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Following data collection from some experi-
ment, there arise two goals which should guide
subsequent data analysis and data presentation.
The first goal is for the data collector him or her-
self to understand the data as thoroughly as possi-
ble in terms of (1) how they may bear on the spe-
cific question that the experiment was designed to
address, (2) what if any surprises the data may
have produced, and (3) what, if anything, such
surprises may imply about the original questions,
related questions, or anything else. The second
goal is to determine how to present the data to the
scientific community in a manner that is as clear,
complete, and intuitively compelling as possible.
This second goal is intimately entwined with the
first: Whatever data analysis and presentation

techniques best instill understanding in the inves-
tigator to begin with are generally also optimal for
conveying the data’s meaning to the data’s even-
tual consumers.

So what are these data-analysis and data-
presentation techniques? It is not possible in a sin-
gle chapter or even in a very long book to describe
them all, because there are an infinite number of
them. Although most practicing scientists are
equipped with a conceptual foundation with re-
spect to the basic tools of data analysis and data
presentation, such a foundation is far from suffi-
cient: it is akin to an artist’s foundation in the tools
of color mixing, setting up an easel, understanding
perspective, and the like. To build on this analogy,
a scientist analyzing any given experiment is like
an artist rendering a work of art: Ideally the tools
comprising the practitioner’s foundation should be
used creatively rather than dogmatically to pro-
duce a final result that is beautiful, elegant, and
interesting, instead of ugly, convoluted, and pro-
saic.

My goal in this chapter is to try to demonstrate
how a number of data-analysis techniques may be
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used creatively in an effort to understand and con-
vey to others the meaning and relevance of a data
set. It is not my intent to go over territory that is
traditionally covered in statistics texts. Rather, I
have chosen to focus on a limited, but powerful,
arsenal of techniques and associated issues that are
related to, but are not typically part of a standard
statistics curriculum. I begin this chapter with an
overview of data analysis as generically carried
out in psychology, accompanied by a critique of
some standard procedures and assumptions, with
particular emphasis on a critique of null hypothe-
sis significance testing (NHST). Next, I discuss a
collection of topics that represent some supple-
ments and/or alternatives to the kinds of standard
analysis procedures about which I will have just
complained. These discussion include (1) a de-
scription of various types of pictorial representa-
tions of data, (2) an overview of the use of confi-
dence intervals which, I believe, constitutes an
attractive alternative to NHST, (3) a review of the
benefits of planned comparisons which entail an
analysis of percent between-conditions variance
accounted for, (4) a description of techniques in-
volving percent total variance accounted for, (5) a
brief set of suggestions about presentation of re-
sults based on mathematical models (meant to
complement the material in the Myung & Pitt
chapter) and finally, (6) a somewhat evangelical
description of what I have termed equivalence
techniques.

My main expositional strategy is to illustrate
through example. In most instances, I have in-
vented experiments and associated data to use in
the examples. This strategy has the disadvantage
that it is somewhat divorced from the real world of
psychological data, but has the dominating ad-
vantage that the examples can be tailored specifi-
cally to the illustration of particular points.

The logic and mathematical analysis in this
chapter is not meant to be formal or complete. For
proofs of various mathematical assertions that I
make, it is necessary to consult a mathematically
oriented statistics text. There are a number of such
texts; my personal favorite is Hays (1973), and
where appropriate, I supply references to Hays
along with specific page numbers.

My choice of material and the recommenda-
tions that I selected to include in this chapter have
been strongly influenced by 35 years of experience
in reviewing and journal editing. In the  course of
these endeavors I have noticed an enormous num-
ber of data-analysis and data-presentation tech-
niques that have been sadly inimical to insight and
clarity—and conversely, I have noticed enormous
numbers of missed opportunities to analyze and
present data in such a way that the relevance and
importance of the findings are underscored and

clearly conveyed to the intended recipients.
Somewhere in this chapter is an answer to ap-
proximately 70% of these complaints. It is my
hope that, among other things, this chapter will
provide a reference to which I can guide authors
whose future work passes across my desk—as an
alternative, that is, to trying to solve what I believe
to be the world’s data analysis and presentation
problems one manuscript at a time.

FOUNDATIONS: THE LINEAR
MODEL AND NULL HYPOTHESIS

SIGNIFICANCE TESTING
Suppose that a memory researcher were inter-

ested in how stimulus presentation time affects
memory for a list of words as measured in a free-
recall paradigm. In a hypothetical experiment to
answer this question, the investigator might select
J = 5 presentation times consisting of 0.5, 1.0, 2.0,
4.0, and 8.0 sec/word and carry out an experiment
using a between-subjects design in which n = 20
subjects are assigned to each of the 5 word-
duration conditions—hence, N = 100 subjects in
all. Each subject sees 20 words, randomly selected
from a very large pool of words. For each subject,
the words are presented sequentially on a com-
puter screen, each word presented for its appropri-
ate duration. Immediately following presentation
of the last word, the subject attempts to write
down as many of the words as possible. The in-
vestigator then calculates the proportion correct
number of words (out of the 20 possible) for each
subject.

The results of this experiment therefore con-
sist of 100 numbers: one for each of the 100 sub-
jects. How are these 100 numbers to be treated in
order to address the original question of how
memory performance is affected by presentation
time? There are two steps to this data-
interpretation process. The first is the specification
of a mathematical model1, within the context of
which each subject’s experimentally observed
number results from assumed events occurring
within the subject. There are an infinite number of
ways to formulate such a mathematical model. The
most widely used formulation, on which I will fo-
cus on in this chapter, is referred to as the linear
model or LM.

The second step in data interpretation is to
carry out a process by which the mathematical
model, once specified, is used to answer the ques-
                                                     
1 I have sometimes observed that the  term "mathemati-
cal model" casts fear into  the hearts of many research-
ers. However, if it is numbers from an experiment that
are to be accounted for, then the necessity of some
kind of mathematical model is logically inevitable.
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tion at hand. Note that there are numerous possi-
bilities for how this can be done. The process that
is the most widely used is that of null hypothesis
significance testing, or NHST.

Most readers of this chapter are probably fa-
miliar with both the LM and the process of NHST.
Nonetheless, to insure a common conceptual and
notational foundation, I will describe both of them
briefly in the next two sections.

The Linear Model
The LM, although central to most statistical

analysis is described by surprisingly few intro-
ductory statistics books (Hays, 1973, my statistics
reference of choice in this chapter is one of them).
The LM includes a variety of assumptions, the
exact configuration of which depends on the na-
ture of the experimental design. At its most gen-
eral level, within the context of the Linear Model,
some response variable, R, is modeled as a linear
function of various parameters, labeled α, β, γ, δ,
and so on. Table 1 provides some examples of
common linear models along with the names of
these models. For comparison purposes, the last
entry in Table 1 is an example of a nonlinear
model wherein one term is a product of several of
the parameters. It is noteworthy, incidentally that
(unlike many social science statistics texts and
statistics courses) the Linear Model does not make
a sharp distinction between ANOVA and regres-
sion. Instead, both are simply viewed as instances
of the same general model.

In the simple free-recall example described
above, the Linear Model is formulated thusly.
1. The subjects in the experiment are assumed

constitute a random sample from some popu-
lation to which conclusions are to apply.

2. Similarly, he words provided to each subject
are assumed to be a random sample drawn
from a large population of words.

3. Across the subjects x words population there
is a “grand mean,” denoted µ, of the depend-
ent variable measured in the experiment. The
grand mean is a theoretical entity, but roughly
it can be construed as the number that would
result if all individuals in the target population
were run in the experiment for an infinite
number of times in all conditions, using in the
course of this lengthy process, the entire
population of words, and the mean of all the
resulting scores were computed.

4. Each condition, j, in the experiment has asso-
ciated with it an “effect” which is referred to
as αj. Any score obtained by a subject in con-
dition j is increased by αj compared to the
grand mean, µ. Over the population, the mean
score for condition j, which is referred to as µj,
is µj = µ + αj. The model defines these effects
such that

α j = 0
j=1

J
∑

which means, of course, that either all the αj’s
are zero, or that some are positive while others
are negative.

5. Associated with each subject participating in
the experiment is an “error term” that is spe-
cific to that subject. This error term is inde-
pendent of condition, and the error term for
Subject i in Condition j is labeled eij. It is as-
sumed that the eij’s are randomly drawn from
a normal distribution whose mean is zero and
whose variance is σ2, a value that is constant
over conditions2.

                                                     
2 A technical point is in order here. The error term for
this experiment has two components. The first is a
subject component reflecting the fact that proportion
correct varies among subjects, The second is a bino-
mial component reflecting variation over the 20 words.
Because the binomial variance component changes

Table 1. Types of Models. The response measure is R, and the values of independent variables are la-
beled X and Y. The model parameters are indicated by Greek letters,  and . All models listed
are linear models except for the last which is not linear because it includes the product of three parame-
ters, i j.

Model Model Name

R = α + βX + γY Multiple Regression (Additive)

R = α + βX + γY + δXY Multiple Regression (Bilinear)

R = α + βX + γY + δY2 Multiple Regression (Quadratic in Y)

R = α + βi + γj Two-Way ANOVA (Additive)
R = α + βi + γj + δij Two-Way ANOVA with Interaction

R = α + βX + γj One-Way ANACOVA (Additive)

R = α + βi + γj + δβiγj Tukey’s one-degree-of-freedom interaction model
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These assumptions imply that the Xij, the
score of Subject i in Condition j is equal to,

Xij = µ + αj + eij

which in turn implies that Xij’s within each condi-
tion j are distributed with a variance of σ2.

Null Hypothesis Significance Testing
Equipped with a mathematical model, the in-

vestigator’s next step in the data-analysis process
is to use the model to arrive at answers to the
question at hand. As noted, the most pervasive
means by which this is done is via NHST, which
works as follows.
1. A “null hypothesis” (H0) is established. Tech-

nically, a null hypothesis is any hypothesis
that specifies quantitative values for all the
αj’s. In practice however a null hypothesis al-
most always specifies that “the independent
variable has no effect on the dependent vari-
able,” which means that,

Η0: α1 = α2 =...= αJ = 0

or equivalently, that,

Η0: µ1 = µ2 =...= µJ

Mathematically the null hypothesis may be
viewed a single-dimensional hypothesis: the
only variation permissible is the single value
of the J population means.

2. An “alternative hypothesis” (H1) is established
which, in its most general sense is “Not H0”.
That is, the general alternative hypothesis
states that, one way or another, at least one of
the J population means must differ from one at
least one of the others. Mathematically such
an alternative hypothesis may be viewed as
composite hypothesis, representable in J di-
mensions corresponding to the values of the J
population means.

3. The investigator computes a single “summary
score”, which constitutes evidence that the
null versus the alternative hypothesis is cor-
rect. Generally, the greater is the value of the
summary score, the greater is the evidence that
the alternative hypothesis is true. In the pre-
sent example—a one-way ANOVA de-
sign—the summary score is an F-ratio which
is proportional to the variance among the sam-
ple means. A small F constitutes evidence for

                                                                            
with the mean, the overall error variance cannot be as-
sumed to be fully constant. Nonetheless, the linear
model formulated would still be a very useful ap-
proximation.

H0, while the larger is the F, the greater is the
evidence for H1.

4. The sampling distribution of the summary
score is determined under the assumption that
H0 is true.

5. A criterion summary score is determined such
that, if H0 is correct, the obtained value of the
summary score will be achieved or exceeded
with some small probability referred to as α
(traditionally, α = .05).

6. The obtained value of the summary score is
computed from the data.

7. If the obtained summary score equals or ex-
ceeds the criterion summary score, a decision
is made to reject the null hypothesis, which is
equivalent to accepting the alternative hy-
pothesis. If the obtained summary score is less
than the criterion summary score, a decision is
made to fail to reject the null hypothesis.

8. By this logic, the probability of rejecting the
null hypothesis given that the null hypothesis
is actually true (thereby making what is known
as a “Type-I error”) is equal to α. As indi-
cated, α is set by the investigator via the in-
vestigator’s choice of a suitable criterion
summary score. Given that the alternative hy-
pothesis is true, the probability of failing to
reject Η0 is known as a Type-II error. The
probability of a Type-II error is referred to as
β.  Closely related to β is (1-β) or power,
which is the probability of correctly rejecting
the null hypothesis given that H1 is true. Typi-
cally, β and power cannot be easily measured,
because to do so requires a specific alternative
hypothesis, which typically is not available3.

Problems with the LM and with NHST
The LM can be used without proceeding on to

NHST and NHST can be used with models other
than the LM. However, a conjunction of the LM
and NHST is used in the vast majority of experi-
ments within the social sciences and in other sci-
ences, notably the medical sciences, as well. Both
the LM and NHST have shortcomings with respect
to the insight into a data set that they provide.
However, it is my opinion that the shortcomings of
NHST are more serious than the shortcomings of
the LM. In the next two subsections, I will briefly
describe the problems with the LM, and I will then
provide a somewhat lengthier discussion of the
problems with NHST.

                                                     
3 More precisely, power can be represented as a func-
tion over the J-dimensional space, mentioned earlier,
that corresponds to the J-dimensional alternative hy-
pothesis.
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Problems with the LM
The LM is what might be termed an off-the-

shelf model: That is, the LM is at least a plausible
model that probably bears at least some approxi-
mation to reality in many situations. However, its
pervasiveness often tends to blind investigators to
alternative ways of representing the psychological
processes that underlie the data in some experi-
ment.

More specifically, although there are different
LM equations corresponding to different experi-
mental designs, all of them are additive with re-
spect to the dependent variable: that is the de-
pendent variable is assumed to be the sum of a set
of theoretical parameters (see, for example, Table
1 and Equation 1, below). The simplicity of this
arrangement is elegant, but it de-emphasizes other
kinds of equations that might better elucidate the
underlying psychological processes.

I will illustrate this point in the context of the
classic question: What is the effect of degree of
original learning on subsequent forgetting and
more particularly, does forgetting rate depend on
degree of original learning? My goal is to show
how the LM leads investigators astray in their at-
tempts to answer this question, and that an alter-
native to the LM provides considerably more in-
sight.

Slamecka and McElree (1983) reported a se-
ries of experiments with the goal of determining
the relation between degree of original learning
and forgetting rate. In their experiments subjects
studied word lists to one of two degrees of profi-
ciency. Subjects’ memory performance then was
measured following forgetting intervals of 0, 1, or
5 days. Within the context of the LM, the relevant
equation relating mean performance, µjk to delay
interval j and initial learning level k is,

µjk = µ + αj + βk + γjk (Eq. 1)

where αj is the effect of delay interval j (presuma-
bly αj monotonically decreases with increasing j),
βk is the effect of degree of learning k (presumably
βk monotonically increases with increasing k) and
finally, γjk, a term applied to each combination of
delay interval and learning level, represents the
interaction between delay interval and learning
level.

Within the context of the LM, two theoretical
components are construed as independent if there
is no interaction between them. In terms of Equa-
tion 1, degree of learning and forgetting are inde-
pendent if all the γij’s are equal to zero. The criti-
cal null hypothesis was tested by Slamecka and
McElree was therefore that γij = 0 for all i, j. They
used their resulting failure to reject this null hy-
pothesis as evidence for the proposition that for-

getting rate is independent of degree of original
learning.

This conclusion is dubious for a variety of rea-
sons. For present purposes, I want to emphasize
that Slamecka and McElree’s analysis technique
(which Slamecka, 1985, vigorously defended)
emerged quite naturally from the LM-based Equa-
tion 1 above. Because the LM is so simple, and is
so ingrained as a basis for data analysis, it seemed,
and still seems, unnatural for workers in the field
to consider alternatives to the LM.

What would such an alternative look like? In
the final section of this chapter, I will provide
some illustrations of alternatives to the LM. In the
present context, I will briefly discuss an alternative
model within which the learning-forgetting inde-
pendence issue can be investigated. This model,
described by Loftus (1985a; 1985b; see also
Loftus & Bamber, 1990) rests on an analogy to
forgetting of radioactive decay. Consider two
pieces of radioactive material, a large piece (say 9
gms) and a small piece (say 5 gms). Suppose the
decay rates are the same in the sense that both can
be described by the equation,

M = M0e-kd (Eq. 2)

where M is the remaining mass after an interval of
d days, M0 is the original mass, and k is the decay
constant4.

The Equation-6 decay curves corresponding to
the two different chunks are shown in Figure 1,
with the same decay constant, k=0.5, describing
the two curves. These curves could, of course, be
described by the LM (Equation 1). The γjk terms
would be decidedly nonzero, reflecting the inter-
action that is represented in Figure 1 by the de-
creasing vertical distance between the two decay
curves with increasing decay time. Thus, using the
LM, and Slamecka and McElree’s logic, one con-
cludes that large-chunk decay is faster than small-
chunk decay.

This conclusion would, in a very powerful
sense, be incorrect: As noted above, the Figure-1
decay curves were generated by equations having
identical decay rates (k  =  0.5). The key to under-
standing this error is that independence of radio-
active decay rates is not associated with lack of
interaction within the context of the LM. Instead,
it is associated with another kind of lack of in-
                                                     
4 This is not a technically correct description of radio-
active decay, as radioactive material actually decays to
some inert substance instead of to nothing, as implied
by Equation 2. For the purposes of this discussion, the
"decaying material" may be thought of as that portion
of the material that actually does decay, and the logic
is unaffected.
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teraction which can be intuitively understood as
follows. Consider the large chunk. After some
time period (which is approximately 1.175 days,
as indicated in Figure 1) the large chunk has de-
cayed to the point where only 5 gms remain—i.e.,
it is physically identical to what the small chunk
had been at time zero. Therefore, the large-chunk
decay curve following time 1.175 days must be
identical to the small-chunk decay curve following
time zero; that is, the two decay curves are hori-
zontally parallel , separated by a constant delay of
1.175 days. This corresponds to “no interaction” in
the horizontal rather than the LM-oriented vertical
sense.

The original question, “What is the effect of
learning rate on memory” can now be addressed
using the same logic, within the context of which
forgetting curves resulting from different degrees
of original learning must be compared horizontally
rather than vertically. The finding of horizontally
parallel curves implies that forgetting rate is inde-
pendent of degree of original learning, while hori-
zontally nonparallel curves imply that forgetting
rate depends on degree of original learning5.

The general model to be tested, given this
logic is,

µ(L1, dj) = µ[L2, f(dj)] (Eq. 3)

                                                     
5 For ease of exposition, I have assumed exponential
decay in this description. However, as proved by
Loftus (1985a, Appendix 2) the implication of inde-
pendence from horizontally parallel curves does not
require the assumption of exponential decay.

where µ(X, dj) refers to mean performance at
learning level X following delay interval dj, and
f(dj) is some function of dj. Of interest is the na-
ture of the function f on the right side of Equation
3. Various possibilities can be considered. A
finding of f(dj) = dj, would imply no effect at all of
original learning on performance. A finding of
f(dj) = dj + c, c ≠ 0, would imply that forgetting
rate is independent of degree of original learning:
The curves are parallel, separated by some interval
c. Finally, a finding of f(dj) = dj + c + αj where αj
is an amount that varies with dj, would imply that
forgetting rate depends on degree of original
learning: The curves are not horizontally parallel.

To summarize, the LM is widely used and
probably an approximately correct description of
many experimental situations. However it is not
always the best model within which an experi-
mental situation can be described, and it is some-
times seriously misleading. It is imperative to re-
alize that one is not bound by the LM just because
it is pervasive.

Problems with Null Hypothesis Significance
Testing

Upon stepping down as editor of the Journal
of Experimental Psychology, Arthur Melton pub-
lished a highly influential editorial (Melton, 1962).
In this editorial, Melton emphasized that the crite-
ria used by his journal for accepting manuscripts
revolved heavily around NHST, pointing out that
(1) articles in which the null hypothesis was not
rejected were almost never published and (2) re-
jection at the .05 significance level was rarely
adequate for acceptance; rather, rejection at the .01
level was typically required.

This is a remarkable position. Essentially, it
places the process of NHST not only at the heart
of data analysis but also the heart of personal sci-
entific advancement: If you don’t reject null hy-
potheses, you don’t publish. It is little wonder that
NHST is so pervasive in psychology.

Over the past half-century, periodic articles
have questioned the value of NHST6. Until re-
cently, these articles seem to have had little effect
on the means by which data analysis has been car-
                                                     
6 A sample of these writings is, in chronological order:
Tyler (1931); Jones (1955); Nunnally (1960); Roze-
bloom (1960); Grant (1962); Bakan (1966); Meehl
(1967); Lykken (1968); Carver (1978); Meehl (1978);
Berger & Berry (1988); Hunter & Schmidt (1989);
Gigerenzer, et al. (1989); Rosnow & Rosenthal
(1989); Cohen (1990); Meehl (1990); Loftus (1991;
1993); Carver (1994); Cohen (1994); Loftus & Mas-
son (1994); Maltz (1994); Loftus (1995; 1996);
Schmidt (1996); Schmidt & Jones (1997); and Harlow,
Mulaik, & Steiger (1997).

0.0

2.0

4.0

6.0

8.0

0 1 2 3 4 5 6

M
 =

 M
as

s 
of

 M
at

er
ia

l  
(g

m
s)

d = Delay time (days)

Radioactive Decay

Large Chunk:  M = 9e-.5d

Small Chunk:  M = 5e-.5d

1.175 days

Figure 1. Radioactive decay curves. The decay
rate is the same (k = 5) for both the large chunk (9
units) and small chunk (5 units). Note that the ver-
tical distance between the curves decreases over
decay time, while the horizontal distance between
the two curves is independent of amount of decay
time.
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ried out. Over the past 10 years, however, there
has at least been some recognition of the issues
raised by these articles; this recognition has re-
sulted in APA and APS task forces and symposia
on the topic, editorials explicitly questioning the
use of NHST (e.g., Loftus, 1993b), and occasional
calls for the banning of NHST (with which I do
not agree), along with a small but still dimly per-
ceptible shift away from exclusive reliance on
NHST as a means of interpreting and understand-
ing data.

As I have suggested earlier in this chapter,
problems with the LM, such as those described
above, pale in comparison to problems with
NHST. These problems have been reviewed in the
books and articles cited in Footnote 3, and it is not
my goal here to provide a detailed rehash of them.
Instead, I will sketch them here briefly; the reader
is referred to the cited articles for more detailed
information. I should note, in the interests of full
disclosure, that a number of well reasoned argu-
ments have been made in favor of assigning NHST
at least a minor supporting role in the data-
comprehension drama. The reader is directed to
Abelson (1995) and Krantz (1999) for the best of
such arguments.

The major difficulties with NHST are these.

Information Loss as a Result of Binary De-
cision Processes

A data set is often quite rich. As a typical ex-
ample, a 3x5 factorial design contains 15 condi-
tions and hence 15 sample means to be accounted
for (ignoring of course, per the LM, the raw data
from within each condition along with less favored
statistics such as the variance, the kurtosis and so
on). However, a standard ANOVA reduces this
data set to three bits of information: Rejection or
failure to reject the null hypotheses corresponding
to the effects of Factor 1, Factor 2, and the inter-
action. Granted, one can carry out additional post-
hoc tests or simple-effects tests, but the end result
is still that the complex data set is understood, via
the NHST process, only in terms of a series of bi-
nary decisions rather than as a unified pattern.
This is a poor basis for acquiring the kind of ge-
stalt that is necessary for insight and gut-level un-
derstanding of a data set.

The Implausibility of the Null Hypothesis
Consider the hypothetical experiment de-

scribed at the beginning of this chapter. There
were five conditions, involving five exposure du-
rations in a free-recall experiment. In a standard
ANOVA, the null hypothesis would be:

µ1 = µ2 = µ3 = µ4 = µ5 (Eq. 4)

where the µj’s refer to the population means of the
five conditions. Note here that “=“ signs in Equa-
tion 4 must be taken seriously: Equal means equal
to an infinite number of decimal places. If the null
hypothesis is fudged to specify that “the popula-
tion means are about equal” then the logic of
NHST collapses, or at least must be supplemented
to include a precise definition of what “about
equal” means.

As has been argued by many, a null hypothesis
of the sort described by Equation 4 cannot literally
be true. Meehl (1967) makes the argument most
eloquently, stating,

Considering...that everything in the
brain is connected with everything
else, and that there exist several ‘gen-
eral state-variables’ (such as arousal,
attention, anxiety and the like) which
are known to be at least slightly influ-
enceable by practically any kind of
stimulus input, it is highly unlikely
that any psychologically discriminable
situation which we apply to an ex-
perimental subject would exert liter-
ally zero effect on any aspect of per-
formance.” Alternatively, the µj’s can
be viewed as measurable values on the
real-number line. Any two of them
being identical implies that their dif-
ference (also a measurable value on
the real-number line) is exactly
zero—which has a probability of
zero.7

And therein lies a serious problem: It is
meaningless to reject a null hypothesis that is im-
possible to begin with. An analogy makes this
clear: Suppose an astronomer were to announce
that “Given our data, we have rejected the null
hypothesis that Saturn is made of green cheese.”
Although it is unlikely that this conclusion would
be challenged, a consensus would doubtless
emerge that the astronomer must have been off his
rocker for even considering such a null hypothesis
to begin with. Strangely, psychologists who make
equally meaningless statements on a routine basis
                                                     
7 A caveat is in order here. Most null hypotheses are of
the sort described by Equation 4; that is, they are
quantitative, specifying a particular set of relation
among a set of population parameters. It is possible, in
contrast, for a null hypothesis to be qualitative (see,
e.g., Frick, 1995, for a discussion of this topic). An ex-
ample of such an hypothesis, described by Greenwald,
et al., 1996, is that the defendant in a murder case is
actually the murderer. This null hypothesis could cer-
tainly be true; however; the kind of qualitative null
hypothesis that it illustrates constitutes the exception
rather than the rule.
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continue to be regarded as entirely sane. (Even
stranger is the common belief that an α-level of
.05 implies that an error is made in 5% of all ex-
periments in which the null hypothesis is rejected.
This is analogous to saying that, of all planets re-
ported not to be made of green cheese, 5% of them
actually are made of green cheese.)

Decision Asymmetry
Putting aside for the moment the usual impos-

sibility of the null hypothesis, there is a decided
imbalance between the two types of errors that can
be made in a hypothesis-testing situation. The
probability of a Type-I error, α, can be, and is, set
by appropriate selection of a summary-score crite-
rion. However, the probability of a Type-II error,
β, is, as noted earlier, generally unknowable be-
cause of the lack of a quantitative alternative hy-
pothesis. The consequence of this situation is that
rejecting the null hypothesis is a “real” decision,
while failing to reject the null hypothesis is, as the
phrase suggests, a nondecision: It is simply an
admission that the data do not provide sufficient
information to support a clear decision.

Accepting H0
The teaching of statistics generally emphasizes

that “we fail to reject the null hypothesis” does not
mean the same thing as “we accept the null hy-
pothesis”. Nonetheless, the temptation to accept
the null hypothesis (usually implicitly so as to not
brazenly disobey the rules) often seems to be
overwhelming, particularly when an investigator
has an investment in such acceptance. As I have
noted in the previous section, accepting a typical
null hypothesis involves faulty reasoning anyway
because a typical null hypothesis is impossible.
However, particularly in practically-oriented
situations, an investigator is justified in accepting
the null hypothesis “for all intents and purposes”
assuming that the investigator has convincingly
shown that there is adequate statistical power (see
Cohen, 1990; 1994). Such a power analysis is
most easily carried out by computing some kind of
confidence interval (described in detail below)
which would allow a meaningful conclusion such
as “the population mean difference between Con-
ditions 1 and 2 is, with 95% confidence, between
±ε” where ε is a sufficiently small number that the
actual difference between Conditions 1 and 2 is
inconsequential from a practical perspective.

The misleading dichotomization of “p < .05”
vs. “p > .05” results

As indicated in his 1962 editorial, summarized
earlier, Arthur Melton considered an observed p-
value of .05 to be maximal for acceptance of an
article. Almost four decades later, more or less this
same convention holds sway: Who among us has

not observed the heartrending spectacle of a stu-
dent or colleague struggling to somehow transform
a vexing 0.051 into an acceptable 0.050?

This is bizarre. The actual difference between
a data set that produces a p-value of 0.051 versus
one that produces a p-value of 0.050 is, of course,
miniscule. Logically, very similar conclusions
should issue from both data sets, and yet they do
not: The .050 data set produces a “reject the null
hypothesis” conclusion, while the .051 data set
produces a “fail to reject the null hypothesis” con-
clusion. This is akin to a chaotic situation in which
small initial differences distinguishing two situa-
tions lead to vast and unpredictable eventual dif-
ferences between the situations.

The most obvious consequence of this situa-
tion is that the lucky recipient of the .050 data set
gets to publish, while his unlucky .051 colleague
does not. There is another consequence, however,
which is more subtle but probably more insidious:
The reject/fail-to-reject dichotomy keeps the field
awash in confusion and artificial controversy. This
is because investigators, like most humans, are
loath to make and stick to conclusions that are
both weak and complicated, like “we fail to reject
the null hypothesis.” Instead investigators are
prone to (often unwittingly) transform the conclu-
sion into the stronger and simpler, “we accept the
null hypothesis.” Thus two similar experi-
ments—one in which the null hypothesis is re-
jected and one in which the null hypothesis is not
rejected—can and often do lead to seemingly con-
tradictory conclusions—“the null hypothesis is
true” versus “the null hypothesis is false.” The
inevitable head-scratching and subsequent flood of
“critical experiments” that are generated by such
“failures to replicate” may well constitute the sin-
gle largest source of wasted time in the practice of
psychology.

The counternull
Robert Rosenthal (see chapter this volume)

has suggested a simple score called the “counter-
null” which serves to underscore the difficulty in
accepting Η0. The counternull revolves around an
increasingly common measure called “effect size,”
which, essentially is the mean magnitude of some
effect (e.g., the mean difference between two con-
ditions) divided by the standard deviation (gener-
ally pooled over the conditions). Obviously, all
else equal, the smaller the effect size, the less in-
clined one is to reject Η0. Suppose, to illustrate,
that in some experiment one found an effect size
of 0.20 which was insufficiently large to reject Η0.
As noted earlier, the temptation is often over-
whelming to accept Η0 in such a situation because
the world seems so much clearer that way. It is
therefore useful to report Rosenthal’s counternull
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which is simply twice the effect size or 0.40 in this
example. It is sobering to realize that the data
permit a reality corresponding to the counternull
(0.40) just as much as they permit a reality corre-
sponding to Η0 (an effect size of zero). The use of
the counternull also subtly underscores a fact
which is almost invisible in a NHST framework,
specifically that the best estimate of some popula-
tion parameter is the corresponding statistic that is
measured in the experiment. So in this example,
the best estimate of the population effect size is
exactly what was measured—0.20—rather than
the zero value toward which the investigator is
drawn in an hypothesis-testing framework.

The p(data|H0) versus p(H0|data) Confusion
In the previous section, I discussed the critical

consequences of having a data set that produces
p = .050 versus one that produces p = .051. What
exactly is it that these p values refer to?

To address this question let us again set aside
the awkward fact of the null hypothesis’s usual
impossibility and suppose that the null hypothesis
actually has a reasonable possibility of being true.
It is taught in every statistics class that a p-value
less than .05 means that,

p = p(data|H0) < .05 (Eq. 5)

So what do you do with a sufficiently small p-
value? You reject the null hypothesis. What does it
mean to reject the null hypothesis? In everyday
language, to reject the null hypothesis in light of
the data means pretty unequivocally that given the
data, the probability of the null hypothesis is so
low that it should be rejected, i.e., that

p(H0|data) is small (Eq. 6)

Thus it should come as no surprise that the sacred
.05 is often incorrectly associated with the condi-
tional probability of Equation 6 rather than cor-
rectly associated with the opposite conditional
probability of Equation 5.

Now indeed, if p(data|H0) < .05, then it is
likely true that p(H0|data) is also smallish: After
all, since

p(H0 |data)= p(H 0 ∩ data)
p(data)

and

p(da ta |H0 ) = p(H 0 ∩ data)
p(H0)

the two conditional probabilities share the same
numerator and are therefore somewhat related to
one another. However, the probability that the in-
vestigator is primarily interested in, p(H0|data), is

not known to any degree of precision. It is there-
fore breathtakingly silly to place such vast empha-
sis on the exact value of p(data|H0) when this
probability is only indirectly interesting to begin
with.

SUGGESTED DATA ANALYSIS
TECHNIQUES

I now turn to a description of six data-analysis
techniques which are considerably more useful
than strict adherence to NHST in their ability to
illuminate a data set’s meaning and to answer
whatever question originally prompted the ex-
periment. The first two of these—the use of picto-
rial representations and use of confidence inter-
vals—are not novel; they are just not widely used,
or at least are not widely used to best advantage.
The third and fourth techniques—use of planned
comparisons and other means of accounting for
different sources of variance—are also not novel,
but are hardly ever used. The fifth—use of
mathematical process models—has an honorable
tradition in the area of mathematical psychology,
but is still not pervasive. The final set of tech-
niques, which I have termed equivalence tech-
niques, are standard in vision science, but are al-
most never used in other areas of psychology.

Pictorial Representations
If the results of an experiment consist of more

than two numbers, then providing some form of
pictorial representation of them is enormously use-
ful in providing a reader with an overall, gestalt
image of what the data are all about. (This seems
so obvious that it seems hardly worth saying, but
the obviousness of the concept does not always
translate into the concomitantly obvious behavior.)

To illustrate, Table 2 and Figure 2 show the
same data set (response probabilities from a hy-
pothetical experiment in which digit strings are
presented for varying durations and contrasts) as a
table and as a figure. It is obvious that the table
Table 2. Data (proportion correct) for an experi-
ment in which stimuli are presented at one of six
durations and one of three contrast levels.

Contrast
Duration (ms) 0.05 0.10 0.20

10 0.069 0.134 0.250
20 0.081 0.267 0.375
40 0.230 0.466 0.741
80 0.324 0.610 0.872

160 0.481 0.768 0.898
320 0.574 0.799 0.900
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can only be understood (and not very well under-
stood at that) via a lengthy serial inspection of the
numbers within it. In contrast a mere glance at the
corresponding figure renders it entirely clear what
is going on.

Graphs Versus Tables
Despite the obvious and dominating exposi-

tional advantage of figures over tables, data con-
tinue to be presented as tables are at least as often,
or possibly more often than as figures. For most of
the psychology’s history, the reason for this curi-
ous practice appeared to be founded in a prosaic
matter of convenience: While it was relatively
easy to construct a table of numbers on a type-
writer, constructing a decent figure was a labori-
ous undertaking. You drew a draft of the figure on
graph paper, took the draft to an artist who in-
variably seemed to reside on the other side of the
campus, following which you waited a week for
the artist to produce a semi-finished version. Then
you made whatever changes in the artist’s render-
ing that seemed appropriate. Then, you repeatedly
iterated through this dreary process until the figure
was eventually satisfactory. Finally, adding insult
to injury, you had to take the finished drawing
somewhere else to have its picture taken before the
publisher would take it. Who needed that kind of
hassle?

 Today, obviously, things are much different,
as electronic means of producing figures abound.
To obtain information about popular graphing
techniques, I conducted an informal survey in
which I emailed to all researchers in my email ad-
dress book, a request that they tell me what
graphing technique(s) they use. One hundred and
sixty one respondents used a total of 229 tech-
niques, and the summarized results are provided in
Table 3.

The results of this survey can be summarized
as follows. Fewer than 25% of the application
programs mentioned were statistical packages,
perhaps because the most commonly used pack-
ages do not provide very   flexible graphing op-
tions. Over a third of the applications were   spe-
cialized drawing programs (CricketGraph, Sig-
maPlot, and KaleidaGraph were the most popular,
but many others were mentioned).  About   10% of
the applications were general-purpose presentation
programs   (Powerpoint was the most popular) and
the final one-third was   general-purpose analysis
programs, with Microsoft Excel accounting   for

Table 3. Techniques for plotting data, as revealed
by an informal  survey.

Application Name Frequency

Microsoft Excel 55
CricketGraph 27

SigmaPlot 22
KaleidaGraph 17

SPSS 16
MATLAB 15

PowerPoint 10
DeltaGraph 9

S-plus 7
Mathematica 5

Microsoft Office 5
Systat 5

Igor/Igor Pro 4
Statistica 4
Gnuplot 3
Canvas 2

Hand plotting 2
StatView 3

ABC Graphics 1
Autocad 1

Axum 1
c graph-pac 1
ClarisDraw 1

Grapher 1
Graphpad 1
Illustrator 1

JMP 1
MacDraw 1
Maple 2D 1

Origin 1
PsiPlot 1

Quattro Pro 1
R 1

SciPlot 1
Smartdraw 1
TK solver 1
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Figure 2. Hypothetical data from a 5 (stimulus
exposure duration) x 3 (stimulus contrast level)
experiment. The dependent variable is proportion
correct recall. Error bars represent standard errors.
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the majority of these instances.  Excel was by far
the single   leading application used for graphing.
Seven respondents reported never graphing data,
while 13 assigned the task to someone else. Two
people reported still drawing graphs by hand. The
remaining 139 respondents used some form of
electronic graphing techniques.

At the present time, a brief description of
graphing programs is supplied by Denis Pelli (per-
sonal communication) and can be found at
http://vision.nyu.edu/Tips/RecSoftware.html.

Graph-Making Transgressions
I have tried to present a fairly bright picture of

the ease of creating high-quality graphs. There is,
however, a dark side of this process which is that a
graph-creator has the capability of going wild with
graphical features, thereby producing a graph that
is difficult or impossible to interpret. For example
David Krantz (personal communication) has noted
that, for example, graphmakers often attempt to
pack too much information into a graph, they pro-
duce graphs that are difficult to interpret without
intense serial processing, they produce unintended
and distracting emergent perceptual features, or
they simply omit key information either in the
graph itself of in the graph’s legend. There are, of
course, many other such transgressions, treatments
of which are found in the references provided in
the next section. (My own personal bête noire is
the 3-D bar graph.)

Other Graphical Representations
A discussion of graphs is limited in the sense

that there are myriad means of visually presenting
the results of a data set. It is beyond the scope of
this chapter to describe all of them. For an a set of
initial pointers to a set of sophisticated and  ele-
gant graphical procedures, the reader is directed to
excellent discussions and examples in Tufte (1983;
1990), Tukey (1977), and Wainer & Thissen
(1993). The main point I want to make is that pic-
torial representations almost always excel over
their verbal counterparts as an efficient way of
conveying the meaning of a data set.

The Use of Confidence Intervals
Earlier, I described the LM as the standard

model for linking a data set to the answer to the
scientific question at hand. Somewhere in a LM
equation (e.g., Equation 1) are always one or more
error terms which represent the uncertainty in the
world.

Using the LM to answer scientific questions is
a two-stage process. The first stage is to somehow
determine knowledge of relevant population pa-
rameters given measured sample statistics along
with the inevitable statistical noise. The second

stage is to use whatever knowledge emerges about
population parameters to answer the question at
hand as best as possible.

It seems almost self evident that that the sec-
ond stage—deciding the implications of the pat-
tern of population parameters for the answer to the
question at hand—should be the investigator’s
fundamental goal. In contrast, the typical routine
of statistical analysis—carrying out some proce-
dure designed to cope with the noise-limited rela-
tion between the sample statistics and the corre-
sponding population parameters—should be
viewed as a necessary but boring nuisance. If the
real world suddenly transformed into an ideal
world in which experiments produced no statistical
noise, it would be cause for rejoicing among in-
vestigators, as a major barrier to data interpretation
would be absent.

There are two basic procedures for coping
with statistical noise in quest of determining the
relations between a set of sample statistics and
their population counterparts. The first procedure
entails attempting to determine what the pattern of
population parameters isn’t, i.e., trying to reject a
null hypothesis of some specific, usually uninter-
esting, pattern of population parameters, via
NHST. The second procedure entails attempting to
determine what the pattern of population parame-
ters is, using the pattern of sample statistics as an
estimate of the corresponding pattern of popula-
tion parameters, along with error bars to represent
the degree of conclusion-obscuring statistical
noise. It is my (strong) opinion that trying to de-
termine what something is is generally more illu-
minating than trying to determine what it isn't.

The use of error bars, e.g., in the form of 95%
confidence intervals, around plotted sample statis-
tics (usually sample means) is an ideal way of pre-
senting data in such a way that the results of both
these two data-analysis and interpretation stages
are represented and that their relative importance
is depicted. Consider a plot such as the one shown
in Figure 2. The pattern of sample means repre-
sents the best estimate of the corresponding pat-
tern of population means. This pattern is funda-
mental to understanding how perception is influ-
enced by contrast and duration and it is this pattern
that is most obvious and fundamental in the graph.
Secondarily, the confidence intervals provide a
quantitative visual representation of the faith that
should be placed in the pattern of sample means as
an estimate of the corresponding pattern of popu-
lation means. Smaller confidence intervals, of
course, mean a better estimate: In the extreme, if
the confidence intervals were of zero length, it
would be clear that error was irrelevant, and that
the investigator could spend all his or her energy
on the fundamental task of figuring out the impli-



STEVENS HANDBOOK OF EXPERIMENTAL PSYCHOLOGY Page 12

cations of the pattern of population means for an-
swering the questions at hand.

The Interpretation of a Confidence Interval
The technically correct interpretation of a con-

fidence interval is this. Suppose that many random
samples of size n are drawn from some population.
For each sample the sample mean, M is computed,
and a confidence interval—suppose, for simplicity
of exposition, a 95% confidence interval—is
drawn around each mean. Approximately 95% of
these confidence intervals will include µ, the
population mean.

Returning now to Planet Earth, what does this
logic imply in the typical case wherein a single
mean is computed from a single sample, and a sin-
gle confidence interval is plotted around that sam-
ple mean? If the confidence interval were the only
information available to the investigator, then the
investigator would conclude that, with 95% prob-
ability, this confidence interval is one of the 95%
of all possible confidence intervals that include µ;
i.e., the simple conclusion can be drawn that with
95% probability the confidence interval includes
µ.

However, the caveat must be issued that
sometimes an investigator does have additional
information available (such information is, for in-
stance, the basis for doing a one-tailed rather than
a two-tailed test). In this case, the investigator’s
subjective probability that confidence interval
contains a population parameter may be influenced
by this additional information as well as by the
confidence interval itself. For instance, an investi-
gator examining a 95% confidence interval con-
structed around a particular sample mean may,
based on such other information, be skeptical that
it does in fact contains µ. Whether or not an in-
vestigator chooses to quantify such beliefs using
probabilities, it is sometimes misleading to state
unequivocally after examining the data, that the
particular interval has a 95% probability of in-
cluding µ.

Despite this caveat, however, construal of an
x% confidence interval as including the population
parameter with x% probability is generally a rea-
sonable rule of thumb (as distinguished from
something like, "since p < .05, Η0 is likewise true
with a probability of less than about .05," which is
definitely not a reasonable  rule of thumb).

Confidence Intervals Around Linear Combina-
tions of Variables

For many of the examples to follow, it is im-
portant to remind the reader of the relation be-
tween a confidence interval around a single mean,
and a confidence interval around a linear combi-
nation of means. In particular, suppose an experi-

ment results in a series of means, M1, M2,…, M J.
If the confidence interval around any of the Mj’s
has a length of X, then the confidence interval
around any linear combination of the means, k1M1
+ k2M2,…, + kJMJ, has a length of,

X k1
2 + k 2

2 + ...+ kJ
2 (Eq. 7)

The most frequent use of the property described by
Equation 7 is when a confidence interval around a
difference score, (M1-M2) is desired. In this situa-
tion, k1 = 1, k2 = -1, and the difference-score confi-
dence interval is therefore the individual-mean
confidence interval multiplied by 2 . Some addi-
tional implications of this fact will be provided
later in this chapter.

Confidence Intervals and Statistical Power
Within the context of NHST, the definition of

power is simple: As indicated earlier, it is the
probability of correctly rejecting the null hypothe-
sis given that the null hypothesis is false. However
(despite frequent requests on the part of journal
editors) explicit power analyses rarely make their
way into journal pages. The reasons for this deficit
appear to be twofold. First, to compute an exact
value of power requires a quantitative alternative
hypothesis which is almost never available. Sec-
ond, the concept of power, while seemingly
straightforward is, as anyone who has tried to
teach it well knows, almost impossible to get
across to anyone who hasn’t somehow figured it
out already. Many educators and authors give up
on the topic; for instance, Guilford (1942) in his
widely read Fundamental Statistics in Psychology
and Education declared power to be “too compli-
cated to discuss.”

As has been frequently noted, the issue of
power is particularly important if a scientific con-
clusion entails the acceptance of some null hy-
pothesis. In such a situation, it is incumbent on the
investigator to convince his or her audience that
the power of the relevant statistical test is high.
How is this to be done?

Because there is indeed a profound dearth of
quantitative alternative hypotheses in the social
sciences, a single value of power typically cannot
be computed. Therefore, some more general repre-
sentation of power must be concocted for a par-
ticular experiment. One occasionally suggested
such representation involves the use of power
curves (e.g., Hays, 1973; p. 359) whereby power is
plotted as a function of the value of the alternative
hypothesis.

Another way of representing power is via the
magnitude of confidence intervals. The rule here is
simple: greater the statistical power, the smaller
are the confidence intervals. To illustrate, imagine
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a hypothetical experiment in which a clinical re-
searcher is investigating the relative effectiveness
of two methods, Method A and Method B, of re-
ducing anxiety. Two groups of high-anxiety sub-
jects participate in the experiment, one receiving
Method A and the other receiving Method B. Fol-
lowing their treatment, subjects rate their anxiety
on a 7-point scale. Suppose that the experiment
results in a small, not statistically significant dif-
ference between the two methods. In what follows,
I will demonstrate two techniques of presenting
the results for two hypothetical cases: A low-
power case involving n subjects, and a high-power
case involving 100n subjects.

The first analysis technique incorporates stan-
dard NHST, along with a formal power analysis.
Figure 3 shows the graphical results of this kind of
analysis for the low-power case (left panels) and
the high-power case (right panels). The top panels
show bar graphs depicting the main experimental

results while the bottom panels show power curves
that depict power as a function of the difference
between two population means according to a
continuous succession of alternative hypotheses.
Power is represented by the slope of the power
curves. As illustrated by the arrows, the low-
power curve achieves a power of 0.90 when the
alternative hypothesis is that the population means
differ by about 3.0, while the high-power curve
achieves 0.90 when the alternative hypothesis is
that the population means differ by about 0.3.

Figure 4 shows a different way of representing
this power information for the same low-power
case (left panel) and high-power case (right panel).
Figure 4 again shows the bar graph, but here, the
bars are accompanied by 95% confidence intervals
around the means that they depict. The free-
floating error bars show the magnitude of the 95%
confidence interval around the population mean
differences in each of the panels. Here, power is
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represented quite simply by the size of the confi-
dence intervals which are large in the left (low-
power) graph, but small in the right (high-power)
graph.

In short, Figures 3 and 4 show the same in-
formation, However, Figure 4 presents the infor-
mation in a much simpler and more intuitive man-
ner than does Figure 3. Figure 4 makes it immedi-
ately and visually clear how seriously the sample
means and the sample mean differences are to be
taken as estimates of the corresponding population
means which, in turn, provides critical information
about how “nonsignificance” should be treated.
The left panel of Figure 4 leaves no doubt that
failure to reject the null hypothesis is a non-
conclusion—that there is not sufficient statistical
power to make any conclusions at all about the
relative magnitudes of the two population means.
The right panel, in contrast, makes it evident that
something very close to the null hypothesis is ac-
tually true—that the true difference between the
population means is, with 95% confidence, re-
stricted to a range of 0.277 which is very small in
the grand scheme of things.

Confidence Intervals or Standard Errors?
Thus far I have been using 95% confidence

intervals in my examples. This is one of the two
standard configurations for error bars, the other
being a standard error which is approximately a
67% confidence interval8. In the interests of stan-
dardization, one of these configurations or the

                                                     
8 The exact coverage of a standard error depends, of
course, on the number of degrees of freedom going
into the error term.

other should be used unless there is some compel-
ling reason for some other configuration.

I suggest, in particular, being visually conser-
vative, which means deliberately stacking the deck
against concluding whatever one wishes to con-
clude. This means, one should use 95% confidence
intervals, which have a greater effect of suggesting
no difference, when the interest is in rejecting
some null hypothesis. Conversely, one should use
standard errors, which have a greater effect of
suggesting a difference, when the interest is in
confirming some null hypothesis (as in, for exam-
ple, when comparing observed to predicted data
points in a model fit).

Different Kinds of Confidence Intervals
The interpretation of a confidence interval is

somewhat different depending on whether it is
used in a between-subjects or a single-factor
within-subjects (i.e., repeated-measures) design, a
multifactor within-subjects design, or a mixed de-
sign (some factors between, other factors within).
These differences are discussed in detail by Loftus
& Masson (1994). The general idea is as follows.

Between-subjects designs
A confidence interval is designed to isolate a

population parameter, most typically a population
mean, to within a particular range. A between-
subjects design constitutes the usual venue in
which a confidence interval has been used in psy-
chology, to the extent that confidence intervals
have been used at all. Consider as an example a
simple one-way ANOVA experiment in which the
investigator is interested in the effects of caffeine
on reaction time (RT). Four conditions are defined
by four levels of caffeine: 0, 1, 2, or 3 caffeine
units per unit body weight. Suppose that n = 10
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Figure 4. A second technique for carrying out a power analysis in the anxiety treatment method experiment.
Smaller confidence intervals reflect greater power.
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subjects are randomly assigned to, and participate
in each of the four conditions. The outcome of the
experiment is as represented in Figure 5a, which
shows the mean data (solid line) along with dashes
surrounding each mean which represent the 10
individual data points within each condition. The
results of an ANOVA are shown at the bottom left
of the panel and are straightforward. Note that the
total sum of squares which, of course, reflects the
total variability of all 40 scores in the experiment
is 16,426, and the 39 total degrees of freedom are
divided into 3 (between, i.e., caffeine) and 36 (er-
ror, i.e., within). (These factoids will become rele-
vant in the next section.)

Computing a confidence interval in such a de-
sign is entirely straightforward and is obtained by
the equation at the bottom of Figure 5b,

CI = ± MS(Within)
n

 

 
  

 

 
  crit t(dfW) (Eq. 8)

using the MS (Within) from the Figure-5a
ANOVA table. The error term going into the con-
fidence interval is the same as in the
ANOVA—MS (Within)—and the criterion t is
based on dfW, which is 36 in this example. The
resulting 95% confidence interval is ±11.52.

Single-factor within-subjects designs
I will now treat the exact same data that I have

just described as having come from a within-
subject design. That is I will treat the data assum-
ing that each of a total of n = 10 subjects had par-
ticipated, at one time or another, in each of the 4
conditions. It is now possible to draw an curve
relating RT to caffeine for each of the 10 subjects.
These curves, along with the same mean curve
from Figure 5, are shown in Figure 6a. At the

bottom of Figure 6a is the within-subjects
ANOVA. Note that the 16,426 total sum of
squares (now referred to as “between cells”) is
divided into caffeine conditions (as with the be-
tween-subjects design, equal to 4,810, and based
on 3 degrees of freedom), subjects (based on 9
degrees of freedom) and the subject x caffeine in-
teraction (based on 27 degrees of freedom). The
relative consistency of the caffeine effect across
the different subjects is represented graphically by
the relatively parallelness of the individual subject
curves, and is represented within the ANOVA by
the relatively small interaction (i.e., error) term of
MS (Interaction) = 20. The F ratio of 79.72 is con-
siderably greater in this design than it was in the
between-subjects design (where F = 4.97). The
reason for this is that a large portion of the error
variance—the between-subjects variability re-
flected by SS (Subjects) = 11,072—is irrelevant in
this within-subjects design whereas in the be-
tween-subjects design, this very same variability
formed part of the error term, i.e., was part of SS
(Within).

How should a confidence interval be con-
structed in this kind of within-subjects design?
Technically, as described earlier, a confidence in-
terval is designed to isolate a population mean
with some degree of probability. In this within-
subjects design, the uncertainty of any condition
population mean is based on the exactly the same
uncertainty as it was in the between-subjects de-
sign. More specifically, in the between-subjects
design this uncertainty was referred to as “within-
condition variance” and in that example, it was SS
(Within), based on 36 degrees of freedom. In this
within-subjects design, the location of a condition
mean is uncertain because of both variability due
to subjects, SS (Subjects) = 11,072 based on 9 de-
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  crit t(36) = 323
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 

 
  

 

 
  2.03 = ±11.52

(b)

Figure 5. Data from a hypothetical experiment in which RT is measured as a function of caffeine consumption in
a between-subjects design. The right panel shows the mean data with each mean surrounded by individual-subject
data points. The right panel shows 95% confidence intervals around the sample means.
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grees of freedom, and variability due to the subject
by condition interaction, SS (Interaction) = 543,
based on the remaining 27 degrees of freedom.
The combined error variance SS (Subjects plus
Interaction) is therefore 11,615, based on 36 de-
grees of freedom, just as it was in the between-
subjects design, and the confidence interval of
11.52 is therefore identical also.

Intuitively this seems wrong. Just as the
within-subjects design includes a great deal more
sensitivity, as reflected in the substantially greater
F ratio in the ANOVA, so it seems that the greater
sensitivity should also be reflected in a smaller
confidence interval. What is going on?

To answer this question, it is necessary to con-
sider not what a confidence interval is technically,
but what a confidence interval is generally used to
accomplish. An investigator is not usually inter-
ested in absolute values of population means, but
rather is interested in patterns of population
means. So for instance, in the Figures 5 and 6 data
the mean RT declines from approximately 240 ms
to 215 ms across the caffeine conditions. How-
ever, it is not the exact means that are important
for determining caffeine’s effect on RT; but rather
it is the decrease, or perhaps the form of mathe-
matical function describing the decrease that is of
interest9.

                                                     
9 I should note that this is not always true. Sometimes
an investigator is interested in isolating some popula-
tion mean. An obvious example would be when the
investigator wishes to determine whether performance
in some condition is at a chance value.

This observation has an important implication
for the interpretation of confidence intervals: Con-
fidence intervals are rarely used in their “official”
role of isolating population means. Instead, they
are generally used as a visual aid to judge the reli-
ability of a pattern of sample means as an estimate
of the corresponding pattern of population means.
In the Figure-5 between-subjects data, for in-
stance, the confidence intervals indicate that a hy-
pothesis of monotonically decreasing population-
mean RT’s with increased caffeine is reasonable.

How does this logic relate to within-subjects
designs? The answer, detailed by Loftus and Mas-
son (1994) is that a “confidence interval” based on
the interaction variance is appropriate for the goal
of judging the reliability of a pattern of sample
means as an estimate of the corresponding pattern
of population means; thus the within-subjects con-
fidence interval equation is,

CI = ± MS(Interaction)
n

 

 
  

 

 
   crit t(dfI) (Eq. 9)

where n again represents the number of observa-
tions on which each mean is based (n = 10 in this
example). Using Equation 9 (see Figure 6b), the
confidence intervals in Figure 6a were computed
using the MS (Interaction) shown in the ANOVA
table within Figure 6a. The resulting confidence
interval is ±3.21. This value is, of course, consid-
erably smaller than the between-subjects, Figure-5
counterpart of 11.52. It bears emphasis, however,
this apparent increase in power comes about be-
cause information is lost: In particular the confi-
dence intervals no longer isolate absolute values of
population means; rather they are appropriate only
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  
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 
  2.26 = ±3.21

(b)

Figure 6. Data from a hypothetical experiment in which RT is measured as a function of caffeine consumption in
a within-subjects design. All 40 data points are the same as those shown in Figure 5. The right panel shows the
mean data (heavy line) along with individual-subject data points (light lines). The right panel shows 95% “within-
subject” confidence intervals around the sample means that is based on the subject x interaction variance.
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for assessing the reliability of the pattern of sam-
ple means as an estimate of the underlying pattern
of population means. That is, they serve the same
function as they do in the between-subjects
ANOVA.

Confidence intervals in multifactor within-
subjects designs

In a pure between-subjects design, there is
only one error term, MS (Within), irrespective of
the number of factors in the design. Therefore,
assuming homogeneity of variance, a single confi-
dence interval, computed by Equation 8 or Equa-
tion 9, is always appropriate.

In a multifactor within-subjects design, the
situation is more complicated in that there are
multiple error terms, corresponding to multiple
subject-by-something interactions. For instance, in
a two-factor within-subjects design, there are three
error terms: One corresponding to Factor A, one
corresponding to Factor B, and one corresponding
to the (AxB) interaction. These error terms are
summarized in Table 4, for a standard two-factor,
within-subjects design10. This raises the problem
of how to compute confidence intervals, as it
would appear that there are as many possible con-
fidence intervals as there are error terms. Which
confidence interval(s) are appropriate to display?

Often the answer to this question is simple,
because in many such two-factor designs—and in
many multifactor within-subjects designs in gen-
eral—the error terms are all roughly equal (i.e.,
differ by no more than a factor of around 2:1). In
such instances, it is reasonable to simply pool er-
ror terms, that is to compute an overall error term
by dividing the sum of the sum of squares (error)
                                                     
10 With more than two factors, the same general argu-
ments to presented below hold, they are simply more
complex, because there are yet more error terms; e.g.,
in a three-factor, within-subjects design, there are 3
main-effect error terms, 3 two-way interaction error
terms, and 1 three-way interaction error term, or 7 er-
ror terms in all.

by the total degrees of freedom (error) to arrive at
a single “subject x condition” interaction, where a
“condition” is construed as single combination of
the various factors (e.g., a 5 x 3 x subjects design
would have 15 separate conditions). This single
error term can then be entered into Equation 9 to
compute a single interaction. Here “dfI” refers to
degrees of freedom in the total interaction between
subjects and conditions. So, for instance, in a 5
(Factor A) x 3 (Factor B) x 20 (subjects) design,
dfI would be (15-1) x (20-1) = 266. As before, “n”
in Equation 9 refers to the number of observations
on which each mean is based: 20 in this example.

Of course, Nature is not always this kind, and
the investigator sometimes finds that the various
error terms have widely varying values. In this
situation, the investigator is in a position of having
to provide a more complex representation of con-
fidence intervals, and the situation becomes akin
to that described in the next section where a mixed
design is used.

Confidence intervals in mixed designs
A mixed design is one in which some of the

factors are between subjects and other factors are
within subjects. For simplicity, I will describe the
simplest such design: a two-factor design with one
between-subjects factor and one within-subjects
factor (see also, Loftus & Masson, 1994, pp. 484-
486).

Imagine the caffeine experiment described
above except that two different subject populations
are investigated: young adults (in their 20’s) and
older adults (in their 70’s); thus there are two vari-
ables, one of which (caffeine) is within-subjects
and the other of which (age) is between subjects.
Again, there are n = 10 subjects in each of the two
age groups. Suppose that the data are as depicted
in Figure 7a (note that again, the relevant ANOVA
table is provided at the bottom of the figure).

As described many standard statistics text-
books, there are two error terms in this design. The
error term for the age effect is MS (Subjects
within age groups) = 1,656, while the error term
for caffeine and for the caffeine x age interaction
is the MS (Caffeine x Subjects) = 99. There are,
correspondingly, two separate confidence intervals
that can be computed. The first, computed by
Equation 9, is the kind of “within-subjects” confi-
dence interval that was described in the previous
section. This confidence interval which, as indi-
cated at the bottom of Figure 7b is computed to be
±6.3, is appropriate for assessing the observed ef-
fects of caffeine and of the age x caffeine interac-
tion as estimates of the corresponding population
effects. This confidence interval is plotted around
each of the cell means in Figure 7b. Note that this
confidence interval is not appropriate for describ-

Table 4. ANOVA table for a two-factor, within-
subjects design.

Source Degrees of freedom Error term

Factor A (A) df(A) MS (A x S)
Factor B (B) df(B) MS(B x S)

Inter.  (AxB) df(A x B) MS(A x B x S)
Subjects (S) df(S)

A x S df(A) x df(S)
B x S df(B) x df(S)

(A x B) x S df(A) x df(B) x df(S)
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ing the absolute age effect. The easiest way to
conceptualize what this means is to think of an
extreme situation in which the within-subjects
confidence interval were zero; thus one could be
entirely confident of the nature of the caffeine ef-
fect and of the interaction (that is, one could be
entirely confident of the shape of each of the two
curves in Figure 7). However, the vertical relation
of the two age curves to one another would still be
uncertain.

How uncertain? This would be determined by
the size of the other, “between-subjects” confi-
dence interval, based on MS (Subjects). As shown
at the bottom of Figure 7b, the equation for com-
puting this confidence interval is,

CI = MS(Subjects)
nxJ

 crit t(dfS)

or 13.5. The value of this confidence interval,
along with a pictorial representation of its value is
shown in the middle of Figure 7b. Because there
are only two age levels, an alternative way of de-
picting the age effect would be in terms of the age
difference: The confidence interval around a dif-
ference score is always equal to the confidence
interval around the individual component times

2 . In this example, the observed mean differ-
ence is 25 ms, so the confidence interval around
this mean difference score would be 25±(13.5 x

2  ) = 25±19.1.
Why is the denominator of Equation 9 nxJ (=

4x10 = 40 in this example) rather than the usual n
(= 10 in this example) as would be the case if this
were a pure between-subjects design? The reason
for this further illustrates the different conclusions

that can be made from a within-subjects design
compared to a between-subjects design. In a
purely between-subjects design, the confidence
interval applies to a single condition mean. How-
ever, in this kind of mixed design, the confidence
interval for the between-subjects fac-
tor—age—applies to the entire age curves rather
than just a single mean. For this reason, the confi-
dence interval is actually around an entire curve
mean which is based on nxJ, or in this case, 40
observations. Again, this issue is most easily con-
ceptualized by imagining the situation in which
the within-subjects confidence interval is zero, and
that the only uncertainty in the experiment is of
age. The age uncertainty applies to an entire curve,
not an individual mean; that is, once a given mean
within a particular curve is known, the remaining
three means in the curve are similarly known.

Confidence intervals around interaction ef-
fects

Often the nature of an interaction is a key
factor underlying the conclusions that are made
from some data set. Interactions with more than a
single degree of freedom are the topic of a later
section on contrasts. In this section, I will briefly
describe how a one-degree-of-freedom interaction
may be assessed as a single value plus a confi-
dence interval rather than within the usual hy-
pothesis-testing context.

Table 5 shows a hypothetical example of 2x2
design. The magnitude of the interaction may be
computed as:

I = (M21 - M22) - (M11 - M12)
which in this case is, I = 2.0. Suppose that the con-
fidence interval around the individual mean is
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Caffeine 3 15,791 5,264 53.278
Age 1 12,128 12,128 7.322

C x A 3 1,445 482 4.876
Subj 18 29,812 1,656
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  crit t(18) = 1,656
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 
  2.10 = ±13.5

Figure 7. Data from a hypothetical experiment in which RT is measured as a function of caffeine consumption.
Caffeine consumption is varied within subjects, and two different age groups are included. The right panel shows
95% “within-subject” confidence intervals around the sample means that is based on the subject x interaction
variance, along with a free-floating confidence interval that is appropriate for comparing the two age curves.
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computed to be X (e.g., suppose X = 0.4 in this
example). Thus, by Equation 7, the confidence
interval around this interaction magnitude is,

I ± x 12 +12 +12 +12 = I ± 2X

which, in this example, would be 2.0 ± 0.8.

Asymmetrical confidence intervals
Thus far in the chapter I have been describing

confidence intervals that are symmetrical around
the obtained sample statistics (generally the sam-
ple mean). However, some circumstances demand
asymmetrical confidence intervals. In this section,
I will describe how to compute asymmetrical con-
fidence intervals around three common statistics:
variances, Pearson r’s, and binomial proportions.
In general, asymmetry reflects the bounded nature
of the variable: variances are bounded at zero;
Pearson r’s are bounded at ±1).

Confidence intervals around variances
As described by Hays (1973, pp. 441-445) the

confidence interval for a sample variance based on
n observations (Xi’s) with mean M, is:

        (Upper limit):  
(n-1)estσ 2

χ2(n −1;  p(upper limit))

CI =

        (Lower limit):  
(n-1)estσ2

χ2(n −1; p(lower limit))

Here, estσ2 (or s2 in Hays’ notation) is the best
estimate of the population variance computed by,

estσ 2 =
(Xij − M)2

i=1

n
∑

n −1
=

X i
2 − nM2

i=1

n
∑

n −1

and p(upper limit) and p(lower limit) are the prob-
ability boundaries for the upper and lower limits of
the confidence interval (e.g., 0.975 and 0.025 for a
95% confidence interval).

Suppose, to illustrate, that a sample of n = 100
scores produced a sample variance, estσ2 = 20.

The upper limit of a 95% confidence interval
would be,

(100-1)(20)
χ2(9,0.975)

= 99x20
73.36

= 26.99

while the lower limit would be,

(100-1)(20)
χ2(9,0.025)

= 99x20
128.42

=15.42

Confidence intervals around Pearson r’s
The confidence interval around a Pearson r is

based on Fisher’s r-to-z transformation. In par-
ticular, suppose a sample of n X-Y pairs produces
some value of Pearson r. Given the transformation,

z = 0.5ln
1+ r
1− r

 
  

 
  (Eq. 10)

z is approximately normally distributed, with an
expectation equal to

0.5ln
1 + ρ
1 − ρ

 

 
 

 

 
 

where ρ is the population correlation of which r is
an estimate, and a standard deviation of

σ = 1/(n− 3)

Therefore, having computed an obtained z from
the obtained r via Equation 10, a confidence inter-
val can easily be constructed in z-space as

z ± criterion z
where the criterion z corresponds to the desired
confidence level (e.g., 1.96 in the case of a 95%
confidence interval). The upper and lower z limits
of this confidence interval can then be transformed
back to upper and lower r limits.

Suppose, for instance, that a sample of n = 25
X-Y pairs produces a Pearson r of 0.90, and a 95%
confidence interval is desired. The obtained z is
thus,

z = 0.5 x ln [(1+.90)/(1-.90)] = 1.472

which is distributed with a standard deviation of

1/(25− 3) = 0.213 .

The upper and lower confidence interval limits in
z-space are therefore

1.472+(.213)(1.96) = 1.890

and

1.472-(.213)(1.96) = 1.054.

To translate from z-space back to r-space, it is
necessary to invert Equation 10, It is easily shown
that such inversion produces,

Table 5. Hypothetical data from a 2 x 2 facto-
rial design.

Factor 1
Level 1 Level 2

Level 1 M11 = 5 M21 = 8
Factor 2

Level 2 M12 = 7 M22 = 12
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r = e2 z − 1
e2 z + 1

(Eq. 11)

The upper and lower confidence-interval limits
may then be computed from Equation 11:

upper   l imi t :  r=
e2x1.890 −1
e2x1.890 +1

= 0.955

and

lower  limit :  r =
e2x1.054 −1
e2x1.054 +1

= 0.783

Thus, the 95% confidence interval around the
original obtained r of 0.90 ranges from 0.783 to
0.955.

Confidence intervals around binomial pro-
portions
To compute confidence intervals around bi-

nomial proportions, note first that the equation for
the standard deviation of a proportion is,

 σ = pq
n

where p is the proportion, q is (1-p) and n is the
number of observations.

Suppose now that we wish to compute the up-
per limit of a X% confidence interval. Call the
corresponding criterion z, zX (e.g., zX = 1.64 for a
90% confidence interval, zX = 1.96 for a 95% con-
fidence interval, and so on). It follows then that
the upper limit, U, for an X% confidence interval
around some obtained proportion, p, can be writ-
ten as,

U = p + 1
2n

+z Xσ =p + 1
2n

+ zX

U(1− U )
n

 Eq. 12

where the factor (1/2n) is to correct for continuity,
as the normal approximation to the binomial is
most easily used in these computations. The equa-
tion for the lower limit, L, is the same except that
the second plus sign in Equation 12 is replaced
with a minus sign, i.e.,

L = p + 1
2n

− zXσ =p + 1
2n

−z X

L(1− L)
n

This equations for both U or L, can, after suitable
algebraic manipulation, be written as standard
quadratics of the form,

aU2 + bU + c = 0

and,

aL2 + bL + c = 0

where for both U and L, the values of a, b, and c
can be computed as,

a =1+ zX
2

n
Eq. 13

and,

b = −2p− z X
2

n
− 1

n
Eq. 14

and

c = p2 + p
n

+ 1
4n 2

Eq. 15

The seemingly odd fact that the values of a, b, and
c are the same for both U and L comes about be-
cause when, as part of the aforementioned alge-
braic manipulation, one squares the far-right term
in Equation 12: the minus sign in the equation for
L disappears and hence the equations for U and L
become identical. Nevertheless, distinct values for
both U and L emerge from the quadratic solution
below.

A quadratic equation of the form,

aX2 + bX + c  = 0

has two solutions, which are computed as follows.

X = −b ± b2 − 4ac
2a

Eq. 16

When the values of a, b, and c obtained by Equa-
tions 13, 14, and 15 are plugged into Equation 16,
the two resulting solutions correspond to the U and
L, the upper and lower limits of the confidence
interval.

As an example, supposed that an obtained
proportion of p = .96 is obtained based on n = 5
observations, and suppose one wishes to compute
a 99% confidence interval around this obtained
value of p = .96. The criterion z for a 99% confi-
dence interval is zX = 2.576. There is now suffi-
cient information to compute the values of the
quadratic-equation coefficients, a, b, and c via
Equations 13-15. They are, a = 2.327, b = -3.447.
and c = 1.124. Plugging these three values, in turn,
into the Equation 16 leads to solutions—upper and
lower limits—of U = 0.997 and and L = 0.484.

Homogeneity of Variance
Let us return to the standard, one-way, be-

tween-subjects ANOVA design, as exemplified
the RT-as-a-function-of-caffeine example (see
Figure 5). There is only a single MS (Error) in this
design, in this case MS (Within) = 323. Computa-
tion of this single MS (Within) rests on the homo-
geneity of variance assumption which is this: Al-
though the treatment in some experiment (caffeine
variation in this example) may affect the popula-
tion means, it does not affect population variances.
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Accordingly, there is assumed to be a single
population variance, σ2, that characterizes the
populations corresponding to all levels of the in-
dependent variable. Although not apparent in the
usual formulas, the MS (Within) is the weighted
average of separate estimates of σ2 obtained from
each level of the independent variable11.

The homogeneity of variance assumption, al-
though almost invariably false, is necessary for
carrying out an ANOVA. The consequences of
violating the homogeneity of variance assumption
to a mild degrees are not severe (see, e.g., Hays,
1973, pp. 481-483). The homogeneity of variance
assumption is not necessary at all, however, for
computing confidence intervals. In the following
sections, I will touch on computation of confi-
dence intervals in the absence of the homogeneity
of variance assumption in several representative
designs and, in the process, demonstrate the value
of confidence intervals in illuminating the effects
of the independent variable on condition variance
as well as on condition mean.

Single-factor between-subjects designs
In a single-factor between-subjects design

such as the one illustrated in Figure 5, the relevant
LM equation is,

Yij = µ + αj + eij (Eq. 17)

where Y ij is the score for Subject i in Condition j,
µ is the grand population mean, αj is the effect of

                                                     
11 The weighting is by degrees of freedom. In the ex-
ample at hand, there are equal n’s and hence equal de-
grees of freedom in each condition.

Treatment (Condition) j, and eij is an error associ-
ated with subject i in Condition j. Homogeneity of
variance is reflected by the assumption that the
eij’s are distributed normally with a mean of zero
and a variance, σ2, that is independent of j.

If the investigator is willing to forego an
ANOVA, the homogeneity of variance assumption
may be dropped in favor of the more general and
realistic assumption that the independent variable
affects condition variance as well as condition
mean, i.e., that the variance of the eij’s in Equation
17 is σ2

j for Condition j. To illustrate, let us return
to the single-factor caffeine experiment whose
results are depicted in Figure 5. Suppose, that the
data from this experiment had turned out as de-
picted in Figure 8a. Making the standard homoge-
neity of variance assumption, a single confidence
interval can be computed based on MS (Within)
and displayed as shown.

Suppose that the homogeneity of variance as-
sumption necessary for the ANOVA were
dropped, and separate confidence interval’s were
computed for each condition by,

CI j =
estσ j

2

n j

 

 

 
 

 

 

 
  crit t(n j −1)

where j indexes condition. Here, estσj
2 is the esti-

mate of Condition j’s population variance, com-
puted by

estσ j
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(x ij − M j )2
i=1

n j

∑

n j −1
=

xij
2 − Tj

2 / n j
i=1

n j

∑

n j −1

100

150

200

250

300

0.0 1.0 2.0 3.0

R
ea

ct
io

n 
tim

e 
(m

s)

Caffeine (units per body weight)

(a)

ANOVA
Source df SS MS Obt F

Btwn 3 19,150 6,383 3.59*
Within 36 63,968 1,777

Total 39 83,118 8,160
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Figure 8. Caffeine data from a hypothetical between-subjects design similar to that of Figure 6. Homogeneity of
variance is assumed (as usual) in the left panel, wherein an ANOVA is possible, and equal-sized 95% confidence
intervals are shown. Homogeneity of variance is not assumed in the right panel. An ANOVA cannot be carried
out; however the different-sized 95% confidence intervals represent the differently estimated variances in the
different conditions.
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where T j, M j and nj are, respectively, the total of,
mean of, and number of subjects in the jth condi-
tion (nj = 10 for all conditions in this example).
Note that whereas when assuming homogeneity of
variance as in Figure 8a, the criterion t for the con-
fidence interval is based on degrees of freedom
within (36 in this example). When not assuming
homogeneity of variance, the criterion t for the
Condition-j confidence interval is based on (nj-1)
degrees of freedom, the number of degrees of
freedom in Condition j.

These new confidence intervals—computed
not assuming homogeneity of variance—are plot-
ted in Figure 8b, which provides important intui-
tive pictorial information about the effect of caf-
feine on variance that is not available in the
ANOVA of Figure 8a. In particular, it suggests
that caffeine’s effect on the variance should be
construed as at least as important as caffeine’s ef-
fect on the mean.

Multi-factor between-subjects designs
Considerations involving homogeneity of

variance become more complex when more than a
single factor is included in the design, as there are
many configurations of variance homogeneity that
could be assumed. For a two-factor, JxK design,
the most coherent possibilities are as follows. (For
simplicity, I assume equal n’s in all conditions).

1. Complete homogeneity of variance is assumed.
In this case, a single confidence interval can be
computed, appropriate for each of the JxK con-
ditions, based on (JxK)x(n-1) degrees of free-
dom within.

2. No homogeneity of variance is assumed at all.
In this case, a confidence interval can be com-
puted independently for the each of the JxK
conditions. The confidence interval for the JKth
condition is based on (n-1) degrees of freedom.

3. Homogeneity of variance can be assumed across
the J levels of Factor 1 but not across the K
levels of Factor 2. In this case, K confidence
intervals are computed, one for each level of
Factor 2, each based on Jx(n-1) degrees of
freedom. The confidence interval for Level k of
Factor 2 is appropriate for all J Factor-1 levels
within Level k of Factor 2.

4. Conversely, homogeneity of variance can be
assumed across the K levels of Factor 2 but not
across the J levels of Factor 1. In this case, J
confidence intervals are computed, one for each
level of Factor 1, each based on Kx(n-1) de-
grees of freedom. The confidence interval for
Level j of Factor 1 is appropriate for all K
Factor-2 levels within Level j of Factor 1.

Single-factor within-subjects designs
In a single-factor within-subjects design illus-

trated in Figure 6, the issue of homogeneity of
variance is somewhat complicated. The relevant
LM equation is,

Yij = µ + βi + αj + γ ij

where Yij, and αj are as in Equation 17, βi is an
effect of Subject i, and γij is an “interaction term”
unique to the Subject i x Condition j combination.
Homogeneity of variance in this design is the as-
sumption that the γij terms are all distributed nor-
mally with a variance of σ2. Dropping the homo-
geneity of variance assumption would allow the
variance of the γij terms to have different variances
σ2

j for the different conditions, j.
Estimation of the separate σ2

j’s is described by
Loftus and Masson (1994), p. 484 and in their Ap-
pendix B. Unlike the corresponding between-
subjects situation described in the previous sec-
tion, such separate estimation is sufficiently in-
volved that I will not re-describe it here. Moreo-
ver, the procedure entails potential estimation
problems described by Loftus and Masson (that
are exacerbated by small sample sizes). For this
reason, it is not recommended that this procedure
be used unless there is very good reason to do so.

Multi-factor within-subjects designs
Many of the same considerations that apply to

multi-factor between-subjects designs apply simi-
larly to multi-factor within-subjects designs. Con-
sider for example a J (Factor 1) x K (Factor 2) x n
(subjects) design. Although, as just noted, it is
somewhat tedious to estimate different variances,
σ2

j, of the γ’s corresponding to the J different lev-
els within a given factor, it is simple to estimate
values of γ if they are presumed different for dif-
ferent levels of Factor 2, but, within each level of
Factor 2, the same for all levels of Factor 1: One
need only apply Equation 9 separately and inde-
pendently for each level of Factor 2. (And, of
course, the same logic applies reversing Factors 1
and 2).

To illustrate, suppose that again the effect of
caffeine on RT is under consideration. In this hy-
pothetical example, Factor A is amount of caffeine
(which again can be one of four levels), while
Factor B is amount of sleep deprivation which is
either 1 or 24 hours. Suppose n = 10 subjects par-
ticipate in each of the 8 caffeine x deprivation
conditions. Assume for the sake of argument that
the three error terms—the interactions of subject x
caffeine, subject x deprivation, and subject x caf-
feine x deprivation—are approximately the same.
Using the logic described above, the investigator
could compute a single confidence interval using
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the combined error term, which would be based on
9 (degrees of freedom for subjects) x 7 (degrees of
freedom for the 8 conditions) = 63 degrees of
freedom (or alternatively, 9x3 + 9x1 + 9x3x1 = 63
degrees of freedom if one prefers to think in terms
of adding the degrees of freedom from the three
separate error terms).

Suppose alternatively, that the investigator
were suspicious that the effect of caffeine was less
consistent over subjects with 24 hours of sleep
deprivation than with 1 hour of sleep deprivation.
Again, foregoing a standard ANOVA, the investi-
gator could essentially view the design as com-
prising two separate experiments—one involving
the effect of caffeine on RT following one hour of
sleep deprivation and the other involving the effect
of caffeine on RT following 24 hours of sleep dep-
rivation. Two confidence intervals could then be
computed, each based one of these two “separate
experiments”—i.e., each based on the subject x
caffeine interaction within one of the sleep-
deprivation levels—and each based on 9x3 = 27
degrees of freedom.

Planned Comparisons (Contrasts)
Psychological research, along with the analy-

sis of psychological data, varies widely in the de-
gree of quantitative sophistication that is used. At
or near one end of this continuum is the use of
mathematical process models to generate quanti-
tative predictions for the summary statistics ob-
tained in an experiment (and in some cases, distri-
butions of the raw data as well) (see, e.g., Myung
& Pitt’s chapter, this volume). At, or near the other
end of the continuum is NHST used to evaluate
verbally presented hypotheses wherein the  only
mathematical model is  some form of the standard
linear  model. The use of planned comparisons
falls somewhere in the middle. Planned compari-
sons provide an organized and systematic means
of accounting for variability between conditions in
some experiment.

The formal logic and details of the use of
planned comparisons is presented Hays (1973, pp.
584-593). The basic logic of a planned comparison
is as follows
1. Some hypothesis about what the pattern of

population means looks like is used to generate
a set of numbers called weights—one weight
corresponding to each condition in the experi-
ment. The general idea is that the pattern of
weights over conditions correspond to the pat-
tern of population means that is predicted by
the hypothesis. (It is important to realize that,
unlike a mathematical model designed to gen-
erate an exact quantitative prediction for each
condition, each individual weight of a planned

comparison need not bear any particular rela-
tion to its corresponding sample mean. Rather,
it is the pattern of weights that should corre-
spond to the predicted pattern of means. In
most applications of planned comparisons, the
weights must sum to zero, in which case the
comparison is conventionally referred to as a
contrast.

2. The correlation (Pearson r2) between the hy-
pothesis weights and the sample means is com-
puted. This Pearson r2, like any Pearson r2, is
interpreted as the percent of variance between
conditions, i.e., the percent of SS (Between),
that is accounted for by the hypothesis.

3. Accordingly the product of the Pearson r2 and
SS (Between) is interpretable as a sum of
squares. This sum of squares is based on one
degree of freedom.

4. Within the context of NHST two null hypothe-
ses can be tested. The first, which I label a
“uselessness null hypothesis” is that the corre-
lation between the hypothesis weights and the
condition population means is 0.0 (informally,
that the hypothesis is useless as a descriptor of
reality). The second, which I label a “suffi-
ciency null hypothesis” is that the correlation
between the hypothesis weights and the condi-
tion population means is 1.0 (informally, that
the hypothesis is sufficient as a descriptor of
reality).

An Example of the Use of Planned Compari-
sons

Suppose that an investigator is studying fac-
tors that influence attitude change. The general
paradigm is this. Subjects listen to a speaker who
describes the benefit of a somewhat controversial
issue, specifically clearcutting in national forests.
Following the speech, the subjects rate the degree
to which they favor the speaker’s position on a
scale from 1 (“don’t agree at all”) to 7 (“agree
fully”). In an initial experiment, the effect of
speaker affiliation is investigated. In J = 5 condi-
tions, subjects are provided either (1) no informa-
tion, or information that the speaker is a member
of (2) the Sierra Club, (3) the Audubon Society,
(4) the timber industry, or (5) the paper industry.
The Conditions are summarized in Table 6, Panel
A.

Suppose the investigator wishes to test a hy-
pothesis which is the conjunction of the following
two assumptions. First, knowing something about
the speaker leads to more attitude change than
knowing nothing at all. Second, attitude change is
greater for speakers whose affiliated organization
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is perceived to oppose the expressed opinion (i.e.,
the Sierra Club and the Audubon Society are per-
ceived to oppose clearcutting) than for speakers
whose affiliated organization is perceived to sup-
port the expressed opinion (i.e., the timber and
paper industries are perceived to support clearcut-
ting).

To assess the viability of this hypothesis, the
sample means are plotted in Figure 9 along with
the confidence intervals. The pattern of observed
sample means appears to roughly bear out the hy-
pothesis: The “None” condition produces the low-
est mean persuasion value, the Sierra-Club and
Audubon-Society values are highest, and the tim-
ber and paper industry conditions are intermediate.

To acquire a quantitative handle on this appar-
ent confirmation of the hypothesis, a planned
comparison is carried out. To do this, the investi-
gator’s first job is to create a set of weights that
reflects the hypothesis described above. The first
step in doing so is to create weights ignoring for
the moment the  constraint that the weights must
sum to zero. The simplest such weights would as-
sign zero to the “None” condition, 2’s to the Sierra
Club and Audubon Society conditions, and 1’s to
the timber industry and paper industry conditions.
These weights are provided in the Table-6, Panel-
A column labeled “W j(1)”. The next step is to pre-

serve the pattern produced by this set of weights
but make the weights add to zero. This is easily
accomplished by computing the mean of the
Wj(1)’s, which is 1.2, and subtracting that mean
from the Wj(1)’s to generate a set of deviation
scores which, while preserving the pattern of the
Wj(1)’s are, of course, guaranteed to add to zero.
The resulting final weights are provided in the
fourth column, labeled “Wj(2)”. (It is worth
pointing out that this any-numbers-then-make-
deviation-scores trick is quite useful for generating
weights in any situation.)

Percent of between-condition variance ac-
counted for by the hypothesis

As noted, a basic goal is to compute the Pear-
son r2 between the sample means and the weights
corresponding to the hypothesis. Although this
could easily be done using the standard Pearson-r2

equation, it is more instructive, within the context
of planned comparisons, to do the computation via
a somewhat different route. In particular, a sum of
squares due to the hypothesis may be computed
using the equation,

SS(Hypothesis) =
n MjWj

j=1

J
∑

 

 
  

 

 
  

Wj
2

j=1

J
∑

2

(Eq. 18)

where n is the number of subjects in each condi-
tion (n = 20 in this example). Applying Equation
18 to the present data produces SS (Hypothe-
sis) = 194.6, shown in the Table-6, Panel-B
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Figure 9. Data from a hypothetical experiment in
which attitude change (rating) is measured as a func-
tion of the perceived affiliation of the speaker. The
error bars are 95% confidence intervals.

Table 6. Data from a hypothetical experiment in
which attitude change (rating) is measured as a
function of the perceived affiliation of the
speaker. Panel A provides original data plus two
successively constructed sets of weights: The
W(2)’s are deviation scores obtained from the
W(1)’s. Panel B shows the ANOVA results for the
contrast and for the residual.

A. Means (Mj’s) and
Construction of Weights (Wj'’s)

Speaker information Mj Wj(1) Wj(2)

None 2.25 0 -1.20
Sierra Club 6.05 2 0.80

Audubon Society 5.50 2 0.80
Timber industry 3.70 1 -0.20

Paper industry 2.90 1 -0.20

B. ANOVA

Source df SS MS F %var =

r2

Between 4 215.7
Hypothesis 1 194.6 194.6 19.86 0.902

Residual 3 21.1 7.0 0.72 0.098
Within 95 931.0 9.8
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ANOVA table. The ratio of SS (Hypothesis) to SS
(Between) is 194.6/215.7 = 0.902 which is the
sought-after Pearson r2 between the Wj’s and the
Mj’s.

This sum of squares representing, as it does, a
single pattern of variation across the five condi-
tions, is based on one degree of freedom. By sub-
traction one can compute the portion of SS (Be-
tween) that is not accounted for by the hypothesis:
This is 215.7-194.6 = 21.1, a value which is re-
ferred to as SS (Residual). SS (Residual) repre-
sents all forms of variability other than that engen-
dered in the original hypothesis and is based on 3
degrees of freedom = 4 (df (Between)) - 1(df (Hy-
pothesis)).

Mean squares can be computed in the normal
fashion based on sums of squares and degrees of
freedoms due to the hypothesis and the residual;
these mean squares are in the column labeled
“MS.” If one is inclined to work within the NHST
framework, then these mean squares are used to
test two null hypotheses12.

A “uselessness” null hypothesis
The Pearson r2 of 0.902 shown in Table-6

“%var = r2” column is the r2 between the sample
means (Mj’s) and the weights (Wj’s). As in any
situation involving unknown population parame-
ters, it would be of more interest to address the
Pearson r2 between the Wj’s and the population
means, i.e., the µj’s. Two null hypotheses are rele-
vant to this issue. The first is the null hypothesis
that the Pearson r2 between the Wj’s and the µj’s is
zero, i.e., that the hypothesis is useless as an ac-
count of SS (Between). If this were true, then the
MS (Hypothesis) as shown in Table 6 is an esti-
mate of MS (Within) and a standard F test can be
carried out wherein F (dfH, dfW) = MS (Hypothe-
sis)/MS (Within). As indicated in Table 6, this F,
which is 19.86 is statistically significant, thereby
allowing rejection of this “uselessness null hy-
pothesis”.

A “sufficiency” null hypothesis
The second null hypothesis is that the Pearson

r2 between the Wj’s and the µj’s is 1.0, i.e., that the
hypothesis is sufficient to account for SS (Be-
tween). Testing this null hypothesis entails an F
ratio of MS (Residual) against MS (Within). In
Table 6, it can be seen that the resulting F(3, 95) is
0.72 which is, of course, nonsignificant.

                                                     
12 Some terminology glitches arise here. I want to em-
phasize that the term “hypothesis” when used alone
refers to a form of an alternative hypothesis. The term
“null hypothesis” refers to the two specific quantita-
tive hypotheses  that will be described.

Reminder of problems with NHST
It is of course necessary to bear in mind that

these uses of NHST carry with them all of the
problems with NHST described earlier. In par-
ticular, an outcome such as the one portrayed in
Table 6—that the hypothesis is significant, but the
residual is not—should be accompanied by a
number of caveats, the most important of which is
that failure to reject the “sufficiency null hypothe-
sis” does not mean that the sufficiency null hy-
pothesis is correct. Indeed in the present example
it should set off alarm bells that only 90% of the
between-condition variance is accounted for by the
hypothesis. These are the same alarm bells that
should be set off by the relatively large confidence
intervals that are depicted in Figure 9.

Planned Comparisons of Linearity
A frequent use of planned comparisons is to

test a hypothesis of linearity. Suppose, to illus-
trate, that an investigator is studying the effect of
audience size on the degree of stage fright suffered
by a public speaker (e.g., Jackson & Latané,
1981). In a hypothetical experiment, subjects give
prepared speeches to audiences whose sizes are, in
different conditions, 3, 6, 12, 20, or 29 people.
Following the speech, a subject indicates degree of
stage fright that he or she has experienced on a
scale ranging from 0 (“not frightened at all”) to 7
(“terrified”). A between-subjects design is used
with n = 15 subjects participating in each of the
J = 5 audience-size conditions. The data from this
experiment, shown in Figure 10, are provided in
Table 7, which is organized like Table 6.

Suppose the investigator wishes to test the hy-
pothesis that stage fright, as measured by the rat-
ing, increases linearly with audience size; thus, the
best linear fit is provided in Figure 10 along with
the data points. It appears that a linearity hypothe-
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Figure 10. Data from a hypothetical experiment in
which stage fright (rating) is measured as a function of
audience size. The error bars are standard errors.
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sis is roughly confirmed.
The first task in carrying out the linearity

planned comparison is to generate weights that are
linearly related to audience size. This enterprise is
complicated slightly because the audience-size
levels (3, 6, 12, 20, 29) are not evenly spaced. The
simplest way of coping with this complication is to
use the trick described earlier, and begin by se-
lecting appropriate weights—in this case, weights
that are linear with audience size—without con-
cern about whether they add to zero. A simple and
suitable candidate for such weights are the audi-
ence sizes themselves, as indicated in the Table-7
column labeled “Wj(1)”. As in the previous exam-
ple, this pattern of weights can be made to add to
zero by transforming the Wj(1)’s to deviation
scores. The resulting weights are provided in the
column, labeled “Wj(2)”. (The “Wj(3)” column
will be described in the next section). The remain-
der of the process is exactly as was described in
the previous example: The Wj(2)’s are plugged
into Equation 18 to find the SS (Hypothesis), SS
(Residual) is found by subtraction, the percents of
the SS (Between) accounted for by the Hypothesis
and Residual are computed and the uselessness
and sufficiency null hypothesis tests are carried

out. These results are shown in the Table-7, Panel-
B ANOVA table.

A Contrast as a Dependent Variable: Scaling
the Wj’s

Let us examine Equation 18 more closely. The
heart of the equation is in the term that  constitutes
the actual contrast,

Contrast = C = M jWj
j=1

J
∑ (Eq. 19)

The larger is C, the “better” the hypothesis may be
assumed to be. Often it is useful to view C as a
dependent variable in the experiment. This strat-
egy is particularly advantageous if the contrast has
easily interpretable or “natural” units. A very sim-
ple example of such use occurs when the weights
are all zero except for a “1” and a “-1” in which
case the contrast is interpretable as a difference
score.

However, more sophisticated uses of contrasts
as a “natural” dependent variable can be engi-
neered. Before providing an example of how this
might be done, it is critical to point out the scal-
ability property of the Wj's. To understand this
property, note that the denominator of Equation 18
serves to eliminate any effect of scaling the
weights. Suppose that an investigator has chosen
some suitable set of weights, W = (W1, W2,..,WJ)
and a SS (Hypothesis) were computed via Equa-
tion 18. Now suppose that an alternative, set,
W’ = kW = (kW1, kW2,…,kWJ), were used where
k is some nonzero constant. Applying Equation 18
to W’ would yield a factor of k2 both numerator
and denominator compared to using the original
W. Therefore, the k2’s would cancel and the same
SS (Hypothesis) and r2 would emerge. In short,
once one has chosen a suitable set of weights, any
other scaled set is equally suitable.

An investigator can use this fact to his or her
advantage to scale weights in such a way that the
contrast is expressed in some form of natural units.
An obvious example of this sort of procedure is
when a linear hypothesis is under investigation, as
in the stage-fright example depicted in Figure 10
and Table 7. In particular, a “natural unit” for the
contrast would be the slope of the function relating
stage-fright rating to audience size. How might the
Table-7 weights be scaled to accomplish this?

The Wj(2) weights from Table 7 are already
scaled in units of audience size; they are just
shifted so as to constitute deviation scores. Thus,
the slope of the audience-size function may be
computed using the standard regression equation,

Table 7. Data from a hypothetical experiment in
which stage fright (rating) is measured as a func-
tion of audience size. Panel A provides original
data plus three successively constructed sets of
weights: The W(2)’s are deviation scores obtained
from the W(1)’s, and the W(3)’s are scaled W(2)’s
(scaling designed to render the contrast in “natu-
ral units” as described in the text). Panel B shows
the ANOVA results for the contrast and for the
residual.

A. Means (Mj’s) and
construction of Weights (Wj'’s)

Audience size Mj Wj(1) Wj(2) Wj(3)

3 1.100 3 -11 -0.0244
6 0.833 6 -8 -0.0178

12 4.033 12 -2 -0.0044
20 4.167 20 6 0.0133
29 6.500 29 15 0.0333

B. ANOVA

Source df SS MS F
%var

= r2

Between      4 336.7

Hypothesis 1 305.1 305.1 64.0** 0.906
Residual 3 31.6 10.6 2.11 ns 0.094

Within      70 514.5 7.3
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or, because the Wj’s must sum to zero,
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This in turn means that if the original weights (i.e.,
the Wj(2) weights from Table 7) are scaled by a
factor of 1/ΣWj

2 = 1/450, then a set of weights will
emerge that will produce as a contrast the slope of
the function. It is these scaled weights that are la-
beled Wj(3) in Table 7. Applying Equation 19 to
the Mj’s and the Wj(3)’s from Table 7, yields
C = 0.213 which is the slope of the audience-size
function.

 Confidence intervals around Contrasts
One can also compute a confidence interval

around the observed value of C. Such computation
is straightforward. As is well known, and indicated
in Equation 7, any linear combination of means, as
in Equation 19 has a variance of

σC
2 = σM

2 (W1
2 + W2

2 + ... + WJ
2 )

where σM
2 is the standard error of the mean (it is

necessary, of course, to assume homogeneity of
variance here). Because σM

2 is estimated by [MS
(Within)]/n, the standard error of C may be com-
puted as,

SE = ± MSW
n

 
  

 
  (W1

2 + W2
2 + ... + WJ

2)  (Eq. 20)

and any desired-size confidence interval may be
computed by multiplying Equation 20 by the ap-
propriate criterion t(dfW).

Recall that the contrast from the Table-7
Wj(3)’s was C = slope = 0.213. Applying Equation
18 to the Table-7 MS (Within) and the Wj(3)’s
yields a 95% confidence interval of 0.066. In
short, one may summarize the stage-fright data by
stating that the slope of the audience-size function
is 0.213 with a 95% confidence interval of 0.066.

Using Planned Comparisons in Within-Subjects
Designs

Planned comparisons can be used in within-
subjects designs much in the same way that they
can be used in between-subjects designs.

Example: Visual search and “popout”
As an example, consider a visual search task

in which the subject’s task is to determine whether
or not some target stimulus is present amongst
some set of distractors. Suppose that two condi-
tions are constructed: a “search” condition in
which it is predicted that the subject will have to
search serially to make the decision and a “pop-
out” condition in which it is predicted that the
subject will be able to process all members of the
stimulus array in parallel. Search set size is also
varied, consisting of 1, 2, 4, or 9 items. The design
is entirely within-subjects, and the 8 conditions
defined by 2 (search/popout) x 4 (set size) are pre-
sented randomly to each of n = 9 subjects over a
long series of trials.

The date from this hypothetical experiment
(means plus confidence intervals) are shown in
Figure 11. It is clear that RT increases with set
size in the search condition whereas RT is rela-
tively low and flat in the popout condition. These
means are reproduced numerically in Table 8,
Panel A. Table 8, Panel B shows a standard
ANOVA table for these data. F-ratios have been
computed for the standard three factors—effects of
set size, search/popout, and the interaction. As one
would surmise from Figure 11, all three of these
effects are highly significant.

Testing the hypothesis with planned com-
parisons

Of primary interest is testing the prediction of
the hypothesis described above, i.e., that RT
should increase linearly with set size in the search
condition, but should be flat (and presumably low)
in the popout condition. I now describe two
planned comparisons that are suitable for doing
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Figure 11. Data from a hypothetical experiment in
which search time (RT) is measured as functions of
set size and whether search is required. The error bars
are 95% confidence intervals.
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Table 8. Panel A: Original search-time data.
Panel B: ANOVA results. Panels C and D: Con-
trasts described in the text.

A. Original Data (in milliseconds)
 Number of Items in the Search Set

1 2 4 9

Search 509 544 662 882
Popout 400 422 449 472

B. Overall ANOVA
Source df SS MS F

Subjects (S) 7 219,325
Conditions (C) 7 1,432,963

Set Size (Z) 3 471,767 157,256 38.68
Search/Popout (P) 1 729,957 729,957 136.18

Z x P 3 231,239 77,080 13.80

S x Z 21 85,386 4,066
S x P 7 37,522 5,360

S x Z x P 21 117,336 5,587

S x C 49 240,244 4,903

TOTAL 63 1,892,532

C. Contrast from total SS (Between cells)

1 2 4 9
Wjk(1)

1 1 1 1

-1.5 -0.5 1.5 6.5
Wjk(2)

-1.5 -1.5 -1.5 -1.5

Contrast ANOVA

Source df SS MS F %var

= r2

Conditions 7 1,432,963

Hypothesis 1 459,456 459,456 93.71 32.1
Residual 6 973,506 162,251 33.09 68.9

D. Contrast from Interaction SS only

5 6 8 13
Wjk(1)

11 10 8 3

-3 -2 0 5
Wjk(2)

3 2 0 -5

Contrast ANOVA

Source df SS MS F %var
= r2

Interaction 3 231,239

Hypothesis 1 229,907 229,907 46.89 99.4
Residual 2 1,333 666 0.14 0.6

this. I should note that the overall ANOVA shown in Table 8, Panel B was provided for expositional
purposes only: When the investigator carries out
planned comparisons, the overall ANOVA is gen-
erally not necessary.

A planned comparison based on total be-
tween-cell variance
The first planned comparison is shown in Ta-

ble 8, Panel C. As with the previous examples, I
use a two-part process to generate the appropriate
Wjk’s. The Wjk(1)’s are constructed without regard
to making the Wjk's add to zero, while the W jk(2)’s
are the Wjk(1) deviation scores.

This procedure illustrates an important point:
When carrying out this kind of a planned compari-
son using a two-factor design (whether it be
within-subjects as in the present example, or be-
tween-subjects) the row x column design structure
becomes relevant only as a mnemonic aid. From
the perspective of the planned comparison, the
experiment is simply viewed as containing JxK
different conditions, and the Wjk’s must add to
zero across all JxK conditions. There are, for the
moment, no other constraints on the Wjk’s.

The statistical results of this procedure are
shown at the bottom of Panel C labeled “Contrast
ANOVA.” The top source of variance is from
between conditions (i.e., the Panel-B component
labeled “Conditions”, and is based on 7 degrees of
freedom. The SS (Hypothesis), computed via
Equation 18, is the next variance component, and
finally, as in previous examples, SS (Residual) is
computed by subtraction. Note from the rightmost
column that the SS (Hypothesis) accounts for only
32% of the between-conditions variance. Both the
hypothesis and the residual are highly significant.

A planned comparison based on interaction
variance
The planned comparison described in the pre-

vious section had a certain degree of arbitrariness
about it. Essentially, the main prediction under
investigation was that there should be a particular
type of interaction between set size and
search/popout; the main effects of the two vari-
ables were of secondary importance. For example
the large percent of between-condition variance
not accounted for by the hypothesis comes about
because, as is evident in Figure 11, the search
condition RT is greater than the popout condition
RT even in the set size = 1 conditions; the arbi-
trary choice in the Panel-C contrast was to assume
these two conditions to be equal.

Accordingly, it would be useful to carry out a
planned comparison that investigated the role of
the particular expected interaction. The resulting
contrast is constructed in Table 8, Panel D. The
goal here is to maintain the hypothesized interac-
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tion pattern in the eventual contrast, but to elimi-
nate main effects. The resulting contrast shown in
Panel D accomplishes this; note that each row and
column of the final contrast (i.e., Wjk(2)) sums to
zero, so only interaction variance is reflected. The
interaction variance remains specifically that RT is
positively linear with set size for search and nega-
tively linear with set size for popout13.

                                                     
13 That the hypothesis includes “negatively linear for
popout may elicit some confusion because the original
hypothesis predicted no set-size effect for popout. It
must be borne in mind, however, that this contrast ap-

The ANOVA relevant to this contrast is shown
at the bottom of Panel D. The top source of vari-
ance is from the interaction (i.e., the Panel-B com-
ponent labeled “ZxP”) and is based on 3 degrees
of freedom. The interaction-only contrast accounts
for over 99% of this interaction variance, and the
small residual is not statistically significant.

Using a contrast as a dependent variable
It is instructive to once again illustrate how a

contrast may be translated into “natural units” via
suitable scaling of the weights. In the present
example, a useful “natural unit” for the contrast
would be the difference between the search and
the popout slopes. To do this, we work from the
weights in Table 8, panel D, where the interaction
variance only is at issue. Again the Wjk(2) weights
are already scaled to set size. Using much the
same logic entailed in scaling the weights in the
stage-fright example, and noting the constraints on
the Wjk(2) weight pattern, it can be shown that the
appropriate scaling factor is 2/ΣWjk

2 where the
sum is over all 8 conditions. The resulting weights,
Wjk(3), are shown in Table 9, Panel B. (Note that
Panel A, along with part of Panel B re-presents
relevant information from Table 8). Table 9, Panel
C shows the contrasts (Ck’s) that result for each
subject, k. Thus, the contrast value for each sub-
ject—which, recall, has been designed to be the
difference between the two slopes for that sub-
ject—can be treated as a standard dependent vari-
able. The mean and 95% confidence interval
shown at the bottom of Table 9, Panel C are com-
puted from the Ck’s directly.

Multiple Planned Comparisons
Multiple planned comparisons may be carried

out on the same data set by generating multiple
sets of weights, presumably from multiple hy-
potheses, and iterating through steps 1-4 described
at the beginning of this section. Any two contrasts
(along with the hypotheses that generated them)
are independent of one another if and only if the
Pearson r2 between the two sets of weights is equal
to zero. In practice, because any set of weights
sums to zero, the Pearson r2 between the two sets
of weights is equal to zero if and only if the sum of
the cross-products of the two sets of weights is
equal to zero.

Percent Total Variance Accounted For ( 2)
In correlational studies the primary dependent

variable is a Pearson r2. Every psychologist real-
izes that a Pearson r2 represents the percent of

                                                                            
plies to the interaction variance only, which implies no
main effect for set size, and which in turn implies can-
celing set-size effects for search and popout.

Table 9. Additional information for the visual-
search data. Panels  A and B show the original
data along with Wjk(1) and Wjk(2) from Table 7.
The Wjk(3)’s are scaled Wjk(2)’s (scaling de-
signed to render the contrast in “natural units” as
described in the text). Panel C: Values of the con-
trast for 8 subjects along with the mean and 95%
confidence interval of the 8 contrast values.

A. Original Data (in milliseconds)
  Number of Items in the Search Set

1 2 4 9

Search 509 544 662 882
Popout 400 422 449 472

B. Contrast from Interaction SS only

5 6 8 13
Wjk(1)

11 10 8 3

-3 -2 0 5
Wjk(2)

3 2 0 -5

-0.070 -0.053 0.000 0.132
Wjk(3)

0.079 0.053 0.000 -0.132

C. Contrast Values for Individual Subjects
Subject (k) Ck

1 5.4
2 49.9
3 29.2
4 44.4
5 57.6
6 40.5
7 23.4
8 60.7

Mean Confidence Interval
38.89 15.61
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variance in some predicted variable, Y, accounted
for by variation in some predictor variable, X.

Given the overwhelming prevalence of vari-
ance-accounted for measures such as Pearson r2 in
correlational research, it is puzzling that there is
little use of the equivalent measures in experi-
mental research. These measures, termed ω2, are
generally applicable to any ANOVA-type design
and are, essentially, the percent of total variance in
the experiment accounted for by variation in the
independent variable. Computation of ω2 is par-
ticularly useful in practical situations where the
emphasis is on the effect’s real-world significance
(as opposed to its statistical significance). Hays
(1973, pp. 417-424; 484-491; and 512-514) pro-
vides formal analyses of ω2 for several experi-
mental designs. I will briefly illustrate its use in a
between-subjects, one-way ANOVA situation.

Vitamin C and colds
Suppose that an investigator is interested in

determining whether variation in vitamin-C dos-
age affects the amount of time a person is afflicted
with colds. In a hypothetical experiment, subjects
in three different double-blind conditions, are pro-
vided, respectively, 2 gm, 3 gm, or 4 gm of vita-
min C per day for five years and the number of
days on which each subject considers him or her-
self to have a cold is recorded. A very large
sample size is used: n = 10,000 subjects per con-
dition. The data are provided in Table 10, Panel A
and Figure 12, both of which make it clear that
there is a highly significant, decreasing effect of
Vitamin C on number of days with colds.

A closer inspection of the data, however,
raises serious doubts about Vitamin C’s efficacy:

The absolute decrease in cold days is miniscule,
falling from about 9.8 days to about 9.6 days as
Vitamin C dosage is doubled from 2 to 4 grams.
The reason that such a small effect is so highly
significant is, of course, that the n = 10,000 sub-
jects per condition confers an enormous amount of
statistical power, and therefore even a tiny effect
of the independent variable will be detected.

How much vitamin C should you take?
There are 30,000 data points in this experi-

ment. As indicated in Table 10, Panel B, the total
variance is SS (Total) = 90,281, of which only SS
(Between) = 290 is from between conditions.
Thus, essentially, only 290/90,281 or about 0.32%
of the total variance is attributable to variation in
vitamin C.

More precisely, because part of SSB is attrib-
utable to random error, the appropriate computa-
tion is somewhat more complex. The reader is re-
ferred to the Hays references provided above for
the formal logic. The end result is that to estimate
the percent of total variance attributable to varia-
tion in the independent variable, one uses the
equation,

est ω2 = SS(Between) − (J −1)xMS(Within)
SS(Between) + SS(Within) + MS(Within)

which, in the present example is 0.30%. The ines-
capable implication is that vitamin C accounts for
only a tiny percentage of total variability in cold
days. The practical conclusion is that if one wishes
to cut down on colds, there are probably many
other more important variables to which one

Table 10. Data from a hypothetical experiment in
which the effect of Vitamin-C dosage on cold du-
rations is examined. Panel A: Original data
(10,000 subjects). Panel B: ANOVA results.

A. Original Data (n = 10,000/Condition)

Amount of
Vitamin C

(gms)

Mean days
with colds

2 9.79
3 9.72
4 9.56

B. ANOVA

Source df SS MS F Crit F

Between 2 290 145 16.12 3.00
Within 29,997 89,991 9

Total 29,999 90,281
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Figure 12. Data from a hypothetical experiment in
which the effect of Vitamin-C dosage on cold dura-
tions is examined. Note the limited range of the ordi-
nate. The error bars are 95% confidence intervals.



DATA ANALYSIS, INTERPRETATION AND PRESENTATION Page 31

should pay attention than the amount of vitamin C
one takes.

This ω2 computation places the large statisti-
cal significance found in this experiment in a
somewhat harsher light, and serves to underscore
the important difference between determining that
an effect exists on the one hand (i.e., the high sta-
tistical significance implied by F > 16) and evalu-
ating the effect’s importance on the other hand
(i.e., the minute practical significance implied by
ω2 < 1%).

A caveat
In the example I have just provided, the con-

sumer of the research is presumably most inter-
ested in very practical considerations: Specifically,
in deciding whether to go through the hassle and
expense of taking large doses of Vitamin C it is
useful to understand the magnitude of the expected
reward in terms of cold relief. However, one might
be interested in a separate question altogether,
namely investigating the relation between vitamin
C and colds strictly from the perspective of ad-
dressing some biological question. In such an in-
stance, the relation between Vitamin C and cold
reduction, no matter how small, could potentially
be of intense interest.

Model Fitting
Myung & Pitt (this volume) describe the use

of mathematical models in some detail. It is not
my intent to reiterate what they have already said.
Rather, in the spirit of the content of the present
chapter, I will provide suggestions for under-
standing and presentation of some data/model
combination.

Finding and Presenting Optimal Parameter
Values

A simple and familiar example of fitting a
mathematical model is in the context of linear re-
gression, wherein some variable, Y is assumed to
be linearly related to some other variable, X. Typi-
cally, some number of XY pairs constitute the
data. Here two parameters must be estimated: the
slope and the intercept of the assumed linear func-
tion relating Y to X. The standard equations for
determining the best-fitting slope and intercept are
based on the proposition that by “best” is meant
the slope and intercept values that produce the
smallest total squared error between the observed
and predicted Y values.

Like a regression model, typical mathematical
models have parameters. The main difference
between fitting a simple regression model and a
typical mathematical model is that the former has

an analytical solution14, while the latter usually do
not. Even a model that is closely related to a linear
model—an exponential growth to an asymptote
model, expressed by the equation

Y = A(1- ecX)

with two parameters c, the exponential decay rate
and A, the asymptote—does not have an analytical
solution. To find the best-fitting parameter values,
some sort of search procedure is needed whereby
candidate parameter sets are systematically evalu-
ated, and the approximate best-fitting set is deter-
mined.

When carrying out such a search, it is neces-
sary to decide what is meant by “best.” Typically,
one of three criteria are used to find the the pa-
rameter set that (1) minimizes total squared error
between observed and predicted data points, or (2)
minimizes the χ2 between the observed and pre-
dicted frequencies, or (3) maximizes the probabil-
ity of the data values given a particular parameter
set (i.e., maximum likelihood techniques).

Fit quality expressed in intuitive units
My concern here is not with which technique

is used—discussions of this issue may be found in
many mathematical methods texts, e.g., Atkinson,
Bower, & Crothers, 1965, Chapter 9—but with
how the results of the search are presented. In par-
ticular, I recommend that, however the best-fitting
parameter set is found, the quality of the fit be pre-
sented as root-mean-square-error (RMSE), which
is obtained by,

RMSE = 
(M j − Pj

j
∑ ) 2

degrees  of freedom

where the sum is over j experimental conditions,
Mj and Pj are observed and predicted results in
condition j, and degrees of freedom is degrees of
freedom, which is approximately and most easily
computed as the number of fitted data points mi-
nus the number of estimated parameters. The rea-
son for this recommendation is that RMSE, being
in units of the original dependent variable, is most
straightforward for a reader to intuitively grasp
and evaluate.

Parameters expressed in intuitive units
In the same spirit, the results of applying a

mathematical model are best understood if the pa-
rameters themselves are expressed natural and
well-defined units. Parameter units such as prob-
                                                     
14 By which is meant that equations for the best-fitting
parameter values can be generated, e.g., for a linear-
regression model, slope = (nΣXY-ΣXΣX)/[nΣX2-
(ΣX)2].
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ability correct raised to the 1.6 power, for instance
are not intuitively appealing, while parameter units
such as time (e.g., milliseconds) are much more
intuitively appealing. When parameters are de-
fined in natural units, results of experiments can
be conveyed in terms of effects of independent
variables on parameter values, which is considera-
bly simpler than trying to describe the data in
terms of, say, a set of complex interactions. A
simple example of such a model is Sternberg’s
(e.g., 1967) short-term scanning model in which
two parameters—the scanning time per item and a
“time for everything else” parameter—are both
defined in units of time (milliseconds). Given the
validity of the model, the results of any given ex-
perimental Sternberg-task condition can be de-
scribed by one number—the slope of the search
function, which is an estimate of the scanning time
per item. Different conditions, e.g., degraded ver-
sus undegraded target-item conditions, can then be
described simply in terms of the degree to which
scanning time differs over the different conditions.

Model fitting and hypothesis testing
Thus far, I have treated model fitting and hy-

pothesis testing as separate enterprises. At their
core, however, they are the same thing. In both
instances, a model is proposed, and the data are
treated in such a way as to evaluate the plausibility
of the data given that the model is correct.

The difference between model fitting and hy-
pothesis testing is one of tradition, not of sub-
stance. In a hypothesis-testing procedure, the null
hypothesis is almost invariably that some set of
population means are all equal to one another.
However, such a characterization of the null hy-
pothesis is not necessary; as suggested in the
above section on planned comparisons, any single-
degree-of-freedom hypothesis is a valid null hy-
pothesis. Thus, the best-fitting set of parameter
values issuing from the fit of a mathematical
model to a data set can be characterized as a null
hypothesis and tested with the standard hypothe-
sis-testing machinery. Note that there are two
other departures from tradition involved in this
process. First, the investigator’s goal is typically to
accept the null hypothesis (i.e., to confirm the
model) rather than to reject the null hypothesis and
second, reliance on the Linear Model is de-
emphasized considerably—the mathematical
model being tested could be linear, but it often is
not.

Display of Data Fits
My final set of comments about mathematical

models revolve around displays of data fits. As
just indicated, many experimental results can most
parsimoniously be expressed as effects of inde-
pendent variables on parameter values. This tech-

nique works best when the model under consid-
eration is well-tested and accepted as an accurate
description of the experimental paradigm under
investigation. With this kind of mature model, the
validity of the model is not under consideration;
rather the model is being used as a tool to investi-
gate something else (in the Sternberg example
above, to investigate the effect of stimulus degra-
dation on search slope—where “slope” is pre-
accepted as a meaningful entity within the context
of the Sternberg model).

With less developed models, however, a cen-
tral issue is often whether (or the degree to which)
the model is adequately fit by the data to begin
with. In this case, the main result to be presented is
the model fit itself. As noted, the most straight-
forward way of doing this is with a single number,
the RMSE. However, a graphical display of the
model fit is also critical in order that systematic
failures of the model can be highlighted. How this
is done depends on the relation between what the
model predicts and the dependent variable meas-
ured in the experiment.

Quantitative Predictions
When the model is sufficiently precise that it

predicts a specific value of the dependent variable
for each experimental condition, the fit can be pre-
sented as a standard graph of the observed data
plus predicted data. As an example, consider data
from my laboratory generated by an experiment in
which 4-digit strings were presented at varying
durations for immediate recall. The strings were
either spatially filtered so as to leave only low
spatial frequencies, only high spatial frequencies,
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Figure 13 . Unpublished data from Harley and Loftus
showing digit recall performance as a function of
stimulus duration and the nature of spatial filtering.
Smooth lines through the data points represent theo-
retical predictions based on the best-fitting parameter
values. The error bars are standard errors.
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or were presented normally, i.e., including all spa-
tial frequencies. A mathematical model described
by Olds and Engel (1998), which predicted an ex-
act value of the dependent variable (proportion
recalled) for each condition was fit to the data. The
data and model fit are shown in Figure 13. I wish
to emphasize several aspects of the data presenta-
tion.

1. The data are presented as symbols only (dia-
monds and triangles) while the model fits are
presented as symbol-less lines.

2. The model predictions are “complete.” By this I
mean that the theoretical lines include predicted
fits not just for the discrete durations selected
for the experiment, but continuously over the
selected range. This means that the predicted
curves are smooth, and the predictions of the
theory are clearer than would be the case if
only the predictions corresponding to the ex-
perimental durations were shown.

3. Finally, at the risk of sounding overly compul-
sive, it is mnemonically wise, and aesthetically
elegant, to select, if possible, data symbols that
are somehow naturally associated with the con-
ditions. In the case of Figure 13, for example,
downward-pointing triangles represent low
spatial frequencies, upward-pointing triangles
represent high spatial frequencies, and dia-
monds (i.e., the superimposition of downward-
and upward-pointing triangles) represent all
spatial frequencies.

Monotonic Predictions
Sometimes a mathematical model predicts

some quantity that may be assumed only mono-
tonically related to the dependent variable meas-
ured in the experiment. For example, Loftus &
Irwin (1998) developed a theory of missing-dot,
temporal-integration performance (e.g., Di Lollo,
1980). In this paradigm, 24 dots are briefly pre-
sented to a subject as a 5x5 dot array with one dot
missing. The subject’s task is to identify the posi-
tion of the missing dot, and missing-dot detection
probability is the dependent variable. The dots are
presented in two temporal halves: During half 1, a
random 12 of the 24 dots are presented, while the
remaining 12 dots are presented during half 2.
This means that in order to perform the missing-
dot detection task, the subject must integrate the
spatial information corresponding to the two dot-
array halves over time. For purposes of the present
discussion, the duration of half 2 was short (20
ms) while the duration of half 1 varied from 20 to
100 ms in 20-ms steps, and the duration of the ISI
separating the end of half 1 from the start of half 2
varied from -20 to 60 ms in 20-ms steps.

Central to Loftus and Irwin’s theory was the
proposition that a visual stimulus triggers an inter-
nal sensory-response function that rises over time
beginning at stimulus onset and falls, eventually
back to zero, following stimulus offset (see also
Busey & Loftus, 1994; Loftus and McLean, 1999).
In the missing-dot paradigm, each stimulus half
produces one such sensory-response function, and
performance is determined by—that is, is a
monotonic function of—the correlation over time
between the two sensory-response functions (as
suggested by Dixon & Di Lollo, 1994). The theory
can specify the magnitude of this correlation for
any stimulus condition, but it does not specify the
nature of the monotonic function that relates
missing-dot detection probability to correlation
magnitude.

In this kind of situation, it is not possible to fit
the theory using the techniques listed above be-
cause they require that the theory predict the actual
dependent variable, not just something presumed
to be monotonically related to the dependent vari-
able. A straightforward alternative is to use as a fit
criterion the rank-order correlation (Spearman ρ)
over conditions between the data and the theory.
The fit may then be represented as the data-theory
scatterplot which, if the data fit the theory per-
fectly, would be monotonic.

Figure 14 provides an example, using the
paradigm and theory that I have just described.
The predicted data points are generated by the pa-
rameter values corresponding to the highest data x
theory Spearman ρ (ρ = 0.987) found by the
search procedure. The scatterplot shows data
(mean proportion of correctly detected missing-dot
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Figure 14. Obtained data as a function of a predicted
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positions) plotted against theory (predicted corre-
lation) across the 25 half-1 duration x ISI condi-
tions. Within the scatterplot, different half-1 dura-
tions are represented by different curve symbols,
while within each half-1 duration, increasing pre-
dicted and observed values correspond to de-
creasing ISI’s.

Presenting the fit as a scatterplot confers at
least two benefits. First, the shape of the scatter-
plot (which is ogival in this example) constitutes
an empirical estimate of the actual monotonic
function relating the dependent variable to the
theoretical construct, thereby providing clues
about the mechanism that relates the dependent
variable to the theoretical construct. Second, the
scatterplot underscores systematic discrepancies in
the data fit. In this example, it appears that per-
formance in the long half-1 duration conditions
(e.g., the 100-ms half-1 duration conditions, repre-
sented by the open squares) are observed to be
systematically higher than they are predicted to be
compared to short half-1 duration conditions (e.g.,
the 20-ms half-1 duration conditions represented
by the solid circles) thereby pinpointing a specific
deficit in the theory.

Equivalence Techniques to Investigate In-
teractions

In the large majority of psychological experi-
mentation, an investigator sets the levels of some
independent variable and measures the resulting
values of the dependent variable. Of interest then
is how changes in the independent variable lead to
changes in the dependent variable. Moreover, a
sizeable number of experiments are primarily con-
cerned not with main effects, but with how one or
more independent variables interact in their effects
on the dependent variable.

As numerous writers have pointed out (e.g.,
Bogartz, 1976; Loftus, 1978), many conclusions
resting on interactions have strong limitations, the
most severe of which is that nonordinal (i.e., non-
crossover) interactions lack generality both with
respect to other performance measures that are
nonlinearly related to one actually measured (e.g.,
an interaction in a memory experiment observed in
terms of probability correct cannot necessarily be
generalized to d') and also with respect to under-
lying theoretical constructs that are nonlinearly
related to the performance measure (e.g., an inter-
action observed in terms of probability correct
cannot necessarily be generalized to some generi-
cally defined “memory strength”).

To circumvent these difficulties one can turn
to equivalence techniques, which are a set of theo-
retical/methodological procedures by which one
determines the rules under which different combi-

nations of independent variables lead to equivalent
states of some inferred internal psychological
state. Equivalence techniques have roots in classi-
cal statistics (e.g., Hays, 1973) and conjoint meas-
urement (e.g., Krantz, Luce, Suppes & Tversky,
1971; Krantz & Tversky, 1971; Tversky & Russo,
1969).

Equivalence techniques are common in vision
science. Perhaps the best illustration of how such
techniques are used to understand the workings of
the visual system is the classic color-matching ex-
periment, wherein an observer adjusts some addi-
tive combination of primary colors such that it
matches a monochromatic test color (e.g., Wright,
1929; 1946). The resulting two stimuli—the com-
bination of primaries and the monochrome stimu-
lus—constitute color metamers, which, though
entirely different physically, are equivalent psy-
chologically in a fundamental way: They entail
equal quantum catches in the three classes of cone
photoreceptors. The original success of the
color-matching experiment constituted the empiri-
cal foundation of the trichromacy theory of color
vision, and versions of the color-matching experi-
ment have been used more recently to refine and
modify the theory (e.g., Wandell, 1982).

As will be discussed in the next two subsec-
tions, there are two ways in which equivalence
techniques can be used in virtually any area of
psychology. First, relatively weak hypotheses
about effects of certain variables can be studied
using state-trace analysis. Second, stronger hy-
potheses make specific, unique, and testable pre-
dictions about the specific quantitative rules by
which multiple independent variables combine to
produce equivalent values of the dependent vari-
able.

State-Trace Analysis
State-trace analysis was introduced by Bamber

(1979) as a means of investigating relations among
independent variables, dependent variables, and
hypothesized internal dimensions. In particular,
state-trace analysis can be used to answer two re-
lated questions. First, is the assumption of a single
internal dimension sufficient to account for ob-
served relations among multiple independent vari-
ables and multiple dependent variables? Second, if
more than one dimension is necessary, what are
the characteristics of the multiple dimensions; i.e.,
how are they affected by the independent variables
and how do they influence the dependent vari-
ables?15

                                                     
15 Examples of state-trace analysis are rare in most of
psychology. In addition to examples provided by
Bamber (1979) and Loftus et al. (2000), see Loftus
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To illustrate the use of state-trace analysis,
consider a face-recognition investigation described
by Busey, Tunicliff, Loftus, & Loftus (2000). The
experimental paradigm entailed an initial study
phase wherein a series of face pictures was se-
quentially presented, followed by a yes-no recog-
nition test phase in which two dependent vari-
ables—accuracy (hit probability) and confidence
(on a four-point scale)—were measured. Of prin-
cipal interest was whether accuracy and confi-
dence were simply two measures of the same in-
ternal state which, for mnemonic convenience,
might be termed “strength”. The experiment en-
tailed two independent variables that were ma-
nipulated during the study phase. First, exposure
duration varied, and second, each studied face was
followed by a 15-sec period during which visual
rehearsal of the just-seen face was either required
or prohibited. The main results were, unsurpris-
ingly, that both accuracy and confidence increased
with increasing exposure duration and with re-
hearsal compared to no rehearsal. That is, qualita-
tively both accuracy and confidence were affected
in the same way by the two independent variables,
thereby suggesting, in the tradition of “dissocia-
tion techniques,” that they were simply two meas-
ures of the same internal state.

However, the use of state-trace analysis al-
lowed a much more precise answer to the ques-
tion. More specifically, the proposition that any
two dependent variables—accuracy and confi-
dence in this instance—are measures of the same
internal state can be couched in the form of a hy-
pothesis, called the “single-dimension model,”
which is: “there exists a single internal dimension
(call it “strength”) whose value is jointly deter-
mined by duration and rehearsal, and which, in
turn, determines the values of both confidence and
accuracy. The form of this model is shown at the
top of Figure 15. Pitted against this single-
dimensional model is some form of multi-
dimensional model, according to which the two
dependent variables are determined at least in part
by different internal dimensions. While a single-
dimensional model (akin to a standard null hy-
pothesis) is unique, there are an infinite number of
possible multi-dimensional models (akin to there
being an infinite number of alternative hypothe-
ses). One reasonable multi-dimensional model is
shown at the bottom of Figure 15. Here, a second
dimension, termed “certainty” is affected by re-

                                                                            
and Irwin (1998) who used such analyses to address
the question: “Are visible persistence and iconic
memory just two names for the same internal proc-
ess?” Palmer (e.g., 1986a; 1986b) has used related
(and formally identical) equivalence techniques to ex-
amine numerous issues in attention and perception.

hearsal but not duration, and affects confidence,
but not accuracy.

The key prediction of the single-dimensional
hypothesis rests on the logic that any two condi-
tions—a long-duration no-rehearsal condition, and
a shorter-duration, rehearsal condition—that pro-
duce equal accuracy must have done so because
they produced the same strength values.
Thus—and here is the key prediction—because
confidence is also determined by strength, these
same two conditions must also produce equal con-
fidence values.

To evaluate this prediction, one constructs
state-trace plots, which are scatterplots of one de-
pendent variable plotted against the other (accu-
racy plotted as a function of confidence, in this
instance) over the experimental conditions defined
by the combination of the two independent vari-
ables—in this case, conditions defined by the du-
ration x rehearsal combinations. The prediction
then translates to: The curve traced out by the re-
hearsal conditions must overlie the curve traced
out by the no-rehearsal conditions.

It should be noted, incidentally, that the suc-
cess of state-trace analysis does not require that
one be lucky enough to find pairs of duration x
rehearsal conditions that happen to produce identi-
cal performance. The formal rationale for this as-
sertion is described in Bamber (1979). Essentially,
one assumes that the measured points are samples
from an underlying continuous function whose
form can be estimated by “connecting the dots” in
the state-trace plot.

Figure 16 shows predictions from the single-
dimensional model (top panels) and from the
multi-dimensional model (bottom panels) of Fig-
ure 15. In each panel, circles correspond to the
rehearsal conditions while triangles correspond to
the no-rehearsal conditions. The 5 instances of
each curve symbol correspond to 5 exposure dura-
tions. For each of the two models, the two left-
hand panels (“Accuracy” and “Confidence”) pre-
sent the data in the manner in which such data are
normally presented: The dependent variable is
plotted as a function of the independent variables
(duration along the abscissa and rehearsal as the
curve parameter in this example). Based on these
standard data, there is nothing very obvious that
distinguishes the predictions of the two models.

However, the state-trace plots shown as the
rightmost panels (“C-A Scatterplot”) distinguish
strongly between the two models. As described
above, the single-dimensional model predicts that
the two scatterplots corresponding to the two re-
hearsal levels fall atop one another. However, the
multi-dimensional model predicts that the two
scatterplots are distinguishable in some manner
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that depends on the exact construction of the
multi-dimensional model. In the multi-
dimensional model of Figure 15, a second internal
dimension, “certainty” is increased by rehearsal

but not duration, and increased certainty increases
confidence but not accuracy. Therefore, according
to this particular multi-dimensional model, two
conditions that produce the same accuracy values

Strength: S = f(D, R)

D = Duration

R = Rehearsal

Recognition Accuracy:
A = mA (S)

Confidence:
C = mC (S)

Single-Dimensional Model

D = Duration

R = Rehearsal

Recognition Accuracy:
A = mA (S)

Confidence:
C = mC (S, T)

One Possible Multidimensional Model

Strength: S = f(D, R)

Certainty: T = g(R)

Figure 15. Two models on the relations between two independent variables and two dependent variables in a
face-recognition experiment (reported by Busey et al. 2000). The left-hand shaded rounded rectangles represent
independent variables, while the right-hand shaded rounded rectangles represent dependent variables. The mid-
dle unshaded rounded rectangles represent unidimensional theoretical constructs.

Accuracy Confidence C-A Scatterplot

Single-
Dimensional
Model

Two-
Dimensional
Model
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Figure 16. Theoretical predictions from the models shown in Figure 15. The left and middle panels show “stan-
dard” data presentation: the dependent variable plotted as functions of the independent variables. The right pan-
els show state-trace plots which are scatterplots of one dependent variable plotted against the other. With the
state-trace plots, the distinct predictions of the two models are considerably more apparent than they are in the
standard plots.
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must have done so because they produced the
same strength value. However, comparing two
conditions that produce the same strength values,
the rehearsal condition will produce greater confi-
dence than the no-rehearsal condition, because
certainty is greater in the rehearsal condition than
in the no-rehearsal condition. Therefore, as is evi-
dent in the prediction (Figure 16, bottom-right
panel) this particular multi-dimensional model
predicts the rehearsal curve to be displaced to the
right of the no-rehearsal curve.

In sum, state-trace analysis has two virtues.
First, it allows one to test any form of single-
dimensional model, which is generally a strong
test of the common question in psychology: “Are
two dependent variables, Y and Y’ simply two
measures of the same internal state?” Second,
given that one rejects a single-dimensional model,
the resulting form of the state-trace plots, provides
strong clues as to the nature of the implied multi-
dimensional model. To briefly illustrate, Busey et
al. (1990) actually investigated two kinds of confi-
dence: Prospective confidence, given at the time of
study, and retrospective confidence, given at the
time of test. They determined that a single-
dimensional model was appropriate to describe
retrospective confidence, but that a multi-
dimensional model of the sort depicted at the bot-
tom of Figure 15 was necessary to describe pro-
spective confidence.

Additive and Multiplicative Effects
As just described, state-trace analysis deals

with the qualitative question: Do multiple inde-
pendent variables affect the same internal memory
dimension which then determines performance in
the relevant memory tasks? An investigator can
also use equivalence techniques to unveil stronger
quantitative rules by which independent variables
combine to produce a value on the internal dimen-
sion. To illustrate such rules, I will use two exam-
ples in which memory is measured as a function of
the exposure duration of the to-be-remembered
stimulus (as in the Busey et al., 2000 experiment
described in the last section). In this kind of ex-
perimental paradigm, define a performance curve
as a curve that relates memory performance to ex-
posure duration (as, for example, in Figure 16,
four left panels.) Define a focal variable as some
variable under consideration that is factorially
combined with exposure duration (e.g., rehearsal
in the Busey et al. experiment). The equation re-
lating performance curves for two levels of the
focal variable is:

p [i, d] = p[j, f(d)] (Eq. 21)

where p[i, d] and p[j, f(d)] denote performance for
levels i and j of the focal variable, d and f(d) are
durations, and f is a monotonic function. Again in
the spirit of equivalence, it is important to realize
that Equation 21 describes duration relations that
produce equal performance for different fo-
cal-variable levels.

Of theoretical interest in a given situation is
the nature of the function f(d) on the right side of
Equation 21. Different f(d)’s are implied by differ-
ent hypotheses about the focal variable’s effect. I
illustrate with two common hypotheses. The first
is that the focal variable’s effect is additive, i.e.,
that f(d) = d+k, which means that,

p (i, d) = p(j, d+k) (Eq. 22)

Here, k is a constant in units of time. The inter-
pretation of an additive effect is that being in level
i of the focal variable is equivalent to having an
additional k ms of stimulus duration compared to
being in level j. As shown in Figure 17A, stimulus
masked/not masked exemplifies an additive focal
variable with k = 100 ms—which is the basis for
the claim made by Loftus, Johnson & Shimamura
(1985) that “an icon is worth 100 ms.”

The second hypothesis is that the focal vari-
able’s effect is multiplicative, i.e., that f(d) = cd,
which means that,

p(i, d) = p(j, cd)(Eq. 23)

Here, c is a dimensionless constant. The interpre-
tation of a multiplicative effect is that being in
level j of the focal variable slows down processing
by a factor of c, compared to being in level i. As
shown in Figure 17B, stimulus luminance exem-
plifies a multiplicative focal variable with c = 2
(see Loftus, 1985b; Sperling, 1986; as shown by
Loftus & Ruthruff, 1994, the same is true when
contrast is the focal variable).

Figure 17 illustrates three important facets of
using equivalence techniques. First, testing various
hypotheses (e.g., that the effect of some focal vari-
able is additive or multiplicative) involves hori-
zontally comparing performance curves because,
as indicated in Equations 16-18, the critical com-
parisons are of the durations d and f(d) required to
achieve equal performance for different focal-
variable levels, i and j. Second, an additive hy-
pothesis predicts that performance curves be hori-
zontally parallel as in Figure 17A, whereas a mul-
tiplicative hypothesis predicts that performance
curves be constant-ratio diverging as in Figure
17B. Third, Figure 17C demonstrates that a multi-
plicative hypothesis can be conveniently tested by
plotting performance on a log-duration scale
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instead of a linear-duration scale. When d is on a
log scale, Equation 23 becomes,

p[i, ln (d)] = p[j, ln (c) + ln (d)]

and performance curves are again horizontally
parallel, separated by a constant of ln (c), which
can then, of course, be exponentiated to recover c.

As I asserted earlier, equivalence techniques
represent scale-independent means of identifying
the fundamental nature of interactions among vari-
ables. Equivalence techniques allow conclusions
that are more generalizable and robust than are
conclusions based on most traditional statistical
interactions. Because performance curves are
compared horizontally, any conclusion issuing
from the comparison (e.g., that the curves are or
are not horizontally parallel on a linear or on a
log-duration scale) is invariant over all monotonic
transforms of the performance measure; this is
because any set of points that are equal in one
scale must also be equal in any monotonically re-
lated scale. Therefore, conclusions issuing from
equivalence techniques apply not only to the par-
ticular dependent variable being measured (e.g.,
proportion correct) but also to any theoretical con-
struct that is assumed to be monotonically related
to the dependent variable (e.g., “memory
strength”). Such conclusions also apply, mutatis
mutandis, to any dependent variable that is mono-
tonically related to the dependent variable being
measured (e.g., to d' if the measured variable is
proportion correct).

CONCLUSIONS
It is worth concluding by briefly reiterating the

sentiments expressed at the outset of this chapter.
Lurking within a typical data set is often a wealth
of fascinating information that can be summoned
forth if sufficiently clever detective techniques are
used. As has been argued in many places (see par-
ticularly, Loftus, 1996; Schmidt, 1996) there are,
at present, many standard data-analysis techniques
that not only are ill-crafted for eliciting such in-
formation, but actively bias the investigator
against finding anything interesting or non-
obvious from the data. It is my hope that some of
the less common techniques described in this
chapter—and other related techniques that the
reader is left to devise on his or her own—will
provide some assistance in coping with the vast
sea of psychological data that our present technol-
ogy currently produces for us.
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