH

 =
 R

ec
og

ni
tio

n 
Pe

rfo
rm

an
ce

E

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5

Upright
Inverted
Theory

Experiment 1: State-Trace

 p
ijH

 =
 H

ou
se

 R
ec

og
ni

tio
n 

Pe
rfo

rm
an

ce

 p
ijF

 = Unfamiliar Face Recognition Performance

C

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Upright
Inverted
Theory

Experiment 2: State-Trace

 p
ijC

 =
 H

ou
se

 R
ec

og
ni

tio
n 

Pe
rfo

rm
an

ce

 p
ijF

 = Celebrity Face Recognition Performance

F

Equal House performance:
Inverted Face performance is poorer

Figure 2. Results of [14, A9], Experiments 1 and 2. Solid
and open curve symbol correspond to upright and inverted pic-
tures. Solid lines are theory predictions described in proposal,
Section D.4.c. Error bars are standard errors.
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differential effect of orientation on face versus house per-
formance.

B.2.e.ii.(d). State-Trace Analysis. To evaluate a
unidimensional theory, one constructs a state-trace plot
Bamber (1979), which is a plot of one dependent variable
against another dependent variable over experimental
conditions (reminiscent of the familiar ROC or ROC plot
of hit probability plotted against false-alarm probability).
In this case, house performance is plotted against face per-
formance over all 12 duration x orientation conditions.
Now consider any two duration x orientation conditions,
C1 and C2. Suppose that face performance is greater in C2
than in C1. Because the function relating Strength to face
performance is monotonic, we can go backward from per-
formance to infer that Strength is likewise greater in C2
than C1—from which we can then likewise infer that house
performance is greater in C2 than in C1. Thus the predic-
tion of this FIE-less unidimensional theory is that the or-
dering of any two conditions must be the same for faces
and houses, i.e., that the state-trace plot be monotonic
across all 12 conditions. This logic underlies interpretation
of many of the experiments proposed in Section D.

Figures 2C and 2F, show the state-trace plots. Figure 2C,
the unfamiliar-face state-trace plot, is monotonic, thereby
confirming a unidimensional theory which would imply
no FIE. Figure 2F, the familiar-face plot is nonmonotonic,
disconfirming a unidimensional theory and implying a
FIE. More specifically, in Figure 2F the inverted data
points are to the left of the upright points. This means that,
as indicated in the figure, if one considers any two orienta-
tion x duration conditions—a longer-duration inverted
condition and a shorter-duration upright condition—that
produce equal performance for houses, then face recogni-
tion performance is poorer in the inverted condition than
in the upright condition. This means that inversion re-
duces celebrity face performance more than house per-
formance. The Figure-2 pattern thereby confirms Valen-
tine’s (1988) suggestion that a FIE emerges when familiar
faces are retrieved from memory, but not when unfamiliar
faces are encoded for subsequent recognition.

 In [14, A9] we demonstrate that two theoretical
dimensions can account for both these data sets. We se-
lected the dimensions, which we termed “Configural
Strength” and “Featural Strength” along with their as-
sumed characteristics based on past theories of face proc-
essing (see references on p. 22 above), and constructed
quantitative instantiations of them that resulted in the Fig-
ure-2 theoretical predictions. The estimated parameter
values were such that the two dimensions emerged for
Experiment 2, but the two dimensions collapsed into a
single dimension for Experiment 1. In summary, analysis
of these data within the context of dimensional theory re-
veals that (1) a FIE emerges when familiar, but not unfa-
miliar faces are encoded in anticipation of a subsequent
memory test, and (2) the FIE can be harmoniously ex-
plained via two internal dimensions that are generally as-
sociated with explanations of face processing “special-
ness.” I return to these points in Section D.4.c.

B.2.e.ii.(e). Equivalence Equations to Describe
Stronger Unidimensional Theories. The just-described
experiments are typical of many carried out in my lab. In

them, we manipulate study duration, along with some other
focal variable (orientation in the example), whose effect
on information acquisition is under investigation. The fo-
cal variable’s effect is generally assessed by comparing
performance curves, examples of which are shown in Fig-
ure 2ABDE: performance plotted against duration, with
different curves corresponding to different focal-variable
levels.

If a unidimensional theory is confirmed, then stronger
versions of the theory can often be constructed using what
I have termed equivalence equations, which are rules that
govern the durations which yield equal performance for
different focal-variable levels. The general equation re-
lating performance curves for two focal-variable levels is:

p [Fi, d] = p[Fj, f(d)] (3)
where p[Fi, d] and p[Fj, f(d)] denote performance for levels
i and j of the focal variable, d and f(d) are durations, and f
is a monotonic function.

Of theoretical interest in a given situation is the nature
of the function f(d) on the right side of Equation 3. Differ-
ent f(d)’s are implied by different hypotheses about the
focal variable’s effect. I illustrate with two simple hypothe-
ses. The first is that the focal variable’s effect is additive,
i.e., that f(d)=d+k, which means that,

p (Fi, d) = p(Fj, d+k) (4)
Here, k is a constant in units of time. The interpretation of
an additive effect is that being in level i of the focal variable
is equivalent to having an additional k ms of stimulus du-
ration compared to being in level j. Thus an additive the-
ory, predicts performance curves to be horizontally par-
allel, separated by k ms. An example is provided in [10,
A5], where high spatial-frequency (HSF) versions of tar-
get digit strings were presented at varying durations to ob-
servers who attempted to recall them. These HSF targets
were either preceded or not preceded by a 40-ms prime
consisting of a LSF version of the same digits. Figure 3A
shows the results: Unsurprisingly, performance is better
for longer durations and for primed compared to un-
primed stimuli. Figure 3B shows the same data, but with the
primed curve shifted to the right by k=49 ms. The curves
align well, confirming an additive effect—which, as dem-
onstrated in [10, A5] suffices to disconfirm an interactive
theory by which early LSF information affects subsequent
acquisition of HSF information. The results can be suc-
cinctly summarized as: A LSF prime is worth an additive
49-ms HSF “preview.” This confirmation of an additive
effect is analogous to conclusions reached via similar
methodology and logic that an iconic image is worth a
100-ms “postview” of the physical stimulus (Loftus,
Johnson, & Shimamura, 1985; Loftus, Duncan, & Gehrig,
1992).

The second hypothesis is that the focal variable’s effect
is multiplicative, i.e., that f(d)=cd, which means that,

p(Fi, d) = p(Fj, cd) (5)
Here c is a dimensionless constant. The interpretation of a
multiplicative effect is that being in level i of the focal vari-
able speeds up processing by a factor of c, compared to
being in level j. A multiplicative hypothesis can be con-
veniently tested by plotting performance on a log-
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duration scale instead of a linear-duration scale. When d is
on a log scale, Equation 5 becomes,

p[Fi, ln(d)] = p[Fj, ln(c)+ln(d)] (6)
and performance curves are predicted to be horizontally
parallel, separated by a constant of ln(c) which, after being
estimated, can be exponentiated to recover c. Figures 3CD
show an example from [12, A7, Experiment 2]. Here ei-
ther high-contrast or low-contrast random forms were pre-
sented at varying durations, followed by a 2-alternative,
forced-choice (2AFC) recognition test. Figure 3C shows,
again unsurprisingly, that performance is better for longer
durations and for high-contrast compared to low-contrast
stimuli. Figure 3D shows the same data, but with the low-
contrast curve scaled (i.e., shifted on a log axis) to the left
by 0.991 log units, which corresponds to a scaling factor
of c = e0.991 = 2.694. Again the curves align quite well,
confirming a multiplicative effect. The results can be suc-
cinctly summarized as: High-contrast stimuli are proc-
essed faster by a factor of 2.694 compared to low-contrast
stimuli. This example demonstrates how a processing-rate
ratio, rP = 2.694 here, can be measured—thereby fulfill-
ing the promise made in Section B.2.a.i, p. 19, right col-
umn above.

We have used such equivalence techniques to investigate
effects of numerous focal variables on information acqui-
sition, including stimulus masking (Loftus, et al., 1985;
Loftus et al., 1992), stimulus degradation (Loftus, 1985c;
Loftus, Kaufman, Nishimoto, & Ruthruff, 1990), observer
age (Loftus, Nelson, & Truax, 1986), and various sorts of
priming (Reinitz, Wright, & Loftus, 1986; [10, A5]). We
have also used equivalence techniques to study effects of
original learning on forgetting (Loftus, 1985a, b; Loftus &
Bamber, 1990). Finally, as described earlier, we have used
them to study distance effects on face perception: Here
distance took the place of duration, and the equivalence
equation was, M(f) = M(F/43D) where f and F were spatial
frequency in c/face and c/deg (see Equation 8, p. 37 be-
low).

B.2.e.ii.(f). On Interpretation of Interactions. Above I

have been discussing ways of identifying the fundamental
nature of interactions among variables. The kinds of
analysis and interpretation techniques that I have de-
scribed allow conclusions that are more generalizable and
robust than are conclusions based on traditional statistical
interactions inferred within the context of standard linear
theory. Loftus (1978; 1985a) and [14, A9] provide more
detail, but essentially because performance curves are
compared horizontally, any conclusion issuing from the
comparison (e.g., that the curves are or are not horizon-
tally parallel on a linear or on a log-duration axis) is in-
variant over all monotonic transforms of the performance
measure: Any set of points that are equal in one scale must
also be equal in any monotonically related scale. There-
fore, conclusions based on such equivalence techniques
apply not only to the particular dependent variable being
measured (e.g., proportion correct) but also to any theo-
retical construct assumed to be monotonically related to
the dependent variable (e.g., “memory strength”) and to
any dependent variable that is monotonically related to the
dependent variable being measured (e.g., d’).
B.2.f. SRIA Theory

Much of the work in my laboratory over the past dec-
ade has been designed to test and extend a particular
quantitative theory, the SRIA theory, developed to provide
an interface between low-level sensory processing and
high-level phenomena such as visual memory. This theory
is described in many places (e.g., Busey & Loftus, 1994;
Loftus & Ruthruff, 1994; [1, A1]; [10, A5]); Olds and
Engel, 1998, so I provide here only a brief sketch of it.
The theory’s functions and parameters are summarized in
Table 1, next page.

B.2.f.i. Description. The theory begins with the tempo-
ral waveform of the visual stimulus—stimulus contrast as a
function of t, time since stimulus onset, termed f(t)—which
is usually, although not always, a rectangular-wave func-
tion, whose width and height are duration and contrast. A
temporal impulse-response function describes the sys-
tem’s response to an instantaneous stimulus. The impulse-
response function, termed g(t), is modeled as a gamma
function which is the convolution of n exponential-decay
functions, each with a decay parameter of t ms (see Wat-
son, 1986). The convolution of f(t) and g(t) is a hypotheti-
cal sensory response function—the magnitude of some
neural response as a function of t—which is termed a(t),
There is assumed to be a sensory-response threshold,
termed q, such that information acquisition occurs only
when the sensory response is above threshold (see the in-
formal discussion of threshold in Section B.2.a.i, p. 20
above). Stimulus information is assumed to be acquired at
a rate, r(t), which is proportional to the product of the
magnitude by which the sensory response exceeds thresh-
old, and the proportion of yet-to-be acquired information,
with a proportionality constant of 1/c. The integral over
time of r(t) is, by definition, acquired information. Finally
the theory assumes some reasonable dependent variable,
e.g., proportion recalled digits to equal total acquired in-
formation, thereby completing the linkage from the ob-
servable f(t) to the observable dependent variable.

Mathematically, the theory is straightforward to under-
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multiplicative scaling (bottom panels). Error bars are standard
errors.
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stand when derived stage by stage (e.g., as in [1, A1, pp.
385-398]); to save space here, I provide only the bottom-
line equation:

p = 1-exp

† 

f(t)* (t / t)n-1e1-t
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where p is observed proportion correct, “ * ” signifies
convolution, the expression to the right of the “ * ” within
the square bracket is g(t), and the integral is over all values
of t for which a(t)>q. It is a mathematical fact that (assum-
ing a nonnegative impulse-response function) if q = 0, the
value of the integral equals the area under f(t) which is
usually the product of duration and contrast: Because per-
formance, p, is determined by this product, this zero-q spe-
cial case of the SRIA theory is a generalization of Bloch’s
Law with no “critical duration.”

B.2.f.ii. Applications. Work on the SRIA theory during
the current funding period has included (1) formalizing its
relation to, and accounting for Bloch’s Law and the
Bloch’s-Law critical duration ([12, A7]), (2) extending
and applying it to acquisition of different kinds of spatial-
frequency information ([10, A5]; see also Olds and Engel,
1998), and (3) demonstrating its applications, as well as its
limitations in describing visual memory for line drawings
([1, A1]), random forms ([12, A7, Experiments 1-2]), and
natural pictures shown at both single eye-fixation and
multiple eye-fixation durations ([12, A7, Experiments 3-
6]). We have also measured the temporal luminance pro-
files of visual display devices with discrete frame rates, e.g.,

CRTs and LCD projectors, and have confirmed, using the
SRIA theory’s estimated parameters, that such displays
are, from the visual system’s perspective, temporally
blurred such that they are indistinguishable from rectan-
gular-wave contrast profiles [17].
B.2.g. Statistics and Data Presentation

A lengthy Stevens’ Handbook chapter [6, A3] summa-
rizes and expands on much of my work over the past ten
years concerning statistical methodology and data pres-
entation. A second article ([8]) builds on the Stevens’
Handbook chapter and other prior work, describing com-
putation of confidence intervals for various kinds of ex-
perimental designs.
B.2.h. Visual Hindsight Bias

There is a large literature on the topic of hindsight bias
which is the tendency for individuals with outcome knowl-
edge to claim more prior knowledge of some outcome
than is objectively warranted (e.g., Fischhoff, 1975). Our
own interest in hindsight bias was piqued by a legal case in
which a radiologist (call him “Radiologist D ” ) was sued
by the family of a patient whose ultimately fatal tumor had
not been detected by D during a routine physical exami-
nation. At trial, plaintiffs called as an expert witness an-
other radiologist (“Radiologist E” ) . E had seen the pa-
tient’s x-rays just before his death, at which time the tumor
was large and clearly visible. E then viewed the initial x-
rays, originally inspected by D three years earlier, at which
time the tumor had been considerably smaller and less
visible. E asserted that, because he, E, could “detect” the
tumor in the initial x-ray, D should have similarly detected

Table 1. Parameters and Functions of the Sensory-Response/Information-Acquisition (SRIA) Theory
Functions Definition Comments

f(t) Stimulus temporal waveform Generally a rectangular-wave function, but can be any shape (e.g., see ramping func-
tions described by Busey & Loftus, 1994, Experiment 5).

g(t) Impulse-response function Theoretical response of the system to an impulse: Assumed, per past literature, to
be the convolution of n exponential functions, each with decay parameter t.

a(t) Sensory-response function Assumed neural response triggered by physical stimulus presence: calculated as the
convolution of f(t) and g(t).

aq(t) Magnitude by which a(t) exceeds threshold: Defined to be (a(t)-q) for a(t) > q and 0 otherwise
I(t) Acquired information In units of percent total information relevant to task at hand
r(t) Information-acquisition rate In units of percent total information/ms. Assumed to be the product of aq(t) and

[1–I(t)]. Note that r(t) is the derivative of I(t), i.e., r(t) = dI/dt.
Parameters Interpretation and effects Comments

t, n Jointly determine the (gamma)
impulse-response function

The parameter n, a positive integer, represents number of sequential exponential
stages and is always set to 9. The parameter t (in ms), a positive real number, rep-
resents the average duration of each stage. Typical value of t is 10 ms.

q Sensory threshold: When the
sensory response function is
below threshold, no information
acquisition takes place

Interpreted in contrast units. Typical value is 0.03. Above-threshold area under the
sensory-response function determines eventual memory performance. When q  is
zero, SRIA theory is a Bloch’s-Law Theory: In that special case, area under the sen-
sory-response function, which determines performance, equals duration x contrast.

c Governs information-acquisition
rate

The “cognitive” parameter. Generally, different levels of cognitive variables (e.g.,
stimulus type, attention, etc) are accorded different c values. Units are percent total
information/ms.

wL Weighting given to low spatial-
frequency information

When applying the SRIA theory to experiments involving high and low spatial
frequency information ([10, A5]) the low spatial-frequency sensory-response function
is weighted by wL, while the high spatial-frequency sensory-response function is
weighted by (1-wL). The theory was modified by allowing wL to vary over time by,
wL(t)=e-kt where k is a free parameter that replaces the original wL.
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it, and that D’s failure to do so constituted malpractice.
Erin Harley and I reasoned that E’s “perception” of

the original tumor may well have been a form of hindsight
bias that we dubbed visual hindsight bias. Although re-
ports of such bias appear in occasional medical reports
(e.g., Muhm, Miller, Fontana, Sanderson, & Uhlenhopp,
1983), it had received surprisingly little attention from the
psychology community—the closest we could find were
recent descriptions of “change blindness blindness,” e.g.,
Levin, Momen, Drivdahl, & Simons, 2000; Levin, 2002.
Accordingly, we carried out several projects to investigate
visual hindsight bias. The general procedure was to show
pictures of celebrities. Each picture began so blurred as to
be unrecognizable, then gradually de-blurred. We meas-
ured the degree of blur at which observers recognized the
celebrity. This unbiased recognition point was compared
to corresponding points measured when observers (1)
knew who the celebrity was to begin with or (2) were later
asked to indicate the blurriness point at which they had
originally recognized the celebrity. We found visual hind-
sight in abundance: Observers claimed to have recog-
nized celebrities at a blurrier point when they knew be-
forehand who the celebrity was ([9]; [13, A8]). We repli-
cated this effect with young children using to-be-
identified Snodgrass & Vanderwart drawings ([11, A6];
[16]).
B.2.i. Developmental Work

In conjunction with Andy Meltzoff and Danny Bern-
stein, I am carrying out developmental work with 3-5 year
old children. In particular, as just mentioned, we have
measured the developmental course of visual hindsight
bias ([11, A6]). We have also measured the developmental
course of degraded object identification and the Bruner &
Potter (1964) perceptual-interference effect ([11, A6];
[16]). As described in these articles, we have developed
numerous computer programs for performing this work as
well as techniques for interpreting its results and quanti-
fying developmental growth rates.
B.2.j. Laboratory Renovations (and Consequences)

One of the proposed projects for the current funding
period was to transform our productive but creaky, 8-
observer, 5-slide projector, visual-memory laboratory into
a sleek, 21st century model based on a Macintosh G4, run-
ning under MATLAB, controlling a single LCD projector.
We accomplished this goal (described in [17]), but for a
variety of reasons, the transition was (shockingly) quite a
bit slower and more hassle-laden than we had anticipated.
Many days during the first year and a half of the funding
period were thus agonizingly data-free (although I did
take advantage of much of this down time developing the-
ory and writing a major treatise on statistics and data pres-
entation, published as [6, A3]).

Transition problems now an unpleasant but distant
memory, the new laboratory has run almost entirely with-
out difficulty for 3 years, is very efficient (running, if not
24/7, at least 8/5) and, as I write, has generated more than 2
million observer responses. Generation, manipulation, and
display of stimuli under MATLAB allows considerable
flexibility: Any kind of relevant image processing, e.g.,
spatial filtering, contrast manipulation, color manipula-

tion, size manipulation, or superimposition of different
images, can be done with a few minutes of programming
time. Our lab computer is fast enough that reasonable
sized images, e.g., 500 x 500 pixels, can be easily trans-
ferred to video memory within a single screen refresh.
Analysis and theory fits can be accomplished instantly
following data collection. We have amassed a large collec-
tion of library routines for accomplishing all this.

B.3. Grant-Supported Manuscripts
Below I list manuscripts from the current funding pe-

riod. If a listed manuscript is included as an appendix, the
appendix number follows in parentheses. The square-
bracketed symbols following each manuscript reference
indicate the manuscript’s topic matter using the following
keys: GTI: General theoretical issues; ET: Equivalence
techniques; MM: Mathematical models; SRIA: SRIA The-
ory; FP: Face processing; SFD: Spatial-frequency decom-
position; C: Contrast effects; GLP: Global/local process-
ing; CA: Confidence and accuracy; SDP: Statistics and
data presentation; L: Laboratory techniques; VHB: Visual
hindsight bias; D: Developmental work.
1. Loftus, G.R. & McLean, J.E. (1999). A front end to a

theory of picture recognition. Psychonomic Bulletin
& Review, 6, 394-411. (Appendix 1), [MM, SRIA,
C].

2. Busey, T. (1999). Localization and identification rely
on different temporal frequencies. Vision Research,
39, 513-532. [MM, SRIA].

3. Busey, T.A., Tunnicliff, J., Loftus, G.R. & Loftus, E.F.
(2000). Accounts of the confidence-accuracy rela-
tion in recognition memory. Psychonomic Bulletin
& Review, 7, 26-48. (Appendix 2), [ET, FP, C, CA].

4. Harley, E. M., & Loftus, G. R. (2000). MATLAB and
graphical user interfaces: Tools for experimental
management. Behavior Research Methods, Instru-
ments, and Computers, 32, 290-296. [L].

5 .  Busey, T.A. & Townsend, J. (2001). Independent
sampling vs. inter-item dependencies in whole report
processing: Contributions of processing architecture
and variable attention. Journal of Mathematical Psy-
chology, 45, 283-323. [MM].

6. Loftus, G.R. (2002). Analysis, interpretation, and vis-
ual presentation of data. Stevens’ Handbook of Ex-
perimental Psychology, Third Edition, Vol 4. New
York: John Wiley and Sons, 339-390. (Appendix 3),
[GTI, ET, MM, SDP].

7. Loftus, G.R. (2003). What do we know about facial
cognition? What should we do with this knowledge?
Contemporary Psychology, 48, 503-507. (Appendix
4), [FP].

8. Masson, M.E.J. & Loftus, G.R. (2003). Using confi-
dence intervals for graphically based data interpreta-
tion. Canadian Journal of Experimental Psychology,
57, 203-220. [SDP].

9. Harley, E.M. (2004). Demonstrations of visual hind-
sight bias. Dissertation submitted to the University of
Washington. [VHB].

10. Loftus, G.R. & Harley, E.M. (2004). How different
spatial-frequency components contribute to visual
information acquisition. Journal of Experimental
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Psychology: Human Perception and Performance,
30, 104–118. (Appendix 5), [ET, MM, SRIA, SFD,
GLP].

11. Bernstein, D.M., Atance, C., Loftus, G.R, & Meltzoff,
A.N. (2004). We saw it all along: Visual hindsight
bias in children and adults. Psychological Science,
15, 264-267. (Appendix 6), [SFD, VHB, D].

12. Harley, E.M., Dillon, A.M., & Loftus, G.R. (2004).
Why it’s difficult to see in the fog: How contrast af-
fects visual perception and visual memory. Psy-
chonomic Bulletin & Review, 11, 197-231. (Appen-
dix 7), [GTI, ET, MM, SRIA, FP, C, CA].

13. Harley, E.M., Carlsen, K.A., & Loftus, G.R. (2004).
The “ I saw it all along” effect: Demonstrations of
visual hindsight bias. Journal of Experimental Psy-
chology: Learning, Memory, & Cognition, in press.
(Appendix 8), [FP, SFD, VHB].

14. Loftus, G.R., Oberg, M.A., & Dillon, A.M. (2004).
Linear theory, dimensional theory, and the face-
inversion effect. Psychological Review, in press.
(Appendix 9), [GTI, ET, MM, FP, SDP].

15. Loftus, G.R. & Harley, E.M. (2004). Why is it easier
to recognize someone close than far away? Psy-
chonomic Bulletin & Review, in press. (Appendix
10), [MM, FP, SFD].

16. Bernstein, D.M., Loftus, G.R., & Meltzoff, A.N.
(2005). Object identification in toddlers and adults.
Developmental Science (in press). [SFD, VHB, D].

17. Loftus, G.R. & Chen, J. A MATLAB-based visual-
perception and visual-memory laboratory. Under re-
vision for Behavior Research Methods, Instrumenta-
tion, and Computers. [SRIA, L].

18. Bernstein, D.M., Chen, J., & Loftus, G.R. On the per-
ceptual representation of stimulus duration and
stimulus contrast (manuscript in preparation), [GTI,
ET, C].

D. RESEARCH DESIGNS AND METHODS
The research that has been supported for the past 18

years has addressed various questions about visual proc-
essing and visual memory. Five research strategies, alluded
to above in varying degrees, have proved to be quite useful,
and will continue to be emphasized. First, we have been
constructing theories of relatively simple situations that
concern specific aspects of the psychological activities in-
volved in visual perception and visual memory. Common
to these theories are (a) a unidimensional construct,
loosely termed “Information” or “Strength,” (b) a set of
rules by which the value on this dimension is established
by the visual-perceptual-cognitive system in a particular
set of experimental circumstances, and (c) a set of rules
linking the value of “Strength” to observable perform-
ance. Second, we have carefully worked out sets of such
theories such that each successive theory in the set is a
stronger version, i.e., a special case of the previous one and
we have demonstrated specific data patterns that imply
confirmation or disconfirmation of each theory in the set
([12, A7, pp. 198-200]; [14, A9, p. 29]). Third, we have
formulated the stronger theories as mathematical equa-
tions such that the fit of theory to data can be characterized
precisely and unambiguously. Fourth, we have tried to by-

pass the usual statistical machinery of psychological re-
search by collecting data with sufficient power that statisti-
cal error becomes largely irrelevant (our standard goal is
that the error bars be largely obscured by the curve sym-
bols, as in Figures 2-3, pp. 24 and 26 above). Fifth, we
have begun to investigate more complex situations in
which unidimensional theory is rejected by the data, and
multidimensional theories are required (e.g., [14, A9, pp.
21-25]).

Of central importance in past and planned research is
formal and precise theory. Our theories begin with a de-
scription of the independent variables, progress through
specific, quantitatively defined assumed processes, and
end with either a specific function relating some relevant
internal construct to the dependent variable, or equiva-
lence equations that specify circumstances under which
the dependent variable(s) should have equal values. This
research strategy forces us to be explicit about assump-
tions, and forestalls ambiguity in predictions.

There is, compared to most research proposals, a some-
what unusual feature of this one: This is that I have never
found it useful to propose a series of rigidly-planned ex-
periments, and I don’t do so here. Instead, I describe rela-
tively few genuinely planned and designed experiments,
with full knowledge that the nature of subsequent experi-
ments will be dictated by (often unexpected) outcomes of
the ones actually proposed. Therefore, descriptions below
of proposed experiments will often assert something like,
“Theory T implies Y [where Y is some quantitative out-
come, e.g., ‘two curves are horizontally parallel on a log-
duration scale’]. Outcome Y thereby confirms Theory T.
Outcome not-Y, while disconfirming Theory T, is consis-
tent with numerous possibilities, and subsequent experi-
ments will depend on which of them actually occurred.” It
has been true throughout my research career that most re-
search projects have blossomed from some experimental
outcome that I never could have imagined when I wrote the
proposal describing whatever experiment yielded the out-
come. On a related note, it is difficult to predict the actual
number of experiments that will be carried out during the
proposed funding period. The current-period manu-
scripts listed above incorporate 33 experiments. Ap-
proximately 30 more were run either as pilot experiments
or as experiments that have not yet been written up.

In the remainder of this section, I first provide a brief
overview of relevant experimental methodology (Section
D.1). I then describe proposed research in four content
areas (Sections D.2-D.5) that correspond to Specific Aims
1-4 above. Proposed research relevant to Specific Aim 5
(eye fixations) is described in conjunction with contrast
effects (Section D.2). Proposed research relevant to Spe-
cific Aims 6 and 7 is distributed throughout this section.

D.1. Experimental Methodology
Methodological details (luminances, display sizes,

counterbalancing, testing, analysis and theory-fitting pro-
cedures, along with descriptions of stimulus sets for most
of the proposed experiments) are described in various of
the Appendices. In particular, for picture-recognition pro-
cedures, see [14, A9]; for confidence-rating procedures,
[12, A7]; for spatial-filtering techniques, [10, A5], [15,
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A10]; and for developmental work, [11, A6]. Generally
speaking, over the past 34 years I have worked out meth-
odological details for visual-memory experiments quite
thoroughly.
D.1.a. Data-Analysis Techniques

We design our experiments to yield substantial statisti-
cal power. For example, in picture-memory experiments,
hit probability typically has a standard error of around
0.012. Therefore, quantitative theories can be rejected
quite easily and conversely, persuasive confirmation of a
quantitative theory requires a very good fit of the theory.

Different paradigms demand different analysis tech-
niques. Sometimes, we use standard techniques in which
mean performance values are statistically compared across
experimental conditions. Other times we emphasize hori-
zontal comparisons of psychophysical functions (e.g.,
performance as a function of duration or distance) in or-
der to test for additive or multiplicative effects. Here we
have two, non-mutually-exclusive options. First, as de-
scribed, we can collect data with sufficient statistical power
to distinguish unambiguously among the relevant com-
peting hypotheses. Second, performance curves can often
be fit by a standard function (e.g., a cumulative normal, as
in Loftus, et al., 1986, or an exponential as in Busey &
Loftus, 1994). Here, the function is fit to individual subject
data, and statistical analyses are performed on the esti-
mated function parameters.
D.1.b. Theory-Fitting Techniques

We have several techniques for fitting our theories to
data. When the theory is capable of predicting exact ob-
served performance, we use optimization routines (of
which MATLAB has many) to find parameter values that
minimize some criterion statistic, such as observed-
predicted root mean square error over conditions. When
the theory is capable of predicting only some unobserv-
able construct presumed to be monotonically related to
observed performance, we use analogous procedures to
find the parameter values that maximize some appropriate
non-parametric correlation coefficient between observed
performance and the predicted measure.

D.2. Stimulus Contrast
Although there are many ways in which visual stimuli

may be degraded, a large body of research indicates that
stimulus contrast, defined as some variant of the ratio of
foreground to background luminance, is critical in deter-
mining the fundamental response of the visual system.
This effect can be seen in the cat’s visual system, wherein
retinal ganglion cells are considerably more sensitive to
stimulus contrast than to absolute light levels (e.g., Wan-
dell, 1995, pp. 139). The effect continues up through ex-
periments investigating human sensitivity wherein contrast
sensitivity varies over a range of approximately 20:1 as
absolute light level varies over a range of more than
1,000,000:1 (e.g., Van Nes & Bouman, 1967).

Stimulus contrast is often the key experimental meas-
ure in vision science. This is largely because unlike stimu-
lus intensity where linearity fails, a high degree of linearity
is observed in neuronal responses when intensity is fixed
and stimulus contrast is treated as the input variable. This
linearity extends beyond physiology to perception. For

example, Ginsburg, Cannon, and Nelson (1980) demon-
strated that perceived contrast is a linear function of
stimulus contrast for sine-wave gratings, and Olds and
Engel (1998) showed that object identification is predicted
well by the SRIA Theory, within whose context responses
to different spatial-frequency components of independ-
ently varying contrasts are simply summed to determine
the overall response.

As described earlier, while there exists a large body of
research investigating contrast effects on low-level sensory
processes, there has been considerably less research inves-
tigating contrast effects on higher-level cognitive proc-
esses. Recent work in our lab has been aimed at determin-
ing whether some of the fundamental laws that character-
ize simple stimuli in simple situations (e.g., detection of a
monochromatic light patch) may be extended to more
complex stimuli in more complex situations (e.g., face
recognition). A guiding meta-hypothesis is that low-level
contrast effects, which are generally well understood, un-
derlie higher-level effects in ways that are amenable to
precise theory and to unambiguous empirical test.

We have used two kinds of stimuli. Biluminant stimuli,
characterized by having only two luminance levels, consist
of a dark stimulus on a lighter background, e.g., digits,
random forms, or line drawings. Here a single contrast
value can be defined such as the ratio of foreground-
minus-background luminance difference to background
luminance. Such stimuli, while limited, are useful, in that
strong quantitative theories, such the SRIA theory, can be
tested. When the SRIA theory provides satisfactory fits to
the data, the parameters have meaningful values (see Table
1) which allow specific, quantitative interpretations of
various effects (see, e.g., Busey & Loftus, 1998), and con-
stitutes confirmation of the underlying Bloch’s-Law na-
ture of the duration-contrast relation, as discussed on p. 20
above.

In other experiments, we use multiluminant stim-
uli—typically natural images, whose luminance composi-
tion encompasses the entire grayscale range (see, e.g., [14,
A9, Figure 11, p. 18]). As described by Peli (1990) the
definition of contrast is somewhat arbitrary in grayscale
pictures. Commonly used is mean contrast energy, the av-
erage squared deviation between individual-pixel and
mean luminance. Another definition offered by Peli is
band-limited contrast which is average contrast energy
computed at successive, nonoverlapping spatial frequency
bands.
D.2.a. Testing for Identical Contrast Effects

We have entertained the proposition that stimulus con-
trast is a low-level—what we have termed a fundamen-
tal—variable, whose effect on perceptual processing is en-
tirely automatic. By this I mean that contrast effects are
immune to conscious influence and are the same for dif-
ferent levels of any manipulation. So far we have con-
firmed this proposition for a number of such manipula-
tions. In [12, A7] for example, we confirm it for different
task difficulty levels, different stimulus-task combinations
(immediate digit recall versus random-form recognition),
different stimulus types (e.g., unfamiliar versus celebrity
faces), and different testing procedures (prospective con-
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2 Pilot testing indicates that 3-5 year old children view this as a
wildly enjoyable computer game and beg to play it incessantly.
Also, by tailoring the particular 10 stimuli used for a particular child
to the known vocabulary of that very child, very young, just post-
verbal children can be tested in the paradigm.

fidence at study versus retrospective confidence at recog-
nition).

To carry out these tests, we have used a visual-memory
paradigm in which contrast and duration are varied at
study along with some other focal variable (e.g., stimulus-
task combination—digit recall versus random-form rec-
ognition). The equal-contrast-effect proposition is then
tested using state-trace analysis, as described in Section
B.2.e.ii.(d), wherein performance for one focal-variable
level (digit recall in this example) is plotted against per-
formance for the other level (form recognition) with dif-
ferent scatterplot points corresponding to the different
duration-contrast conditions. The equal-contrast-effect
proposition implies this scatterplot to be monotonic, as in
Figure 2C, p. 24 above; see [12, A7, Figure 4C, p. 208] for
the actual plot. A non-monotonic scatterplot implies re-
jection of the equal-contrast-effect proposition, and the
exact nature of the nonmonotonicity reveals the nature of
the different contrast effects on one focal-variable level
versus the other—just as in Figure 2E above, the relation of
the inverted to the upright data points implies a FIE, and
specifically a FIE wherein inversion is more detrimental to
face processing than to house processing.

D.2.a.i. Developmental Effects. McKee’s First Law of
child development is: “ Everything gets better over age.”
Generally, this is true in our work along with everyone
else’s. In [11, A6], for instance, we report that ability to
recognize degraded objects increases dramatically from
ages 3 to 5.

However, if contrast is a fundamental variable, then a
plausible hypothesis is that its effect is age-invariant. Most
fundamental visual processes are relatively fixed at an
early age, e.g., approximately 6 months for color vision
and 3-5 years for visual acuity (see Teller, 1997, for a
summary). These properties are, however, fixed in ways
that may be characterized simply by settling at specific,
adult values of continuous-valued parameters—e.g., pa-
rameters corresponding to some contrast-sensitivity func-
tion (CSF) in the case of acuity, or to cone-receptor distri-
butions or cone response functions in the case of color
vision. A plausible hypothesis about contrast however, is
that it is fundamentally fixed in a qualitative manner, i.e.,
by Bloch’s Law: As discussed on p. 20 above, our research
is consistent with the possibility that, fundamentally, the
ratio of two processing rates corresponding to two con-
trasts is equal to the ratio of the contrasts themselves. If
contrast truly operates in such a Bloch’s-Law manner, then
there is no obvious route by which it would develop from
some other state—which leads to the hypothesis that it is
fixed at a very early age, perhaps at birth.

In conjunction with Davida Teller and Andy Meltzoff,
I plant to investigate these issues. I have developed and
piloted methodology to investigate contrast effects in
young children. The paradigm is logically equivalent to a
digit-recall paradigm that we have successfully used in
many venues (e.g., Busey & Loftus, 1994; [10, A5]) but
that uses kid-friendly stimuli: Ten line drawings (an ele-
phant, a cat, a kite, etc.) are used in place of the 10 digits.
On each of a number of trials, a single object is presented
for a specified duration and contrast level, and the child

attempts to name it. The experimenter then types in a sin-
gle letter ( “ e ” for elephant, “ k ” for kite, etc.). Brief but
entertaining mini-events, e.g., one face morphing into an-
other, serve as rewards for correct responses. Such data will
be collected for several age ranges—as a start, for 3-year
olds and adults. We will test relatively small numbers of
observers, with large amounts of data per kid, in order to
estimate effects for individual children2.

As described, we test the equal-contrast-effect proposi-
tion using state-trace analysis (see Figure 2, p. 24 above;
substitute children/adults for houses/faces and high/low
contrast for upright/inverted). Given what we have discov-
ered about contrast effects we anticipate that such effects
will be identical for children and adults, even though we
expect absolute performance to differ considerably. Any
other outcome would be surprising but interesting, and
would trigger a series of parametric studies whose designs
would depend on the exact nature of the single-dimension
theory violation. Given confirmation of a single-
dimension theory, we would be in a position to evaluate
stronger theories: multiplicative theory, the SRIA Theory,
and Bloch’s Law.

D.2.a.ii. General Familiarity/Specific Object. In past
work, I have investigated the subjective bases of picture-
recognition responses (e.g., Loftus, 1972; Loftus & Bell,
1975; Loftus & Kallman, 1979). This work has indicated
(at least) two such bases. The first basis is a specific feature
(e.g., “ I saw this picture because I remember the rocking
horse on the porch” or “ I didn’t see this picture because I
would have remembered the Volkswagen”). The second
basis is general familiarity ( “ I saw this picture because it
looks familiar” or “ I didn’t see this picture because it
looks unfamiliar”). This distinction is similar to the “ re -
member-know” distinction (see e.g., Tulving, 1985;
Gardiner, 1988). We have suggested that these two re-
sponses reflect two qualitatively different kinds of infor-
mation in visual memory; indeed the Loftus & Bell article
was entitled “Two kinds of information in picture mem-
ory .”

What is meant by “qualitatively different”? We never
directly addressed this question. Traditionally, one would
attempt to answer such a question using dissociation (e.g.,
Jacoby, 1991)—i.e., one would seek variables that cause
one effect for specific-feature information, and no effect
or an opposite effect for general-familiarity information,
or vice-versa. Contrast is a candidate such variable. How-
ever as Dunn & Kirsner (1988) have persuasively shown,
the logic underlying such dissociation techniques is both
logically flawed and needlessly demanding. Using state-
trace analysis we can, as we have repeatedly demonstrated,
unequivocally test whether a variable does or does not have
differential effects in different situations even when the
variable’s qualitative effect appears superficially to be the
same (e.g., compare Figures 2AB, p. 24 above with Figures
2DE). Finding identical contrast effects for the two types
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of information would add support and generality to the
equal-contrast-effect proposition. Finding different con-
trast effects would provide useful clues as to the nature of
the difference between the two information types: For in-
stance, a finding of a greater contrast effect on general-
familiarity information would suggest that general-
familiarity information is primarily visual and is thereby
influenced more contrast than is specific-feature informa-
tion which might be primarily verbal (e.g., Nelson,
Metzler, & Reed, 1974; Paivio, 1971; 1991). Such specu-
lations would then be crafted into specific, quantitative, to-
be-tested hypotheses and additional experiments.
D.2.b. Extension to Eye Fixations

Loftus (1972) showed that effects of exposure duration
on picture recognition are mediated by number of eye
fixations made on the picture at study. For instance, later
recognition is better if twelve 250-ms fixations are made
on the picture during a 3-sec study exposure than if six
500-ms fixations are made; likewise, for instance, ten fixa-
tions on a picture produced the same recognition per-
formance whether the ten fixations averaged 300 ms per
fixation during a 3-sec presentation, or 500 ms per fixa-
tion during a 5-sec presentation.

D.2.b.i. Quantum Theory. This result can be accounted
for by the proposition that a given fixation is designed to
acquire some “quantum” of information from the pic-
ture. For many reasons, different such quanta require dif-
ferent amounts of time to acquire, but an acquired quan-
tum’s contribution to subsequent recognition doesn’t de-
pend on how long it took to acquire it. If this is true, then
one could experimentally manipulate eye-fixation dura-
tion, keeping numbers of fixations constant, without an
attendant effect on subsequent memory performance.

D.2.b.i.(a). Contrast, Eye Fixations and Visual Mem-
ory. David Irwin and I plan a project involving eye move-
ments and visual memory. The first experimental series
will involve investigations of stimulus contrast as a means
of manipulating eye fixation duration. Prior work has
shown that eye-fixation duration is monotonically related
to stimulus contrast in a free-viewing situation (Loftus, et
al., 1990) and that, as discussed at length above, duration
and contrast interact multiplicatively in a picture-
recognition paradigm. In an initial experiment, we will pull
these results together. We show pictures in a recognition
procedure. During the study phase, contrast is manipu-
lated and eye movements are recorded. A stimulus picture
vanishes immediately after some number of fixations, e.g.,
1, 2, or 3 have been made. The most general predictions
are that (a) fixation durations will be longer for low-
contrast than for high-contrast pictures, but that (b) recog-
nition performance will depend not on contrast or total
duration, but only on number of fixations. A stronger,
multiplicative, prediction is that reducing contrast by a
given amount will reduce all fixation durations by the
same factor. Yet stronger is a Bloch’s-Law prediction:
Lowering contrast by some factor, rc (see Section B.2.a.i
above), will increase eye-fixation durations by the same
factor rc. In either case, the factor by which duration in-
creases as a result of lowering contrast can be compared
with the rP-value obtained in non-eye-fixation experi-

ments wherein duration is manipulated within sub-eye-
fixation-duration levels, and contrast is manipulated.

D.2.b.i.(b). Visual versus non-Visual Processing
within an Eye Fixation. It is likely that the Bloch’s Law
prediction will fail for (at least) the following reason: Con-
trast would presumably affect only visual processing
within a fixation. However, not all processing within an eye
fixation is necessarily visual. For instance, in reading, there
is strong evidence that eye fixations are used partly for vis-
ual information acquisition and partly for non-visual
processing, e.g., integrating current information with in-
formation acquired over previous eye fixations, or verbal
encoding of acquired information (see, for example, Just
& Carpenter, 1975, for a theoretical account of this propo-
sition, and Rayner, Inhoff, Morrison, Slowiaczek, &
Bertera, 1981, for an empirical demonstration of it).

Suppose we wish to inquire: “During what proportion
of the fixation does such purely visual processing occur?”
We can start with the following assumptions. First, some
percentage, x, of each eye fixation duration entails per-
ceptual processing. Second, lowering contrast by factor rC
slows down perceptual processing by the same factor rC.
Third, contrast does not affect the duration of non-
perceptual processing. Given these assumptions, it can be
shown that the ratio of low- to high-contrast fixation dura-
tions is, rL/H=dL/dH=x(rC-1)+1. Such a determination pro-
vides precise information about processing within eye
fixations that serves as a basis for quantitative theory.
D.2.c. Representation of Duration and Contrast in Long-
Term Memory

At any given instant, a person is being bombarded with
a vast amount of environmental information, only a tiny
fraction of which is needed for the task at hand. Accord-
ingly, as has been widely acknowledged, a fundamental
problem faced by the sensory-perceptual-cognitive sys-
tem is that of acquiring and retaining the small portion of
incoming information that is needed, while ignoring
and/or discarding the rest that is not. There are numerous
ways of solving this problem, e.g., responding to only a
tiny portion of the electromagnetic spectrum (viz., the visi-
ble spectrum), reducing the dimensionality of environ-
mental information (as with color metamers), focusing
attention, categorizing, and selectively forgetting.

 Our past duration x contrast experiments are relevant
to this issue. As described earlier, we have conducted nu-
merous experiments involving a wide variety of stimulus
categories, whose results can be accounted for by assum-
ing that visual recognition performance is based on a sin-
gle dimension that results from a (multiplicative) combi-
nation of target contrast and duration. An “ information-
loss hypothesis,” consistent with this finding, is that indi-
vidual contrast and duration values are not stored as part of
a picture’s long-term memory representation. Such a per-
ceptual strategy makes sense; As I have just argued the
brain is invested in conserving resources by ignoring
and/or jettisoning information that is rarely needed.

Nevertheless, some recent data collected by Danny
Bernstein, Janice Chen, and me [18] suggest that at least un-
der some circumstances, duration and contrast informa-
tion is retained in memory. We carried out three experi-
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ments, each with two phases. In the first, inspection, phase,
pictures were shown in one of four conditions generated
by combining two contrasts (low/high) with two durations
(short/long). The specific contrast and duration values
were selected such that, based on past data, recognition
performance would be approximately equal for the low-
contrast x long duration (cD) and the high-contrast x
short-duration (Cd) conditions. In the second, surprise
testing phase, we showed all pictures, and asked observers
to identify either the original contrast level, or the original
duration level. Our hypothesis was that both contrast and
duration estimates would be based on the same single di-
mension that we had previously supposed to determine
recognition performance. The prediction of this hypothe-
sis is that contrast judgments and duration judgments be
ordered in the same way across the four conditions.

Surprisingly, the results—an example of which is
shown in Figure 4—disconfirmed this hypothesis: The
scatterplot is nonmonotonic. Per the logic presented
above, it cannot be true that, at the time of inspection, du-
ration and contrast combine into a single measure which
then determines both duration and contrast judgments. To
see why this is so, consider the Figure-4 solid and dashed
lines which represent plausible continua of points from
hypothetical multiple contrast levels. Two vertically
aligned points as indicated, for example, by the vertical
arrow, represent two conditions—one longer duration x
lower contrast, and the other shorter duration x longer
contrast—that are judged to have been of the same con-
trast. If both duration and contrast judgments for these two
conditions were determined by a single “Strength” value,
as assumed by the information-loss hypothesis, then these
two conditions would be inferred to have the same

Strength which, in turn, would cause them have the same
duration judgments. But they do not: Instead, the longer-
duration condition is in fact judged to be longer. In short,
the data indicate that separate representations of stimulus
duration and stimulus contrast are maintained from the
inspection to the test phase of the experiment. The data
also indicate however, that these dimensions are not ac-
cessed independently: Given constant duration, increas-
ing contrast leads to an increase in duration judgment, and
vice-versa; for example duration as well as contrast is
judged to be higher in Condition Cd compared to cd and
in Condition CD compared to cD.

These data provide numerous clues as to the nature of
duration and contrast representation in long-term mem-
ory. In [18] we are developing formal models of the dura-
tion/contrast/recognition relations. Several follow-up ex-
periments are required. First, our observers, who were not
expecting a recognition test, may have processed the stim-
uli differently during inspection than in past experiments
when they were expecting a recognition test. The experi-
ment therefore needs to be redone with inclusion of an ex-
pected recognition test. With such a design, the single-
dimension theory is that all three dependent vari-
ables—duration judgment, contrast judgment, and recog-
nition performance—are based on a single dimension, and
therefore that all three state-trace plots, each plotting one
dependent variable against the other, would be monotonic.
Departures from monotonicity would confirm or discon-
firm various theories of what kinds of dimensional infor-
mation are stored in memory and used as a basis for the
various kinds of performance. Subsequent experiments
would be designed to determine why and under what cir-
cumstances this seemingly wasteful strategy is used.
D.2.d. Theoretical Work with Multiluminant Stimuli

For reasons described in [12, A7, pp. 225-227], it ap-
pears that the SRIA theory is incapable of describing data
based on multiluminant stimuli, i.e., normal grayscale
scenes. This makes sense. The SRIA theory includes the
simplifying assumption that, associated with a stimulus is a
single contrast value which scales a single sensory-
response function. With multiluminant stimuli there is no
single contrast value. Instead, there are multiple edges at
varying contrast levels which define features that have
varying degrees of importance, relevance, and roles in en-
coding the picture for later recognition. Moreover, as
contrast is reduced, some features that are low-contrast to
begin with fall below threshold, while other higher-
contrast features will not. It is possible that by (1) analyz-
ing each individual picture with respect to its various inter-
nal contrast levels, (2) applying the SRIA theory simulta-
neously to these various levels, (3) assessing the roles of the
features corresponding to the various edges defined by
these varying contrast levels, and (4) using the results to
generate measures of “information” that can be sensibly
related to the dependent variable, the SRIA theory could
be successfully applied to multiluminant stimuli on a
picture-by-picture basis. As is apparent from this brief
discussion, we are only at the starting phase of developing
such a theory and determining ways of testing it, but this
work will form a continuous background activity during
the proposed funding period.
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Figure 4. Bernstein, Chen, & Loftus data: Each inspection-
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duration and long-duration conditions. Error bars are standard
errors.
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D.3. Spatial Frequencies and
Global-to-Local Processing

Research reported in [10, A5] was designed to distin-
guish among three theories—independence theories,
global-precedence theories, and global-to-local interactive
theories—of the relation between global and local proc-
esses in a somewhat restricted situation: immediate object
identification and digit recall. The results of this work dis-
confirmed independence and interactive theories. Ac-
cordingly, we modified the SRIA Theory to change it from
an independence theory to a global-precedence theory:
Global information acquisition precedes local information
acquisition, but the two kinds of information still combine
additively.

In particular, the original SRIA Theory, applied to this
paradigm by Olds and Engel (1998), posited separate sen-
sory-response functions corresponding to global and local
information. The overall sensory-response function was
then the weighted sum of the global and local sensory-
response functions with weights wL and wH=1-wL (see Ta-
ble 1, p. 27 above). In our modification, which entailed no
increase in the number of free parameters, the weights were
allowed to vary over time, t, since stimulus onset; specifi-
cally wL(t)=e–kt, and wH(t)=1–wL(t). This adjustment im-
plied a global-precedence theory wherein global informa-
tion acquisition decreased over stimulus presence com-
pared to local information acquisition. This modified the-
ory afforded excellent fits to the two experiments reported
in [10, A5; see Figure 4, p. 111] and to three experiments
reported by Olds and Engel (1998).
D.3.a. Distinguishing Among Global-to-Local Theories
with More Complex Stimuli

Disconfirmation of an interactive theory was a surprise
both to Olds and Engel (1998) and to Harley and me [10,
A5]. Sanocki (1993), in providing a compelling rationale
for global-local interactions, reiterates the oft-noted fact
that objects in the world can appear in an infinitude of ori-
entations, sizes, shapes, colors, etc., and underscores the
obvious implication: “ I f during object identification, the
perceptual system considered such factors for an uncon-
strained set of alternatives, the enormous number of com-
binations of stimulus features and feature-object map-
pings would create a combinatorial explosion” (p. 878).
Sanocki notes that an obvious means of reducing what
would be an otherwise impossible information-processing
task is to use early information to constrain the interpreta-
tion of later information. Sanocki reports considerable
evidence favoring this proposition.

As noted, both Olds and Engel’s and our data involved
quite simple stimuli—digits and objects—which may not
be quite so prone to the kind of cataclysmic informational
explosion that Sanocki described. I propose a series of ex-
periments to test the three theory classes described above,
but using complex scenes as stimuli. An example is the
following. I will use natural scenes. In quest of generaliza-
tion (and concomitantly, detection of any interesting
stimulus dependencies), variants of the experiment use
more specific stimulus classes, e.g., faces, houses, or city-
scapes. Low spatial-frequency (L), high spatial-frequency
(H) and normal (L+H) versions of each picture are created
such that, as described by Olds and Engel (1998) and [10,
A5] the (L+H) versions are the pixel-by-pixel contrast
sums of the L and H versions. Relatively high-contrast ver-
sions of each of the three picture types are shown at vary-
ing durations in picture-recognition experiments. In the
next sections, I describe formal predictions of independ-
ence, global-precedence, and interactive theories.

D.3.a.i. Independence Theories An independence the-
ory is the conjunction of the following assumptions.
1. There is a quantity called “integrated response,” i.e., a
sensory response integrated over time, which I term R, that
is proportional to stimulus duration. This is an implication
of any linear theory, such as the SRIA theory, within whose
context a response is generated by convolving the stimulus
temporal waveform with some non-negative impulse-
response function.
2. Information-acquisition rate for information types L
and H differ by a factor of k (k>0). Denote RX(d) as the
total signal issuing from some information type X Œ {L, H,
(L+H)}, following duration d.
3. Responses combine additively, i.e., the total information
from the (L+H) stimulus is RL+H(d)=RL(d)+RH(d).
4. Performance, p, e.g., percent correct recognition, or d’,
is a monotonic function of total response.

The implications of such a theory are worked through
in Table 2. Of central importance, Rows D and E provide
the log-parallel and reciprocal-additivity predictions,
which are shown in Figure 5. By the log-parallel predic-
tion, performance curves are horizontally parallel when
plotted on a log-duration axis: As indicated in Row D and
Figure 5A, the separations between the L and H, the L and
L+H and H and L+H curves are ln(k), ln(k+1), and
[ln(k+1)-ln(k)] respectively. By the reciprocal additivity
prediction, the L and H curves add horizontally to the L+H
curve when plotted on a 1/d axis: As indicated in Table 2,
Row E and in Figure 5B, the duration reciprocal required

Table 2. Implications of an additive independence theory.
Stimulus contains…
Information L Information H Information L+H

A) Information-Acquisition Rate r(t) kr(t) (k+1)r(t)
B) Total signal at duration d R(d) kR(d) (k+1)R(d)
C) Required duration for signal level R0 dL = d0 dH = d0/k dL+H = d0/(k+1)
D) ln (required duration for signal level R0) ln(d0) ln(d0) - ln(k) ln(d0) - ln(k+1)
E) Reciprocal of required duration for signal level R0 1/d0 k/d0 (1+k)/d0 = 1/d0+k/d0= 1/d0+ k/d0

Note: Response R0 is assumed to imply performance p0 = m(R0) where m is monotonic. Therefore all rules for determining levels of R0 are, ipso facto, rules for
determining levels of p0.
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to achieve performance p0 given stimulus type L+H is
1/d0+k/d0, i.e., the sum of the corresponding required du-
ration reciprocals given stimulus types L and H alone.

D.3.a.ii. Global-Precedence Theories. By a global-
precedence theory, acquisition of global information pre-
cedes acquisition of local information, but the two infor-
mation types still add to produce total information. The
prediction becomes: Log-parallelism fails but reciprocal
additivity still holds. Space limitations preclude here a
mathematical proof of this prediction (or of the interac-
tive-theory predictions described next). Two intuitions
that may aid the reader are these. First, consider curves cor-
responding to L- and H-stimuli only. A global-precedence
theory allows a standard crossover interaction between
stimulus-type and stimulus duration: At short durations, L-
stimulus performance can exceed H-stimulus perform-
ance, and vice versa at longer durations (see [10, A5, Fig-
ure 4, p. 111], for an example). A standard (vertical)
crossover interaction implies a horizontal crossover inter-
action as well, which is a fortiori inconsistent with hori-
zontal parallelness. Second, reciprocal additivity in terms
of duration is a signature of additivity in terms of inte-
grated signal, and L and H information are still additive by
a global-precedence theory.

D.3.a.iii. Interactive Theories By an interactive theory,
L and H information are no longer additive: The more L
information available, the greater the contribution of the H
information. This means that reciprocal additivity will fail.
Specifically there should be superadditivity: The L+H
curve therefore falls to the right of the independence pre-

diction shown in Figure 5B. Should such superadditivity
be observed, its exact pattern will imply constraints on vi-
able quantitative theories.
 D.3.b. Experiments to Distinguish Among the Theories

This theoretical machinery forms the foundation for
numerous experiments to distinguish amongst the three
global-to-local theories. Here are two examples.

D.3.b.i. Natural Pictures. As a start we will simply repli-
cate experiments reported by Olds and Engel (1998) and
by [10, A5], using natural pictures rather than objects or
digits. Here, three types of pictures, L, H, and (L+H), are
created. On each study trial of a recognition paradigm, a
target picture is shown in a condition defined by combin-
ing spatial-frequency type with stimulus duration. Recog-
nition memory is then measured. Predictions of the inde-
pendence theory are as shown in Figure 5, and specific de-
partures from the independence predictions correspond to
predictions of the global-precedence and interactive theo-
ries, as just described.

D.3.b.ii. Priming with LSF Information. Sanocki
(2001) provided strong evidence for interactive theories
using a paradigm in which a target picture (a simple line
drawing of a house or a vehicle) was presented to an ob-
server who was then required to distinguish the target from
a same-shape distracter. Either just prior to or just follow-
ing target presentation, there briefly appeared one of two
kinds of prime. Large-scale primes depicted the global
outline of the target while small-scale primes depicted
small interior details of the target. In the most compelling
of Sanocki’s (2001) experiments, the large-scale prime
provided no information that would allow the observer to
distinguish the target from the distracter. Nevertheless the
large-scale prime, when presented prior to the target, im-
proved performance. Sanocki concluded that the large-
scale prime provided a perceptual framework within which
target information could be interpreted.

While persuasive as to the validity of an interactive the-
ory, Sanocki’s data are insufficient for testing quantitative
predictions. I propose building on Sanocki’s work as fol-
lows. Complete, i.e., (L+H) target pictures are shown at
varying durations in the study phase of a recognition pro-
cedure. Each picture is preceded either by a LSF version of
the same picture, a HSF version, or a row of X’s (no
prime). Performance curves are plotted for the three
priming conditions. Of central interest is the relation be-
tween the LSF (“global”) prime and the no-prime condi-
tions. By an interactive theory, the LSF prime speeds up
processing, implying the LSF-primed and unprimed
curves to diverge horizontally; that is, the (horizontally
compared) slope of the LSF-primed curve would exceed
the slope of the unprimed curve. The HSF primed curves,
in contrast, are predicted to be horizontally parallel to the
no-prime curve. If these predictions are not met, I will en-
tertain the possibility that “global” and “ local” as de-
fined by LSF and HSF stimuli do not trigger the same per-
ceptual processes as do Sanocki’s “large-scale” and
“small-scale” primes. I would then repeat the experiment
using stimuli similar or identical to Sanocki’s.
D.3.c. LSF-HSF Composite Experiments

Schyns and his colleagues have reported a variety of re-
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3 Two procedural notes: First, care would have to be taken that con-
trast energy is the same for the individual components of the com-
posites and the noncomposites. Second any stimulus class, i.e., not
necessarily celebrity pictures could be used in this experiment.

sults based on composite stimuli similar to those in Figure
6: a LSF version of one stimulus superimposed on a HSF
version of another (please follow instructions in the cap-
tion). In particular, Schyns and Oliva (1994) showed ob-
servers composite scenes either at a short duration (30 ms)
or at a long duration (150 ms). At the short duration, ob-
servers tended to perceive the LSF scene, while at the
longer duration they tended to perceive the HSF scene.
Thus the data confirmed global-precedence theories: Low
spatial-frequency information is acquired first, followed
by high spatial-frequency information.

This elegant paradigm provides a foundation for pro-
posed parametric experiments in which composite celeb-
rities are shown for durations ranging from short (say 17
ms) to long (say 200 ms). Many variants of such an ex-
periment can be run. Two of them are these.

D.3.c.i. Immediate Celebrity Recognition. After each
display, the observer is given a 2AFC test as to whom they
saw (Russell Crowe/Cameron Diaz in the Figure-6 exam-
ple). A global-precedence theory predicts that, with in-
creasing duration, a greater proportion of choices be of the
HSF celebrity. Confirmation of this prediction would both
replicate the Oliva & Schyns data, and would provide a pa-
rametric, empirical basis for fitting quantitative theories
such as the modified SRIA Theory.

D.3.c.ii. Additivity of LSF and HSF Information from
Composites? A basic finding from vision science is that
simple stimuli—sine-wave gratings—of very different
spatial frequencies are processed independently (e.g.,
Blakemore & Campbell, 1969; Campbell & Robson,
196l). When the stimuli are complex pictures and, as is
normally true, the different spatial frequencies come from
the same picture, it is reasonable to expect that such inde-
pendence will fail: Based on past data, and for theoretical
reasons elucidated by Sanocki and others, one expects that
when LSF, HSF, and (LSF+HSF) versions of pictures are
compared, one would confirm an interactive—in particu-
lar a superadditive—theory.

Suppose, however that LSF and HSF information were
presented simultaneously (as is usual) but from different

celebrities, i.e., from composites. Would independence
hold then? To address this question, composites are shown
along with both LSF and HSF noncomposite pictures in
the study phase of a recognition procedure: For instance,
ten composites (which contain, of course, two celebrities
per composite) are shown, intermixed with ten LSF non-
composites and 10 HSF noncomposites for a total of 40
different individual target celebrities3. All pictures are then
tested in a later recognition procedure comprising 80 pic-
tures—normal versions of all 40 target pictures, plus 40
distracters. The independence prediction is that perform-
ance for a given target picture is the same whether the tar-
get appeared alone or as part of a composite. Confirmation
of the independence theory would provide a remarkable
link between low-level and higher-level visual perform-
ance, as it would indicate that a particular kind of spatial-
frequency information can be gotten as easily from a pic-
ture that is part of a composite as from the picture shown
by itself. One can, however, think of many reasons why the
independence theory might fail: For instance, unlike the
simple stimuli in the low-level vision experiments, the two
pictures in a composite compete for the attention required
for storing them in long-term memory, thereby implying
sub-additivity. In any event, as already discussed, any par-
ticular manner in which the independence theory failed
would provide useful information as to how LSF and HSF
information is acquired and processed.
D.3.d. Gist Detection Versus Recognition

Numerous researchers have investigated the relation
between gist identification of a picture and later recogni-
tion performance (e.g., Boyce & Pollatsek, 1992; Potter,
1975; 1976; Intraub, 1980; 1981). However, few experi-
ments have specifically investigated the degree to which
the same or different information underlies the two tasks.

A reasonable hypothesis is that LSF information is
more important for gist acquisition while HSF information
is more important for later recognition (particularly when
the stimuli are relatively similar to one another; see Loftus,
Nelson, & Kallman, 1983). An experiment designed to
investigate this issue is as follows. Stimuli are natural pic-
tures drawn from various perceptually distinct categories
(say 12 categories, such as seascapes, kitchens, skylines
and so on with, say 24 instances of each category). LSF
and HSF versions of each picture are prepared. In the
study phase of a recognition experiment, half the members
of each category are shown for varying durations (say 6
durations) at each of the two spatial frequencies. Following
each study trial, gist knowledge is tested. In the later test
phase, the intact versions of all pictures are tested in a
2AFC recognition test wherein each test trial entails a target
picture plus a previously unseen member of the target’s
category.

We can begin with the hypothesis that HSF and LSF in-
formation are equally useful for gist perception and rec-
ognition. To test this hypothesis, we construct a scatterplot
of recognition performance against gist performance over

Figure 6. Composite Celebrities: From close up, with nor-
mal vision, you see the HSF version of each picture: Russell
Crowe, left and Cameron Diaz, right. From across the room, or
if you can blur the image, you see the LSF versions, and the
celebrities reverse positions.
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4 We are now using truncated cosines as bases of low-pass, band-
pass and high-pass filters (see Peli, 1990). A low-pass cosine filter
has a similar shape, and is governed by the same parameters, F0 and
F1 as the parabolic filter but, for technical reasons, benefits from
not having the parabolic filter’s discontinuity at F1.

all 6 (durations) x 2 (spatial frequencies) = 12 study con-
ditions, analogous to Figures 2CF (p. 24 above). If HSF
and LSF information are equally important for the two
tasks, the scatterplot points will be monotonic. If not, the
specific nature of the monotonicity failure provides in-
formation about the nature of the relative differential ef-
fects. For instance, if LSF information is indeed more im-
portant for gist acquisition, then LSF points will be dis-
placed to the right compared to HSF points: That is, con-
sidering two duration x SF conditions that produce equal
recognition performance, the LSF condition will produce
better gist performance.
D.3.e. Spatial Frequency and Contrast

Using similar logic, one can ask: Does contrast affect
high and low spatial frequency channels in the same way?
The pertinent experiment entails a 6 (exposure duration) x
2 (contrast) x 2 (high/low spatial frequency) design. Dif-
ferent versions of the experiment would examine gist
identification and long-term recognition. The data-
analysis logic is analogous to that described in the previous
paragraph, but now HSF performance is plotted against
LSF performance over the 12 duration x contrast condi-
tions: A monotonic state-trace plot implies identical con-
trast effects for both kinds of spatial-frequency informa-
tion. As discussed in Section D.2 above, the default pre-
diction would be of equal contrast effects for both HSF
and LSF information types. Any specific failure of this
prediction would provide useful clues about how HSF and
LSF information differentially affect various kinds of vis-
ual-memory tasks.

D.4. Face Processing
As noted earlier, face processing is increasingly as-

suming center stage in my research. In previous sections of
this proposal, I have described several research areas in
which face processing is at least tangentially involved. In
this section, I describe several proposed projects wherein
face processing is the central topic.
D.4.a. Face Processing and Spatial Frequencies

In Section B.2.a.ii.(b), I described experiments in
which observer-face distance was simulated by low-pass
filtering the face. Here I describe details of how that was
done, and propose additional experiments.

In Section B.2.a.ii.(b), I demonstrated that the equation
relating filtering, defined in terms of f in c/face to dis-
tance, D, was M(f) = M[Fx(43/D)] where F is spatial fre-
quency in terms of c/deg, and M is a filter. To use this
equation, the function M must be specified. For reasons
described in [15, A10] it is reasonable to suppose M is low-
pass. There are many ways of characterizing a low-pass
filter; somewhat arbitrarily, in [15, A10] we chose a filter
that passes spatial frequencies perfectly (i.e., M(F) = 1.0)
up to a rolloff frequency of F0 c/deg, drops parabolically
reaching zero at a cutoff frequency of F1 c/deg, and then
remains at zero for all F > F1. The exact equations are pro-
vided in [15, A10, pp. 10-11]4. There are two free pa-

rameters, F0 and F1. For reasons irrelevant to this proposal,
F0 was set to F1/3. With these constraints, specifying F1
specifies the entire filter. For expositional simplicity, I
characterize the filter by F1, or f1. The crucial prediction
for any performance measure, p, thus becomes:

p(1/f1) = p[D/(43F1)] (8)
That is, a face D ft away should produce performance
equivalent to a face filtered by f1, as defined by Equation 8.
Given empirical confirmation of Equation 8, one can
equate the observed proportionality constant relating (1/f1)
and D to 1/(43F1) which permits estimation of F1, and by
extension the entire human modulation-transfer function
(MTF) that obtains in this situation.

In [15, A10] we report two experimental paradigms to
test the Equation-8 prediction. In each, distance, D, was
implemented not by varying the literal observer-image
distance, but by sizing a face such that its visual angle
equaled that of a real face D ft away. In Experiment 1, a test
face, shown on a 10-ft distant, high-resolution monitor,
was appropriately sized such that its visual angle equaled
that of a real face shown at one of 6 distances ranging from
20 to 300 ft. The observer’s task was to adjust the degree
of filtering of a full-sized comparison face, shown on a
second, near monitor so as to match the informational
content of the test face. On each trial, the filter, f1, of the
matching comparison face was recorded. As shown in Fig-
ure 7A (next page), the measured 1/f1 was almost perfectly
proportional to D, and F1 was estimated to be 42 c/deg.

In Experiments 2-4, we asked observers to identify
well-known celebrity faces. Each face began very small
(mimicking D ≈ 500 ft) or very filtered (f1 ≈ 4 c/face) and
then gradually either enlarged or deblurred. On each trial,
we recorded either the value of D (for enlarging trials) or
of f1 (for deblurring trials) at which the celebrity was rec-
ognized. In each of Experiments 2-4, some dichotomous
cognitive variable—i.e., a variable that affected recogni-
tion performance but not the physical nature of the stim-
uli—was manipulated. For example, in Experiment 2, each
to-be-recognized celebrity had either been previously
primed with the celebrity’s name, or had not been primed.
The results are shown in Figure 7B (see caption for expla-
nation). We again observed that (1/f1) was almost perfectly
proportional to D: The estimated proportionality constant
of 1,290 ft/(c/face) was invariant over cognitive-variable
levels and across different performance levels. The esti-
mated F1 values ranged from 25-30 c/deg across Experi-
ments 2-4, i.e., they were somewhat less than the F1 = 42
c/deg value estimated in Experiment 1.

D.4.a.i. Follow-up Experiments. Accurate knowledge
of the suprathreshold human MTF sought in these ex-
periments would be valuable: It is a function central to eve-
ryday visual processing, analogous to the much-studied
CSF that characterizes the visual system’s threshold re-
sponse to different spatial frequencies. The most parsimo-
nious hypothesis is that the human MTF is a unitary entity
whose form could be estimated in any relevant task
wherein the physical configuration (i.e., contrast level, lu-
minance level, degree of motion, retinal position, etc.) is
held constant. A comparison of [15, A10] Experiment 1
with Experiments 2-4 suggests, as just sketched, that this is



II Principal Investigator/Program Director (Last, first, middle):  Loftus, Geoffrey R.

PHS 398/2590 (Rev. 05/01) Page 38 Continuation Format Page

not true: The estimated F1 value was approximately 42
c/deg in Experiment 1 (matching) but around 30 c/deg in
Experiments 2-4 (identification). I propose several ex-
periments to address this discrepancy in order to deter-
mine whether the pleasing hypothesis of a unitary human
MTF must truly be rejected.

D.4.a.i.(a). Removal of Confounding Variables. Ex-
periments 1 and 2-4 were run as separate experiments. The
most salient difference between them was that different
stimuli were used: 64 photos of celebrity faces in Experi-
ments 2-4, but 4 computer-generated “identikit” faces in
Experiment 1 (see [15, A10, Figure 6, p. 12]). The first
follow-up experiment will replicate our data using the
same (celebrity) pictures in both the identification and the
matching paradigms: Observers first perform the celebrity
identification task, and then perform the matching task
with the same celebrities that they had just seen. Appropri-
ate control experiments, in which matching-identification
task order is manipulated with different celebrities in the
two tasks, will be run to ensure that there are no order ef-
fects (based on pilot work I don’t expect any). Two related
questions will be addressed: First, is the higher F1 estimate
in the matching compared to the identification task repli-
cated? Second to what degree are the F1 estimates from the
two tasks correlated over observers? A positive correlation
would be expected if the same filter underlies the two tasks,
but leads to different F1 estimates because of some kind of
systematic bias engaged in by observers in one or both of
the two tasks.

 D.4.a.i.(b). Faces Versus “Eye Charts.” We noticed
that observers in the matching experiment tended to con-
centrate on high spatial-frequency details. For instance,
they might look at the test face, observe that they could just
barely perceive that two strands of hair were distinct, then
choose the comparison face for which the same was true.
That is, observers in the matching task appeared to treat the

faces (which were, as noted, computer generated and
somewhat unrealistic to begin with) as a form of an eye
chart, that didn’t require any actual face processing. Such
could not be true in the identification experiments, where
face identification was at the core of the task. Perhaps this
accounted for the difference in the estimated MTF’s.

Numerous experiments could be carried out to test the
proposition that the purported “specialness” of face
processing underlies the difference between the estimated
filters from the matching versus the identification task.
Here is one: The experiments just described are repeated
using non-face stimuli such as vehicles. The matching task
carries over directly. In the identification task, we ask the
observers to identify, for instance, whether a vehicle is (a) a
sedan, (b) a station wagon, (c) a SUV, or (d) a convertible.
Exactly as in [15, A10] the MTF can be estimated for both
tasks. If the estimated MTF is determined to be the same
for the two tasks, we would tentatively conclude that the
difference found in our original face experiments reflect
differences between face processing tasks (identification)
and non-face processing tasks (matching). If the same dif-
ference is found, we would conclude that some intrinsic,
non-face-related difference between the tasks is responsi-
ble for the difference in estimated MTFs.

D.4.a.ii. Encoding of unfamiliar faces for recognition.
We have carried out face-recognition experiments com-
paring familiar to unfamiliar faces. Whereas some vari-
ables, e.g., contrast, have identical effects on familiar and
unfamiliar faces ([12, A7]) , other variables, e.g., inversion
have quite different effects ([14, A9]; see Figure 2, p. 24
above). In the identification task investigating distance
effects, we needed to use familiar (celebrity) faces in order
that observers be able to perform the task. I propose ex-
periments in which either degree of filtering (f1) or dis-
tance (D) is manipulated in the study phase of an old-new
face-recognition experiment using unfamiliar faces. In
such an experiment, there is some number, e.g., 6 f1 levels
and corresponding D levels (D again defined in terms of
stimulus size). Eventual face recognition is then measured
as functions of f1 and of D. As in [15, A10] comparison of
these functions allows another estimate of the MTF, this
time as it relates to encoding of unfamiliar faces rather
than identification of familiar faces. The simplest predic-
tion would issue from the proposition that the filter under
investigation affects only the initial representation of the
stimulus, not any subsequent perceptual or cognitive proc-
essing. If so, the same estimated filter (i.e., an F1 value of
around 30 c/deg) found for celebrity identification would
also be found for encoding of unfamiliar faces. Any dif-
ferent finding would indicate a more complex configura-
tion of different filters for different kinds of eventual
processing and would be followed up on appropriately.

D.4.a.iii. Face Identification with Band-Passed Im-
ages. In many experiments, band-passed images have
been constructed to investigate the roles of different spa-
tial-frequency regions on processing of various sorts. In
one such experiment, Hayes, Morrone, and Burr (1986)
reported a face-identification task: Target faces, band-
passed at various image frequencies, were presented to ob-
servers who attempted to identify them. The filters, 1.5
octaves wide, were centered at one of five image-frequency
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Figure 7. Left panel: Experiment 1. Mean blur setting in
(1/f1) units (f1 on right-hand ordinate ) as a function of distance;
slope implies F1=42 c/deg. Right panel: Experiment 2. Propor-
tion celebrities identified as a function of degradation level. Ab-
scissa units are interpreted as distance, D, for enlarging stimuli
(circles) and as (1/f1) for deblurring stimuli (squares). The (1/f1)
units are scaled so as to bring the deblurring curves as much as
possible into alignment with the enlarging curve: The scaling
factor that accomplishes this is 1,290 ft/(c/face), which repre-
sents the theoretical proportionality constant relating D to
(1/f1). This constant, which is the same for the primed data
(open symbols) and unprimed data (solid symbols), implies
F1=30 c/deg, i.e., somewhat lower than the Experiment-1
(matching-task) estimate.
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5 Four notes: 1) Hayes et al. did not technically use an identification
task, as their observers matched each test face to one of 4, perpetu-
ally available possible targets. Processing may be different for
matching and identification tasks (see Morrison & Schyns, 2001)
so the relevance of these data may be limited. 2) Hayes et al. meas-
ured image frequency in c/face width; I have translated into c/face
height which we use in our research. 3) The distances of 2.7 and 10.8
ft were not the literal distances used in the experiment. Instead, they
are the distances corresponding to the visual angles that would be
subtended by real faces given the actual image sizes and distances
used in the experiment. 4) I have corrected the Hayes et al. data for
the 25% guessing rate.

values ranging from 4.3 to 66.5 c/face. The faces appeared
at either 2.7 or 10.8 ft from the observer, which implied
absolute spatial frequencies that differed by a factor of 4
for the two distances. As shown in Figure 8A (ignore for
the moment the Panel A theory predictions and Panels B-
D), Hayes at al. found that identification performance de-
pended strongly on image frequency composition, i.e., on
filter center frequency, but depended strongly on viewing
distance only with the highest image-frequency filter, 66.5
c/face (see Parish & Sperling, 1991, for a similar result with
letter stimuli)5.

These data can be explained by the assumptions that (1)
performance is determined by the visual system’s repre-
sentation of spatial frequency in terms of c/face and (2) the
human MTF in this situation is low-pass—it passes abso-
lute spatial frequencies perfectly up to some rolloff spatial
frequency, F0, before beginning to drop. Of importance
here is the value of F0. Suppose for the sake of argument
that F0 were 6 c/deg. Now consider one of Hayes et al.’s
lower-frequency filters, e.g., the one centered at 4.3 c/face.
For a large range of distances, all spatial frequencies that
would be affected by the distance—i.e., those greater than
F0=6 c/deg—would already have been removed by the
band-pass filter. For high-enough-frequency band-pass
filters however, high spatial frequencies would still be pre-
sent following the filtering, and the low-pass filtering ef-
fect of distance would become manifest.

To endow this general account with some quantitative
teeth, I developed a quick, back-of-the-envelope quantita-
tive incarnation of it which is shown, applied to one of the
Hayes et al. conditions—the 33.3 c/face filter x 10.8 ft—in

Figure 9. I began with a single image, of Julia Roberts
which, along with its contrast-energy spectrum (averaged
over orientations) is shown in Row 1. Row 2 incorporates
an idea, proposed by many, that there is a specific spatial-
frequency region maximally efficient for identifying
faces (see Morrison & Schyns, 2001, pp. 454-456 for a
summary). This region is implemented as the band-pass
filter in the left cell: The resulting filtered “face identifi-
cation energy”—the product of the filter and the Row-1,
original spectrum—is shown as the frequency spectrum
and resulting image in the two right cells. In Row 3 the im-
age is further filtered by the experimentally-imposed, 1.5-
octave wide filter centered at 33.3 c/face. Finally, in Row 4,
the experimentally-imposed distance (10.8 ft) entails a
further low-pass filter with parameters f0 = F0 x (43/10.8)
and f1 = F1 x (43/10.8) which diminishes the remaining
contrast energy (although only slightly; 10.8 ft isn’t all
that far). Finally, I made the (generally dubious but for the
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moment workable) assumption that proportion correct
identification is proportional to the “final contrast en-
ergy,” i.e., the area remaining under the spectral energy
function after all the filters have been applied (Figure 9,
bottom middle cell). This theory thus had four free pa-
rameters, all of which are quantitatively meaningful and
important with respect to face processing: the center and
width of the putative “face-identification frequency
band,” plus F0 and F1, the parameters of the low-pass filter
that governs size and distance effects. This theory was fit to
the Hayes et al. data which yielded the theoretical curves
shown in Figure 8A. Despite the theory’s sketchy nature,
the fit is not bad. Note, of course, that this demonstration
was based only on a single celebrity (Ms. Roberts). In
actual experiments, the predictions would be generated
for, say, 60 celebrities, and the theory thereby fit to indi-
vidual celebrity data.

Based on this reasoning, a variety of experiments sug-
gest themselves. A typical one would be as follows. As in
[15, A10, Experiments 2-4], to-be identified pictures of
celebrities are presented (again on a distant, high-
resolution screen to avoid loss-of-pixels effects). The pic-
tures begin very small, simulating a distance of, say,
D=300 ft and gradually increase in size, i.e., “move
closer.” Thus proportion identified celebrities can be
measured as a function of distance.

The new manipulation is that, as in the Hayes et al. ex-
periment, the celebrity pictures are band-passed at varying
image-frequency centers. Based on the best-fitting pa-
rameters of the theory sketched in Figure 9, I calculated
predictions for outcomes of such an experiment. They are
provided in Figures 8CD which show proportion identified
celebrities as functions of distance for pictures bandpass-
filtered at various center frequencies, for two filter widths:
1.5 octaves (Figure 8C) and 5 octaves (Figure 8D).

This, and related experiments are analyzed in several
ways. First, variants of the theory just described (Figure 9)
can be fit to the data, and best-fitting values of the four pa-
rameters thereby recovered. Second, weaker versions of
the theory can be fit, e.g., without the questionable as-
sumption that proportion correct is proportional to area.
In particular, the data from this experiment are highly sen-
sitive to F0, the theoretical rolloff frequency. To demon-
strate this sensitivity, I created versions of the Figure-8C
predicted data assuming different F0 values and, for each
bandpass center value, calculated the “falloff point,” i.e.,
the distance at which each curve begins to descend from its
left-hand asymptote. These falloff points are predicted to
be proportional to the reciprocal of band-pass center, i.e.,
to faces/cycle, as is shown in Figure 8B for two F0 values. As
can be seen in the Figure-8B example, the slope (propor-
tionality constant) of this function depends strongly on F0;
indeed for reasons too complex to describe here, these
slopes are themselves proportional to F0 with a proportion-
ality constant that depends on band-pass filter width and
which, in the Figure-8B example (filter width = 1.5 oc-
taves), is approximately 26 ft/(face/deg). These techniques
will therefore allow very precise estimates of F0, along with
reasonably precise estimates of F1 and the presumed
“face-processing frequency band.”

D.4.a.iv. Face Identification versus Other Face-

Processing Tasks. So far the bulk of completed and pro-
posed experiments in this topic area involve face identifi-
cation. As Schyns and his colleagues have persuasively
demonstrated, however, different tasks, e.g., gender or ex-
pression identification probably rely on different spatial-
frequency regions (Schyns & Oliva, 1999; Gosselin &
Schyns, 2001). Accordingly, I will adapt many of these
paradigms, particularly the band-pass paradigm just de-
scribed to these other tasks. The predictions would be that
(1) the distance-influencing low-pass filter (i.e., F0 and F1)
would not change; however the spatial-frequency band
relevant to the task would change in systematic ways. Thus
we would use a new paradigm both to confirm Schyns’
findings and to provide additional quantitative estimates of
which spatial-frequency regions are used for what kinds of
face-processing tasks.
D.4.b. The Face-Inversion Effect

In [14, A9] we investigated a suggestion by Valentine
(1988) that a FIE obtains when familiar faces are retrieved
from memory but not when unfamiliar faces are stored in
memory (in anticipation, say, of a subsequent recognition
test). As already described in Section B.2.e.ii.(c), we have
carried out experiments in which either unfamiliar (com-
puter-generated) faces or familiar (celebrity) faces were
compared with houses. As indicated in Figure 2 (p. 24
above), we found a clear FIE for familiar but not for unfa-
miliar faces, thereby confirming Valentine’s suggestion.
However, as we described in [14, A9, pp. 29-30], our pro-
cedures did not allow unambiguous conclusions for three
reasons.

1. Lack of a direct comparison: We never compared
familiar and unfamiliar faces directly; rather, as just noted,
we compared familiar and unfamiliar faces to houses in
separate experiments.

2. Stimulus differences: Our familiar faces were celeb-
rity photos, obtained from glossy magazines and the inter-
net. Our unfamiliar faces were computer-generated
“Identikit” pictures that, while moderately realistic, were
obviously artificial.

3. Confounding between faces and familiarity: We
claimed a FIE for familiar faces compared to houses.
However, our data allowed the interpretation that any fa-
miliar (or nameable) stimulus suffers more from inversion
than an unfamiliar stimulus. Based on much past data, it
has been concluded that a FIE occurs for stimuli in which
the observer has expertise (e.g., Diamond & Carey, 1986;
Gauthier, et al., 2003). However having expertise with re-
spect to some stimulus class is not the same as being famil-
iar with individual members of the class; e.g., while most
people can recognize a picture of Julia Roberts as someone
familiar, dog experts would not generally recognize a par-
ticular dog (as in, “Oh, it’s Lassie!”) that appeared in the
Diamond and Carey (1986) study.

These impediments to unambiguous interpretation
suggest several experiments which are sufficiently obvious
that I describe each only briefly.

D.4.b.i. Direct Comparison of Familiar and Unfamil-
iar Faces. Either familiar (celebrity) or unfamiliar faces
are shown, upright or inverted, for varying durations in the
study phase of a recognition procedure. The unfamiliar
faces are drawn from the same sources as the celebrities
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6 Lack of a duration term in Equation 10 implies that configural
strength is acquired instantaneously. In the limit of course, this
assumption must be false; some time must be required to acquire any
kind of information from a stimulus. Realistically, this assumption
is that all the configural strength that will ever be acquired can be
acquired from our briefest experimental exposures (17 ms).

(glossy magazines; the internet). State-trace plots are gen-
erated as in Figures 2F (p. 24 above) where “unfamiliar
face recognition” is substituted for “house recognition.”
If inversion affects retrieval of familiar faces more than
encoding of unfamiliar faces, the state-trace plot will re-
semble Figure 2F. If inversion affects face storage and face
retrieval equally, it will resemble Figure 2C.

D.4.b.ii. A Building-Inversion Effect? To test the
proposition that recognizing and being able to name faces
is responsible for the difference between [14, A9 Experi-
ments 1 and 2], I propose an experiment in which familiar
buildings are compared to unfamiliar houses (i.e., an ex-
periment like [14, A9, Experiment 2] except that nameable
“celebrity buildings” are used in place of celebrity faces).
Lorena Chavez and I have collected a set of such buildings.
They include obvious candidates such as the Empire State
Building, as well as local Seattle and University of Wash-
ington buildings, familiar to UW student participants.
State-trace plots are generated as in Figures 2CF where
“Familiar buildings” is substituted for “Celebrity faces.”
If the FIE of [14, A9, Experiment 2] is due to general fa-
miliarity/nameability, the state-trace plot will resemble
Figure 2F, while if the effect is unique to faces, it will re-
semble Figure 2C.
D.4.c. Configural and Featural Processing

Data from the just-described (and other) experiments,
will be fit by a two-dimensional theory which, as described
in [14, A9, pp. 21-25], was driven primarily by three con-
siderations. First, it incorporated the oft-discussed dimen-
sions of “featural” and “configural” strength. Second, it
was one of a quite successful class of information-
processing theories, variants of which have been described
by numerous investigators (e.g., Loftus, Busey & Senders,
1993; Massaro, 1970; Rumelhart, 1970; Shibuya & Bun-
desen, 1988), that assume random sampling over time of
information from a visual stimulus. Such theories imply
some internal measure, e.g., “Strength,” and/or observed
performance to increase with stimulus duration by the
function (1–e–kd) where d is duration and k is a constant.

The third consideration issues from the data in Figure 2
(p. 24 above). I have demonstrated why the monotonic
state-trace plot in Figure 2C and the nonmonotonic state-
trace plot in Figure 2F confirm a unidimensional theory
for unfamiliar faces and imply a multi-dimensional theory
for familiar faces, respectively. However there is additional
information in these state-trace plots that allows stronger
inferences: Both the upright and the inverted functions are
approximately linear, and the curves corresponding to the
inverted conditions have approximately zero intercepts.
Accordingly we made the highly constraining decision to
restrict our choice of quantitative theories to those that im-
ply these characteristics.

In particular, featural strength SFij, in duration condi-
tion i and orientation condition j was defined to be,

† 

SFij =
(1- e-di /b ) x YU  for upright stimuli
(1- e-di /b ) x YI   for inverted stimuli

Ï 
Ì 
Ó 

(9)

where di is duration. The parameter b is an exponential
growth rate common to all stimuli; it may be viewed as rep-
resenting a low-level characteristic of the system that is ig-

norant of stimulus meaning. The parameters YU and YI,
constrained to fall between 0 and 1, reflect asymptotic
featural strength that can differ for upright compared to
inverted stimuli. Note that SFij must fall between 0 and 1
and can therefore be treated as a probability.

Configural strength, SCjk, for orientation j and stimulus
type k, (k Œ {F, H}) was defined to be

† 

SCjk =

CUk        for upright stimuli
CIF = 0   for Inverted faces
CIH         for inverted houses

Ï 

Ì 
Ô 

Ó 
Ô 

(10)

where the Cjk are free parameters, constrained to fall be-
tween 0 and 1, and therefore interpretable as probabilities6.
The assumption embodied in Equation 10 that CIF = 0
means that no configural strength is acquired from in-
verted faces. This assumption was motivated in part by
Valentine’s (1988) observation that, “…configural in-
formation is seen as a means of encoding upright faces, but
configural information cannot be extracted from an in-
verted face” p. 480). Equation 10 also incorporates the
idea that configural strength can be different for upright
faces compared to upright houses; that is CUF does not nec-
essarily equal CUH. In short, featural strength is the same
for faces and houses while configural strength can differ in
systematic ways for the two stimulus types.

We assume, as suggested by Collinshaw & Hole (2000)
that recognition can be carried out independently on the
basis of either featural or configural strength. The equa-
tion for response probability is thus,

† 

pijk =
[SFij + (1- SFij )SCjF ]YF for faces
[SFij + (1- SFij )SCjH ]YH for houses

Ï 
Ì 
Ó 

(11)

where the asymptotes, Yk, are free parameters between 0
and 1.

In [14, A9], we fit this theory to data from three ex-
periments. The fit, shown in Figure 2 above, was reasona-
bly good. As shown in [14, A9, Table 4, p. 24], the pa-
rameter estimates were informative. Most notably, con-
figural strength was estimated to be zero for all inverted
stimuli (that is, for inverted faces, where it was constrained
to be zero, plus inverted houses and inverted cityscapes
where it was unconstrained). As noted I plan to apply this
theory to all relevant proposed experiments. This process
will entail several activities: determining where the theory
does not fit (e.g., long experiment durations as in Figure
2), modifying the theory if possible to extend its domain,
and making use of the estimated theory parameters as an
aid to understanding face processing in general.

D.5. Confidence and Accuracy in Visual Memory
As noted earlier, we have carried out numerous investi-

gations of the relation between confidence and accuracy in
visual memory. I propose a number of continuing studies
in this domain.
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D.5.a. Cognitive versus Sensory Variables
In our investigations of the confidence/accuracy rela-

tion, we have used a prospective confidence/recognition
performance design in which, during the study phase of a
yes-no recognition experiment, two variables are manipu-
lated: duration and some two-level focal variable. Two
such variables are contrast and rehearsal: In one experi-
ment ([3, A2]), observers were either required to rehearse,
or prevented from rehearsing, the just-seen target picture
for 15 sec following picture offset. In other experiments
([12, A7]), pictures were shown at either low or high con-
trast. Following each study trial, in both sets of studies, ob-
servers were asked to rate their prospective confidence that
they would eventually be able to recognize the picture.
State-trace plots were constructed in which actual recogni-
tion performance was plotted against prospective confi-
dence. A monotonic state-trace plot indicates that observ-
ers are able to accurately assess the focal variable’s ef-
fect—both confidence and accuracy would be inferred
to be based on the same internal measure—while a non-
monotonic state-trace plot indicates error in observers’
assessment of the focal variable’s effect in that prospec-
tive confidence and recognition performance would be
inferred to be based on different internal data. We found
that the effect of contrast, a low-level variable, was assessed
almost perfectly via the prospective confidence rating
([12, A7]). However the effect of post-exposure rehearsal,
a higher-level variable, was assessed incorrectly: At study,
observers strongly overrated the degree to which having
just rehearsed the target picture would eventually boost
recognition performance [3, A2].

A possible (seemingly paradoxical) reason for this
finding is that information about the state of a low-level
variable, such as contrast, is lost early: We have found good
evidence for the unidimensional theory that contrast and
duration combine (multiplicatively) very early, perhaps
during perception, thereby leaving only a value on a single
dimension (“Strength”). In other words, an observer ex-
pecting a recognition test may, by default, not encode
whether a just-seen target is a low- or a high-contrast pic-
ture. The only information available to the observer is thus
Strength, whose value does not include the original dura-
tion and contrast values that produced it. This single
Strength measure then forms the basis for both the pro-
spective confidence judgments and for recognition per-
formance, thereby ensuring that contrast’s effect on rec-
ognition—which is mediated by Strength—is accurately
captured in the prospective confidence judgments.

Higher-level variables such as rehearsal, however, do
not act this way: It is obvious based on common experi-
ence, that an observer is entirely aware following a study
trial whether s/he has just rehearsed the picture. This allows
the use of metacognitive strategies—or in our lingo, addi-
tional dimensions—that affect the prospective confidence
judgment. For instance, in [3, A2], we proposed two inter-
nal dimensions affected by a target stimulus: “Strength”
is affected by both duration and rehearsal, while “Cer-
tainty” is affected only by rehearsal. At study, prospective
confidence is a positive function of both Strength and
Certainty, while at test, recognition performance is a func-
tion only of Strength. This means that two duration-

rehearsal conditions that are equal in Strength will have the
same recognition performance values; however, the
shorter-duration x rehearsal condition will produce the
higher Certainty value and therefore the higher prospec-
tive confidence value (see [3, A2], Figure 3E, p. 34).

I propose experiments to test this general idea. In two
parallel recognition experiments, contrast and rehearsal
are combined with duration at study. For each experiment,
there is an additional between-subjects variable: Following
each study trial, observers are either told or not told the
contrast (or rehearsal) level of the target picture that they
had just seen. This puts contrast and rehearsal on an equal
footing in that for each focal variable, observers know
unequivocally which condition they were in when they
make their prospective confidence rating. This knowledge
is, obviously, most relevant for contrast; rehearsal level will
almost certainly be apparent anyway. In any event, if
knowledge of focal-variable level prompts use of infor-
mation on additional dimensions in making the prospec-
tive confidence judgment, then observers—as indicated by
the prospective confidence-recognition performance
state-trace plot—will no longer accurately assess contrast’s
effect on eventual memory (thereby providing yet an-
other confirmation of Alexander Pope’s, 1711, assertion
that, “A little learning is a dangerous thing.”)
D.5.b. Responses Made on Specific Features or General
Familiarity

Earlier, I described experiments in which subjective
bases for picture-recognition responses, in the form of ei-
ther a specific feature, or general familiarity, are measured.
Paul Jaye and I collected some pilot data investigating the
degree to which observers are able to accurately assess the
eventual value of encoding a specific feature for eventual
recognition.

In Jaye’s and my data, increasing exposure duration, or
responding on the basis of a specific feature rather than
general familiarity, led to increased accuracy and to in-
creased retrospective confidence, as shown in Figures
10AB. These findings are not especially surprising, and
are consistent with past data issuing from similar proce-
dures (e.g., Dobbins, Kroll, & Liu, 1998; Loftus, 1972;
Loftus & Bell, 1975; Loftus & Kallman, 1979). What is
noteworthy however is that, as shown in Figure 10C, a spe-
cific feature increased confidence “more than it should
have” given its effect on accuracy: That is, when two dura-
tion x response-basis “conditions”—a shorter-duration
“feature” response and a longer-duration “familiarity”
response—led to the same accuracy, the feature response
produced higher confidence. Of importance for reasons
described below, the converse is also true: Considering two
such “conditions” with identical confidence, the “general
familiarity” response is more accurate.

This result has several implications. First, in the basic-
science domain, it indicates that more than a single mem-
ory dimension is necessary to account for this pattern of
confidence-accuracy relations, thereby adding to the lit-
any of studies identifying the circumstances under which
confidence and accuracy are based on different memory
dimensions (e.g., Chandler, 1994; Dobbins, et al., 1998;
Glanzer & Adams, 1990; Nelson & Dunlosky, 1991;
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Tulving, 1981; Wells, Lindsay, & Ferguson, 1979), and
suggesting profitable theoretical strategies for naming and
elucidating the properties of such dimensions. In the prac-
tical (forensic) domain, it is noteworthy for the following
reason. Numerous investigators (e.g., Cutler, Penrod, &
Stuve, 1988) have shown that witness confidence is a criti-
cal determinant of jurors’ belief in eyewitness testimony.
In addition, Bell and E. Loftus (1988) have shown that ju-
rors tend to believe witness reports more strongly when
such reports contain specific details than when they do not
(see also Johnson, Bush, & Mitchell, 1998). Now consider
two witnesses reporting conflicting versions of some event,
each reporting the same confidence, but one witness re-
porting details and the other witness reporting only “gen-
eral familiarity.” My work with Jaye just sketched indi-
cates that the “general familiarity” witness will more
likely be accurate, while, the Bell & Loftus and Johnson et
al. data indicate that the “specific detail” witness will more
likely be believed.

Several investigations of the specific feature/general
familiarity work are proposed. The first is to replicate the
results with faces rather than scenes—both to establish
replicability and generality, and because faces are more
forensically relevant than scenes. Second, in the Loftus &
Jaye study, reporting of a specific feature was determined
by the observer rather than being a genuine, manipulated,
independent variable, which limits the strength of the re-
sulting conclusions. I proposed to remedy this shortcom-
ing by creating stimuli in which bland pictures (scenes
and/or faces) are modified using Photoshop or the Faces
Identikit application, to produce a version with an obvious
specific feature; thus there is a “b land” and a “specific
feature” version of all stimuli. Third we will induce en-
coding of specific details using a manipulation reported
by Loftus & Kallman (1979) in which, during the study
phase of a picture-recognition experiment, observers were

or were not instructed during a post-stimulus interval to
write down the name of a specific object that they thought
would assist them in eventually recognizing the picture.

E. HUMAN SUBJECTS
E.1. Risks to Subjects

E.1.a. Human Subjects involvement and Characteris-
tics. Adult and child human subjects will be involved in all
empirical aspects of the proposed research. Child subjects
fall into two categories: undergraduates 17-20 years old
defined by NIH to be “children” and 3-5 year old chil-
dren. For ease of exposition, I will, in what follows, lump
the former children and the adults into one group and call
them “adults.” I will refer to the 3-5 year old children as
“children.” Although it is difficult to predict exactly how
many subjects we will use, it will be on the order of 15,000
over five years. Of these 15,000, approximately 100 will be
children, all run at the University of Washington. Of the
total 15,000 subjects, approximately 50 will be run at the
University of Illinois where they will have eye movements
recorded. The remainder will be run at the University of
Washington. No subject run at the University of Washing-
ton will have eye movements recorded.

Adult subjects will be required to sit for an hour or so at a
time and press keys corresponding to perception or mem-
ory decisions. In some of the experiments, eye movements
will be recorded. When children are used as subjects, they
will be asked to try to identify pictures of common objects
(e.g., “ d o g ” ) and call out their names.

E.1.b. Sources of Research Material. Subjects will pro-
vide perceptual or recognition responses. Data will be col-
lected by computer and will then be summarized prior to
being analyzed by humans. Data will be used only for re-
search purposes.

E.1.c. Potential risks. The risks in the non-eye move-
ment experiments (i.e., the majority of planned experi-
ments) are essentially nonexistent. Observers will be re-
quired to sit in seats for an hour at most, view visual materi-
als (scenes or text), attempt to perceive and remember
them and type in responses.

For the eye-move experiments to be run at the Univer-
sity of Illinois (only adults involved), risks are similarly
low. During the experiments subjects will be required to
wear an eye tracker, an EyeLink II. The EyeLink II system
consists of three miniature cameras mounted on a com-
fortable leather-padded headband. Two eye cameras allow
binocular eye tracking or selection of the subject's domi-
nant eye. Each camera has built-in illuminators that shine
on the eye, and the EyeLink II software identifies the loca-
tion of the pupil and tracks it during an experiment. An
optical head-tracking camera integrated into the headband
allows accurate tracking of the subject's point of gaze
without the need for a bite bar. Note that no electrical
equipment is attached to the subject. The amount of light
absorbed by the retina is less than 7.5% of the suggested
Maximum Permissible Exposure for continuous sources
of infrared light given by Sliney and Freasier (1973). This
level of light is comparable to what one would receive on a
bright, sunny day. Subjects will wear the monitor for no
more than 60 minutes per session, and for no more than 10
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Figure 10. Jaye & Loftus data. Panels A and B are retrospec-
tive confidence and recognition performance as functions of
study duration for test trials yielding “specific feature” or “gen-
eral familiarity” responses. Panel C is the state-trace plot. Error
bars are standard errors.
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sessions. There should be no harmful cumulative effects
from wearing the eye tracker for this period of time. Irwin
has conducted eye tracking experiments for 25 years and
over this period of time he have worn eye tracking devices
of this kind for well over 1200 hours, with no ill effects.
Furthermore, over 400 subjects have participated in
Irwin’s eye tracking experiments over the last 25 years,
most of them for longer than 600 minutes, and none of
them have experienced any problems. The method of eye
tracking that Irwin will be using is one of the most widely-
used in the world; it has been used with both children and
adults in a variety of settings for a variety of purposes.
Neither Irwin nor I know of a single case where damage
has occurred to any person. So, the risk to subjects from
wearing the eye tracking device is minimal.
E.2. Adequacy of Protection against Risks.

E.2.a. Recruitment and Informed Consent. Adult sub-
jects are obtained in two ways. First, some come from the
University of Washington Psychology Department subject
pool which operates in the usual subject-pool manner.
Second, paid subjects are sometimes recruited by messages
on bulletin boards.. When subjects appear for an experi-
ment, the procedures are explained to them, they are given
consent forms to sign, and they are assured that they are
free to leave if they wish.

In some experiments, we propose to use younger (3-5
year old) children. Criteria for admission into the study are
that a child has no known physical, sensory, or mental
handicap.

All 3-5 year old child subjects are recruited through the
University of Washington Child Subject Pool, a comput-
erized subject record that has been created by researchers
on campus. The goal of the subject pool is to create a sam-
ple that includes approximately equal numbers of males
and females and accurately reflects the distribution of mi-
norities in the population of the greater Seattle area. The
Child Subject Pool obtains complete birth records from all
the local hospitals and then mails letters to new parents de-
scribing the research at the University of Washington and
soliciting participation. Parents indicate interest by re-
turning a self-addressed, stamped envelope that is included
in the packet. Research staff from this project then tele-
phone prospective participants to describe the details of an
individual study and schedule appointments. When par-
ents arrive in the laboratory they are given an IRB-
approved informed consent form and invited to ask fur-
ther questions about the research. After the test is com-
pleted research staff commonly spend time talking to par-
ents and highlighting interesting reactions that occurred
during the test. In our experience, parents find the visit to
the laboratory interesting and rewarding, as manifest by
the fact that they often recommend it to other friends with
children.

E.2.b. Protection Against Risks. There are essentially
no risks whatsoever in the proposed research except per-
haps for becoming bored or uncomfortable sitting in the
same place for an hour. We protect against this by assuring
subjects that they are free to leave at any time.
 E.3. Potential Benefits of the Proposed Research to the
Subjects And Others

In our debriefing, we explain that, while there are no di-

rect benefits to the subjects in our experiments, there is
potential long-term benefit for a variety of scientific and
practical reasons.
E.4. Importance of the Knowledge to be Gained

As discussed above, the risks are minimal to nonexist-
ent, and the potential benefits are considerable.
E.5. Collaborating Sites

The OHRP assurance number for the University or Illi-
nois is xx.
E.6. Women and Minority Inclusion

Table 3 provides the gender/minority breakdown.
E.6.a. Inclusion of Women. Subjects will be from the

University of Washington and from University of Illinois.
The male/female distribution should resemble the
male/female distributions of the university populations.

E.6.a. Inclusion of Minorities. The approximately
14,950 subjects run at the University of Washington and
approximately 50 subjects run at the University of Illinois
will be selected semi-randomly from the university popu-
lations. The percentages of minorities is therefore ex-
pected to mirror the university proportions, as shown in
Table 3.
E.7. Inclusion of Children

As I have indicated, 17-20 year old University of
Washington and University of Illinois students, who tech-
nically are children, will be included in the research. As
described above, 3-5 year old children are also included
for specifically developmental research.

F. VERTEBRATE ANIMALS: N/A
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