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Using Confidence Intervals for Graphically
Based Data Interpretation

MICHAEL E. J. MASSON, University of Victoria
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Abstract As a potential alternative to standard null
hypothesis significance testing, we describe methods
for graphical presentation of data––particularly condi-
tion means and their corresponding confidence inter-
vals––for a wide range of factorial designs used in ex-
perimental psychology. We describe and illustrate con-
fidence intervals specifically appropriate for between-
subject versus within-subject factors. For designs in-
volving more than two levels of a factor, we describe
the use of contrasts for graphical illustration of theo-
retically meaningful components of main effects and
interactions. These graphical techniques lend them-
selves to a natural and straightforward assessment of
statistical power.

Null hypothesis significance testing (NHST), although
hotly debated in the psychological literature on statisti-
cal analysis (e.g., Chow, 1998; Cohen, 1990, 1994;
Hagen, 1997; Hunter, 1997; Lewandowsky & Maybery,
1998; Loftus, 1991, 1993, 1996, 2002; Schmidt, 1996),
is not likely to go away any time soon (Krueger, 2001).
Generations of students from multiple disciplines con-
tinue to be schooled in the NHST approach to inter-
preting empirical data, and practicing scientists rely
almost reflexively on the logic and methods associated
with it. Our goal here is not to extend this debate, but
rather to enhance understanding of a particular alterna-
tive to NHST for interpreting data. In our view, to the

extent that a variety of informative means of construct-
ing inferences from data are made available and clearly
understood, researchers will increase their likelihood of
forming appropriate conclusions and communicating
effectively with their audiences.

A number of years ago, we advocated and de-
scribed computational approaches to the use of confi-
dence intervals as part of a graphical approach to data
interpretation (Loftus & Masson, 1994; see also, Loftus,
2002). The power and effectiveness of graphical data
presentation is undeniable (Tufte, 1983) and is common
in all forms of scientific communication in experimen-
tal psychology and in other fields. In many instances,
however, plots of descriptive statistics (typically
means) are not accompanied by any indication of vari-
ability or stability associated with those descriptive
statistics. The diligent reader, then, is forced to refer to
a dreary accompanying recital of significance tests to
determine how the pattern of means should be inter-
preted.

It has become clear through interactions with col-
leagues and from queries we have received about the
use of confidence intervals in conjunction with graphi-
cal presentation of data, that more information is
needed about practical, computational steps involved in
generating confidence intervals, particularly with re-
spect to designs involving interactions among variables.
In this article, we briefly explain the logic behind con-
fidence intervals for both between-subject and within-
subject designs, then move to a consideration of a range
of multifactor designs wherein interaction effects are of
interest. Methods for computing and displaying confi-
dence intervals for a variety of between-subject, within-
subject, and mixed designs commonly used in experi-
mental psychology are illustrated with hypothetical data
sets. These descriptions go beyond the range of experi-
mental designs considered in Loftus and Masson
(1994). Moreover, we extend the use of contrasts dis-
cussed by Loftus (2002) and present a method for using
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planned contrasts to examine theoretically motivated
effects generated by factorial designs. Finally, we con-
sider an additional, crucial advantage of this graphical
approach to data interpretation that is sorely lacking in
standard applications of NHST, namely, the ease with
which one can assess an experiment's statistical power.

Interpretation of Confidence Intervals
The formal interpretation of a confidence interval

associated with a sample mean is based on the hypo-
thetical situation in which many random samples are
drawn from a population. For each such sample, the
mean, standard deviation, and sample size are used to
construct a confidence interval representing a specified
degree of confidence, say 95%. Thus, for each sample
we have

95%CI = M ± SEM (t95%) (1)

Under these conditions, it is expected that 95% of
these sample-specific confidence intervals will include
the population mean. In practical situations, however,
we typically have only one sample from a specified
population (e.g., an experimental condition) and there-
fore the interpretation of the confidence interval con-
structed around that specific mean would be that there
is a 95% probability that the interval is one of the 95%
of all possible confidence intervals that includes the
population mean. Put more simply, in the absence of
any other information, there is a 95% probability that
the obtained confidence interval includes the population
mean.

The goal of designing a sensitive experiment is to
obtain precise and reliable measurements that are con-
taminated by as little measurement error as possible. To
the extent that a researcher accomplishes this goal, the
confidence intervals constructed around sample means
will be relatively small, allowing the researcher accu-
rately to infer the corresponding pattern of population
means. That is, inferences about patterns of population
means and the relations among these means can be de-
rived from the differences among sample means, rela-
tive to the size of their associated confidence intervals.

Confidence Intervals for
Between-Subject Designs

The construction and interpretation of confidence
intervals is most directly appropriate to designs in
which independent groups of subjects are assigned to
conditions––the between-subject design. To illustrate
the use of confidence intervals in this context, consider
a study in which different groups of subjects are as-
signed to different conditions in a study of selective

attention involving Stroop stimuli. Admittedly, this is
the kind of experiment more likely to be conducted
using a repeated-measures or within-subject design, but
we will carry this example over to that context below.
Assume that one group of subjects is shown a series of
color words (e.g., blue, green), each appearing in an
incongruent color (e.g., the word blue printed in the
color green). The task is to name the color as quickly as
possible. A second group is shown a series of color
words, each printed in a congruent color (e.g., the word
blue printed in the color blue), and a third group is
shown a series of consonant strings (e.g., kfgh, trnds,
etc.), each printed in one of the target colors.

A hypothetical mean response time (RT) for each
of 24 subjects (8 per group) is shown in Table 1. The
group means are plotted in the top panel of Figure 1;
note that the individual subject means are displayed
around each group’s mean to provide an indication of
inter-subject variability around the means. The means
could also be plotted in a more typical manner, that is,
with a confidence interval shown for each mean. There
are two ways to compute such confidence intervals in a
between-subject design such as this one, depending on
how variability between subjects is estimated. One ap-
proach would be to compute S EM independently for
group, based on seven degrees of freedom in each case,
then construct the confidence intervals using Equation
1. An alternative and more powerful approach is one
that is also the foundation for the computation of analy-
sis of variance (ANOVA) for designs such as this one:
A pooled estimate of between-subject variability is
computed across all three groups, in exactly the same
way as one would compute MSWithin for an ANOVA.
Pooling of the different estimates of between-subject
variability provides a more stable estimate of variability
and delivers a larger number of degrees of freedom.
The advantage of having more degrees of freedom is
that a smaller t-ratio is used in computing the confi-
dence interval; the disadvantage is that it requires the

TABLE 1
Hypothetical Subject Means for a Between-Subject Design

Stimulus Type
Incongruent Congruent Neutral

784 632 651
853 702 689
622 598 606
954 873 855
634 600 595
751 729 740
918 877 893
894 801 822

M1 = 801.2 M2 = 726.5 M3 = 731.4
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homogeneity of variance assumption, i.e., the assump-
tion that the population variance is the same in all
groups (we return to this issue below). In any event,
using the pooled estimate of variability results in the
following general equation for confidence intervals in
the between-subject design:

CI = Mj ± 

† 

MSWithin

nj

 (tcritical) (2)

where Mj is the mean for and nj is the number of sub-
jects in Group j. Note that when the n’s in the different
groups are the same, as is true in our example, a single,
common confidence interval can be produced and plot-
ted around each of the group means.

To produce a graphic presentation of the means
from this hypothetical study, then, we can compute
MSWithin using an ANOVA program, then construct the
confidence interval to be used with each mean using
Equation 2. The MSWithin for these data is 14,054 (see
Figure 1). With 21 degrees of freedom, the critical t-
ratio for a 95% confidence interval is 2.080 and n = 8,
so the confidence interval is computed from Equation 2
to be ±87.18. The resulting plot of the three group
means and their associated 95% confidence interval is
shown in the lower panel of Figure 1. It is clear from
the size of the confidence interval that these data do not
imply strong differences between the three groups. In-
deed, the ANOVA computed for the purpose of ob-
taining MSWithin generated an F-ratio of 1.00, clearly
not significant by conventional NHST standards.

Confidence Intervals for
Within-Subject Designs

To illustrate the logic behind confidence intervals
for means obtained in within-subject designs, we can
again consider the data from Table 1, but now treat
them as being generated by a within-subject design, as
shown in the left side of Table 2. Thus, there are eight
subjects, each tested under the three different condi-
tions. The raw data and condition means are plotted in
Figure 2, which also includes lines connecting the three
scores for each subject to highlight the degree of con-
sistency, from subject to subject, in the pattern of scores
across conditions. The ANOVA inset in the top panel of
Figure 2 shows that with this design, the data produce a

TABLE 2
Hypothetical Subject Means for a Within-Subject Design

Raw data Normalized data
Subject Incongruous Congruous Neutral Mi Incongruous Congruous Neutral Mi

1 784 632 651 689.0 848.0 696.0 715.0 753.0
2 853 702 689 748.0 858.0 707.0 694.0 753.0
3 622 598 606 608.7 766.3 742.3 750.3 753.0
4 954 873 855 894.0 813.0 732.0 714.0 753.0
5 634 600 595 609.7 777.3 743.3 738.3 753.0
6 751 729 740 740.0 764.0 742.0 753.0 753.0
7 918 877 893 896.0 775.0 734.0 750.0 753.0
8 894 801 822 839.0 808.0 715.0 736.0 753.0
Mj 801.2 726.5 731.4 801.2 726.5 731.3

Figure 1.  Group means plotted with raw data (top panel)
and with confidence intervals (bottom panel) for the hypo-
thetical data shown in Table 1.  The ANOVA for these data
is shown in the top panel
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clearly significant pattern of differences between con-
ditions under the usual NHST procedures.

The consistency of the pattern of scores across
conditions is captured by the error term for the F-ratio,
MSSXC (1,069 in our example). To the extent that the
pattern of differences is similar or consistent across
subjects, that error term, i.e., the Subjects x Conditions
interaction, will be small. Moreover, the error term does
not include any influence of differences between sub-
jects, as the ANOVA in the top panel of Figure 2 indi-
cates––the between-subject variability is partitioned
from the components involved in computation of the F-
ratio. It is this exclusion of between-subject variability
that lends power to the within-subject design (and led,
as shown in the upper panel of Figure 2, to a significant
effect for a set of data that failed to generate a signifi-
cant effect when analyzed as a between-subject design).

Now consider how this concept applies to the con-
struction of confidence intervals for a within-subject
design. Because the between-subject variability is not
relevant to our evaluation of the pattern of means in a

within-subject design, we will, for illustrative purposes,
remove its influence before establishing confidence
intervals. By excluding this component of variability, of
course, the resulting confidence interval will not have
the usual meaning associated with confidence intervals,
namely, an interval that has a designated probability of
containing the true population mean. Nevertheless, a
confidence interval of this sort will allow an observer to
judge the reliability of the pattern of sample means as
an estimate of the corresponding pattern of population
means. The size of the confidence interval provides
information about the amount of statistical noise that
obscures the conclusions that one can draw about a
pattern of means.

The elimination of the influence of between-
subject variability, which is automatically carried out in
the course of computing a standard, within-subjects
ANOVA, can be illustrated by normalizing the scores
for each subject. Normalization is based on the devia-
tion between a subject's overall mean, computed across
that subject's scores in each condition, and the grand
mean for the entire sample of subjects (753 in the ex-
ample in Table 2). That deviation is subtracted from the
subject's score in each condition (i.e., Xij – (Mi – GM))
to yield a normalized score for that subject in each con-
dition, as shown in the right side of Table 2. Note that,
algebraically, the normalized scores produce the same
condition means as the raw scores. Also, each subject's
pattern of scores remains unchanged (e.g., the Incon-
gruent-Congruent difference for subject 1 is 152 ms in
both the raw data and in the normalized data). The only
consequence of this normalization is to equate each
subject's overall mean to the sample's grand mean,
thereby eliminating between-subject variability, while
leaving between-condition and interaction variability
unchanged.

As Loftus and Masson (1994, p. 489) showed, the
variability among the entire set of normalized scores
consists of only two components: variability due to
Conditions and variability due to the Subjects x Condi-
tions interaction (i.e., error). The variability among
normalized scores within each condition can be pooled
(assuming homogeneity of variance), just as in the case
of the between-subject design, to generate an estimate
of the consistency of differences among conditions
across subjects––the Subjects x Conditions interaction.
Thus, the equation for the construction of a within-
subject confidence interval is founded on the mean
square error for that interaction (see Loftus & Masson,
1994, Appendix A(3), for the relevant proof):

CI = Mj ± MSSXC

n
 (tcritical) (3)
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Figure 2. Condition means plotted with raw data (top
panel) and with confidence intervals (bottom panel) for the
hypothetical data shown in Table 2.  The ANOVA for these
data is shown in the top panel.
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where n is the number of observations associated
with each mean (8 in this example) and the degrees of
freedom for the critical t-ratio is dfSXC, the degrees of
freedom for the interaction effect (14 in this example).
Based on the ANOVA shown in the top panel of Figure
2, then, the 95% confidence interval for the pattern of
means in this within-subject design is ±24.80, which is
considerably smaller than the corresponding interval
based on treating the data as a between-subject design.
The condition means are plotted with this revised con-
fidence interval for the within-subject design in the
bottom panel of Figure 2. The clear intuition one gets
from inspecting Figure 2 is that there are differences
among conditions (consistent with the outcome of the
ANOVA shown in Figure 2), specifically between the
incongruent condition and the other two conditions,
implying that an incongruent color-word combination
slows responding relative to a neutral condition, but a
congruent pairing generates little or no benefit.

INFERENCES ABOUT PATTERNS OF MEANS
We emphasize that confidence intervals con-

structed for within-subject designs can support infer-
ences only about patterns of means across conditions,
not inferences regarding the value of a particular popu-
lation mean. That latter type of inference can, of course,
be made when constructing confidence intervals in
between-subject designs. But in most experimental re-
search, interest lies in patterns, rather than absolute
values of means, so the within-subject confidence inter-
val defined here is well-suited to the purpose and as
long as the type of confidence interval plotted is clearly
identified, no confusion should arise (cf. Estes, 1997).

Our emphasis on using confidence intervals to in-
terpret patterns of means should be distinguished from
standard applications of NHST. We advocate the idea
of using graphical display of data with confidence in-
tervals as an alternative to the NHST system, and par-
ticularly that system's emphases on binary (reject, do
not reject) decisions and on showing what is not true
(i.e., the null hypothesis). Rather, the concept of inter-
preting a pattern of means emphasizes what is true
(how the values of means are related to one another),
tempered by a consideration of the statistical error pre-
sent in the data set and as reflected in the size of the
confidence interval associated with each mean. In em-
phasizing the interpretation of a pattern of means, rather
than using graphical displays of data as an alternative
route to making binary decisions about null hypotheses,
our approach is rather different from that taken by, for
example, Goldstein and Healy (1995) and by Tryon
(2001). These authors advocate a version of confidence
intervals that support testing null hypotheses about

pairs of conditions. For example, Tryon advocates the
use of inferential confidence intervals, which are de-
fined so that a statistical difference between two means
can be established (i.e., the null hypothesis can be re-
jected) if the confidence intervals associated with the
means do not overlap.

Because our primary aim is not to support the con-
tinued interpretation of data within the NHST frame-
work, we have not adopted Tryon's (2001) style of con-
fidence interval construction. Nevertheless, there is a
relatively simple correspondence between confidence
intervals as we define them here and whether there is a
statistically significant difference between, say, a pair
of means, according to a NHST-based test. Loftus and
Masson (1994, Appendix A(3)) showed that two means
will be significantly different by ANOVA or t-test if
and only if the absolute difference between means is at
least as large as 2 !x!CI, where CI is the 100(1-a)%
confidence interval. Thus, as a rule of thumb, plotted
means whose confidence intervals overlap by no more
than about half the distance of one side of an interval
can be deemed to differ under NHST.1 Again, however,
we emphasize that our objective is not to offer a graphi-
cal implementation of NHST. Rather, this general heu-
ristic is offered only as an aid to the interested reader in
understanding the conceptual relationship between the
confidence intervals we describe here and NHST pro-
cedures.

ASSUMPTIONS
For both the between- and within-subject cases,

computation of confidence intervals based on pooled
estimates of variability relies on the assumption that
variability is equal across conditions––the homogeneity
of variance assumption in between-subject designs and
the sphericity assumption for within-subject designs
(i.e., homogeneity of variance and covariance). For
between-subject designs, if there is concern that the
homogeneity assumption has been violated (e.g., if
group variances differ from one another by a factor or
two or more), a viable solution is to use Equation 1 to
compute a confidence interval for each group, based
only on the scores with that group. This approach will
result in confidence intervals of varying size, but that
will not interfere with interpreting the pattern of means,
nor is it problematic in any other way.

For within-subject designs, standard ANOVA pro-
grams provide tests of the sphericity assumption, often

1We note that in their demonstration of this point in their
Appendix A3, Loftus and Masson (1994) made a typo-
graphical error at the end of this section of their appendix (p.
489), identifying the factor as 2 rather than as 

† 

2 .
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by computing a value, e, as part of the Greenhouse-
Geisser and Huynh-Feldt procedures for correcting de-
grees of freedom under violation of sphericity. The e
value reflects the degree of violation of that assumption
(lower values indicate more violation). Loftus and Mas-
son (1994) suggest not basing confidence intervals on
the omnibus MSSXC estimate when the value of e falls
below 0.75. Under this circumstance, one approach is to
compute separate confidence intervals for each condi-
tion, as can be done in a between-subject design. This
solution, however, is associated with a potential esti-
mation problem in which variance estimates are com-
puted from the difference between two mean-squares
values and therefore a negative variance estimate may
result (Loftus & Masson, 1994, p. 490). To avoid this
problem, we recommend a different approach, whereby
confidence intervals are constructed on the basis of
specific, single-degree of freedom contrasts that are of
theoretical interest. In the example from Table 2, for
instance, the original ANOVA produced e < 0.6, indi-
cating a violation of sphericity. Here, one might want to
test for a standard Stroop effect by comparing the in-
congruent and congruent conditions and also test for a
possible effect of Stroop facilitation by comparing the
congruent and neutral conditions. This approach would
entail computing an ANOVA for each comparison and
using the M SSXC term for the contrast-specific
ANOVA as the basis for the corresponding confidence
interval. Note that the degrees of freedom associated
with the t-ratio used to construct these intervals are
much less than when the omnibus MSSXC was used.
Thus, for the comparison between the incongruent and
congruent conditions, MSSXC = 1,451, with seven de-
grees of freedom, so the 95% confidence interval is

95%CI = ±

† 

1451
8

 (2.365) = ±31.85 .

Similarly, the 95% confidence interval for the con-
gruent-neutral contrast is ±8.85, based on a MSSXC of
112. Thus, there are two different confidence intervals
associated with the congruent condition. One possible
way of plotting these two intervals is shown in Figure
3, in which the mean for the congruent condition is
plotted with two different confidence intervals. Inter-
preting patterns of means is restricted in this case to
pairs of means that share a common confidence inter-
val. Note that the difference in magnitude of these two
intervals is informative with respect to the degree of
consistency of scores across conditions for each of
these contrasts, in keeping with what can be observed
from the raw data plotted in the upper panel of Figure 2.

Multifactor Designs
Experimental designs involving factorial combina-

tion of multiple independent variables call for some
inventiveness when it comes to graphical presentation
of data. But with guidance from theoretically motivated
questions, very informative plots can be produced.
There are two issues of concern when considering mul-
tifactor designs: how to illustrate graphically main ef-
fects and interactions and how to deal with possible
violations of homogeneity assumptions. For factorial
designs, particularly those involving within-subject
factors, violation of homogeneity of variance and
sphericity assumptions create complex problems, espe-
cially if one wishes to assess interaction effects. Our
general recommendation is that if such violations occur,
then it may be best to apply a transformation to the data
to reduce the degree of heterogeneity of variance. We
turn, then, to a consideration of the interpretation of
main effects and interactions in the context of a variety
of multifactor designs.

DESIGNS WITH TWO LEVELS OF EACH FACTOR
Between-subject designs. In factorial designs, the

primary question is, which MS term should be used to
generate confidence intervals? For a pure between-
subject design, there is only a single M S error term
(MSWithin), representing a pooled estimate of variabil-
ity. In this case, a single confidence interval can be con-
structed using a minor variant of Equation 2:

CI = Mjk ± MSWithin

n
 (tcritical) (4)

where n is the number of subjects in each group (i.e.,
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Figure 3.  Condition means for the data from Table 2 plot-
ted with separate confidence intervals for each of two con-
trasts:  incongruent vs. congruent and congruent vs. neutral.
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the number of observations on which each of the j x  k
means is based). This confidence interval can be plotted
with each mean and used to interpret the pattern of
means. If there is a serious violation of the homogeneity
of variance assumption (e.g., variances differ by more
than 2:1 ratio), separate confidence intervals can be
constructed for each group in the design using Equation
1.

A set of hypothetical descriptive statistics from a 2
x 2 between-subject factorial design and the corre-
sponding ANOVA summary table for these data are
shown in Table 3. Factor A represents two levels of an
encoding task, Factor B two levels of type of retrieval
cue, and the dependent variable is proportion correct on
a cued recall test. There are 12 subjects in each cell.

Note that the homogeneity assumption is met, so
MSWithin can be used as a pooled estimate of variabil-
ity. Applying Equation 4, yields a 95% confidence in-
terval of

CI = ± 0.009
12

 (2.017) = ±0.055 .

The condition means are graphically displayed in
the left panel of Figure 4 using this confidence interval.
The pattern of means can be deduced from this display.
Encoding (Factor A) has a substantial influence on per-
formance, but there is little, if any, influence of Re-
trieval cue (Factor B). Moreover, the encoding effect is
rather consistent across the different types of retrieval
cue, implying that there is no interaction. If they are not

TABLE 3
Hypothetical Data for a Two-Factor Between-Subject Design

Factor B ANOVA Summary Table
Factor A B1 B2 Source df SS MS F

A1 0.51 (0.08) 0.50 (0.09) A 1 0.098 0.098 11.32

A2 0.58 (0.11) 0.61 (0.08) B 1 0.001 0.001 0.06
AxB 1 0.007 0.007 0.79

Within 44 0.381 0.009
Total 47 0.486

Note. Standard deviation in parentheses
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Figure 4. Group means (left panel) and contrasts for each effect (right panel) plotted with 95% confidence interval for data from
Table 3.  For convenience, each contrast is plotted as a positive value.



8 Masson and Loftus

very large, patterns of differences among means can be
difficult to perceive, so it may be useful to highlight
selected effects.

We recommend using contrasts as the basis for
computing specific effects and their associated confi-
dence intervals. To see how this is done, recall that the
confidence intervals we have been describing so far are
interpreted as confidence intervals around single means,
enabling inferences about the pattern of means. In ana-
lyzing an effect defined by a contrast, we are consider-
ing an effect produced by a linear combination of
means where that combination is defined by a set of
weights applied to the means. Contrasts may be applied
to a simple case, such as one mean versus another, with
other means ignored, or to more complex cases in
which combinations of means are compared (as when
averaging across one factor of a factorial design to as-
sess a main effect of the other factor). Applying con-
trast weights to a set of means in a design results in a
contrast effect (e.g., a simple difference between two
means, a main effect, an interaction effect) and a confi-
dence interval can be defined for any such effect.

In the case of our 2 x 2 example, the main effect of
Encoding (Factor A), can be defined by the following
contrast of condition means: (A1B1 + A1B2) – (A2B1 +
A2B2). The weights applied to the four condition means
that define this contrast are: 1, 1, –1, –1. More gener-
ally, the equation for defining a contrast as a linear
combination of means is

Contrast Effect = wjkMjkÂ (5)

To compute the confidence interval for a linear
combination of means, the following equation can be
applied

CIcontrast = CI wjk
2Â  (6)

where CI is the confidence interval from Equation 2
and the wjk are the contrast weights. Notice that weights
can be of arbitrary size, as long as they meet the basic
constraint of summing to zero (e.g., 2, 2, -2, -2 would
be an acceptable set of weights in place of those shown
above). The size of the confidence interval for a con-
trast effect will vary accordingly, as Equation 6 indi-
cates. We suggest, however, that a particularly infor-
mative way to define contrast weights in a manner that
reflects the averaging across means that is involved in
constructing a contrast. For example, in defining the
contrast for the Encoding main effect, we are compar-
ing the average of two means against the average of
another two means. Thus, the absolute value of the ap-
propriate contrast weights that reflect this operation

would be 0.5 (summing two means and dividing by two
is equivalent to multiply each mean by 0.5 and adding
the products). Thus, the set of weights that allows the
main effect of the Encoding factor to be expressed as a
comparison between the averages of two pairs of means
would be 0.5, 0.5, –0.5, –0.5. Applying this set of
weights to the means from Table 3 produces

Contrast Effect = 0.5(0.51) + 0.5(0.50) + (–0.5)(0.58)
+ (–0.5)(0.61) = –0.0905.

The mean difference between the two encoding
conditions, then, is slightly more than 0.09. The confi-
dence interval for this contrast is equal to the original
confidence interval for individual means because the
sum of the squared weights equals 1, so the second term
in Equation 6 equals 1. This Encoding main effect con-
trast, representing the main effect of Encoding (Factor
A), and its confidence interval are plotted in the right
panel of Figure 4. For convenience we have plotted the
contrast effect as a positive value. This move is not
problematic because the sign of the effect is arbitrary
(i.e., it is determined by which level of Factor A we
happened to call level 1 and which we called level 2).
Note that the confidence interval does not include zero,
supporting the conclusion that the Encoding task ma-
nipulation favors condition A2, as implied by the pat-
tern of means in the left panel of Figure 4.

For the main effect of Retrieval cue, the weights
would be 0.5, –0.5, 0.5, –0.5. The absolute values of
these weights are again 0.5 because the same type of
comparison is being made as in the case of the Encod-
ing main effect (comparison between averages of pairs
of means). The contrast effect for the Retrieval cue ef-
fect and its confidence interval (which is the same as
for the Encoding task effect because the contrast
weights were identical) is shown in the right panel of
Figure 4. The confidence interval includes zero, indi-
cating that type of retrieval cue made little or no differ-
ence to recall performance.

For the interaction, however, we have a somewhat
different situation. The interaction is a difference be-
tween differences, rather than a difference between
averages. That is, a 2 x 2 interaction is based on com-
puting the difference between the effect of Factor A at
one level of Factor B, and the effect of A at the other
level of B. In the present example, this contrast would
be captured by the weights 1, –1, –1, 1. (This same set
of weights can also be interpreted as representing the
difference between the effect of Factor B at one level of
Factor A and the effect of B at the other level of A.)
Applying these weights for the interaction yields the
following contrast effect:

Contrast Effect = 1(0.51) + (–1)(0.50) + (–1)(0.58)
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+ 1(0.61) = 0.04 .
Now consider the confidence interval for this ef-

fect. The square root of the sum of these squared
weights is 2, so applying Equation 6 to obtain the con-
fidence interval for the effect, we have

CIcontrast = ±0.055(2) = ±0.110 .

The interaction effect and its confidence interval
are plotted in the right panel of Figure 4. Note that this
confidence interval is twice the size of the confidence
interval for the main effects. This occurs because we
are computing a difference between differences, rather
than between averages. Even so, this is a somewhat
arbitrary stance. We could just as easily have converted
the weights for the interaction contrast to ±0.5 and
wound up with a confidence interval equal to that for
the two main effects. But in treating the interaction
contrast as a difference between differences and using
±1 as the weights, the resulting numerical contrast ef-
fect more directly reflects the concept underlying the
contrast.

The principles described here easily can be scaled
up to accommodate more than 2 factors. In such cases it
would be particularly useful to plot each of the main
effects and interactions as contrasts, as shown in Figure
4, because magnitude of interactions beyond two fac-
tors can be very hard to visualize based on a display of
individual means. Moreover, main effects in such de-
signs involve collapsing across three or more means,
again making it difficult to assess such effects. At the
same time, a major advantage of plotting individual
means with confidence intervals is that one can exam-
ine patterns of means that may be more specific than
standard main effects and interactions. And, of course,
the plot of individual means, or means collapsed across
one of the factors, can reveal the pattern of interaction

effects (e.g., a cross-over interaction).
Within-subject designs. In a within-subject design,

there are multiple MS error terms, one for each main
effect and another for each possible interaction between
independent variables. For a J x K two-factor design,
for example, there are three MS error terms. It is possi-
ble that all MS error terms in a within-subject design are
of similar magnitude (i.e., within a ratio of about 2:1),
in which case the most straightforward approach is to
combine all such sources of MS error to obtain a single,
pooled estimate, just as though one had a single-factor
design with JK conditions. Consider this approach in
the case of a two-factor within-subject design for the
hypothetical data shown in Table 4. In this case, the
experiment involves an implicit measure of memory
(latency on a lexical decision task) for words that had or
had not been seen earlier. Factor A is Study (nonstudied
vs. studied) and Factor B is Word frequency (low vs.
high). The data are based on a sample of 12 subjects.
To obtain a pooled MS error term, one would sum the
three sums of squares corresponding to the three error
terms in the design and divide by the sum of the de-
grees of freedom associated with these three terms. For
the data in Table 4, the pooled estimate is

MSSXAB = SSSXA + SSSXB + SSSXAXB

dfSXA + dfSXB + dfSXAXB

 =

4465 +3672 + 7045
11+ 11+11

 = 460.1 .

This estimate would then be used to compute a sin-
gle confidence interval as follows:

CI = Mj ± MSSXAB

n
 (tcritical) (7)

where n is the number of observations associated with
each condition mean. Note that the subscript for the MS

TABLE 4
Hypothetical Data for a Two-Factor Within-Subject Design

Factor B ANOVA Summary Table
Factor A B1 B2 Source df SS MS F

A1 588 (69) 504 (78) Subjects 11 241,663 21,969
A2 525 (90) 478 (67) A 1 23,298 23,298 54.94

SXA 11 4,465 424
B 1 51,208 51,208 153.40

SXB 11 3,672 334
AXB 1 4,021 4,021 6.28

SXAXB 11 7,045 640
Total 47 335,372

Note. Standard deviation in parentheses
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term in this equation reflects a pooled estimate of MS
error, not the MS error term for the interaction alone.
Thus, the degrees of freedom for the critical t-ratio
would be the sum of the degrees of freedom for the
three MS error terms. For the data in Table 4, the 95%
confidence interval would be

CI = ± 460.1
12

(2.036) = ±12.61 .

This confidence interval can be plotted with each
mean in the design and used to interpret patterns among
any combination of means. The left panel of Figure 5
presents the data from Table 4 in this manner. One
could also display each of the main effects and the in-
teraction as contrasts as was done for the previous be-
tween-subjects example in Figure 4. But another alter-
native would be to highlight the interaction by plotting
it as means of difference scores computed for each level
of one factor. In the present example, it is of theoretical
interest to consider the effect of prior study at each of
the two frequency levels. For each subject, then, one
could compute the effect of prior study at each level of
word frequency, producing two scores per subject. The
means of these difference scores are shown in the right
panel of Figure 5. The confidence interval for this inter-
action plot can be computed from a MS error term ob-

tained by computing a new ANOVA with only Factor B
as a factor and using difference scores on Factor A (i.e.,
A1 – A2) for each subject, with one such score com-
puted at each level of B. The resulting MS error term is
1,281. The confidence interval for this interaction effect
using Equation 3 and a critical t-ratio for 11 degrees of
freedom is

CI = ± 1281
12

(2.201) = ± 22.74

Next, consider how to plot the means and confi-
dence intervals when it is not advisable to pool the three
MS error terms in a two-factor within-subject design.
One could combine a pair of terms if they are suffi-
ciently similar (within a factor of about two) and com-
pute a confidence interval from a pooled MS  error
based on those two sources. A separate confidence in-
terval could be computed for the other effect whose MS
error is very different from the other two. The latter
confidence interval would be appropriate for drawing
conclusions only about the specific effect with which it
is associated. To illustrate how this might be done, let
us assume that in Table 4 the M SSXAXB term was
deemed much larger than the other two error terms, so
only the MSSXA and MSSXB are pooled and the result-
ing confidence interval is plotted with the four means of
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Figure 5. Condition means and interaction plot with 95% within-subject confidence interval for data from Table 4.
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the design. A subsidiary plot, like that shown in the
right panel of either Figure 4 (to display all three effects
in the design) or Figure 5 (to display just the interac-
tion) could then be constructed specifically for the in-
teraction using a confidence interval computed from
MSSXAXB.

As an additional example of a case in which not all

MS error terms are similar, consider the data set in Ta-
ble 5. These data are the descriptive statistics and
ANOVA for a 2 x 2 within-subject design with 16 sub-
jects. Here, we have a case in which a word stem com-
pletion test is used as an implicit measure of memory
and the factors are Study (Factor A), referring to
whether or not a stem's target completion had been

TABLE 5
Hypothetical Data for a Two-Factor Within-Subject Design

Factor B ANOVA Summary Table
Factor A B1 B2 Source df SS MS F

A1 .33 (.09) .23 (.11) Subjects 15 0.211 0.014

A2 .18 (.07) .20 (.09) A 1 0.126 0.126 23.12
SXA 15 0.082 0.005

B 1 0.023 0.023 2.13
SXB 15 0.16 0.011
AXB 1 0.052 0.052 13.27

SXAXB 15 0.059 0.004
Total 63 0.713

Note. Standard deviation in parentheses
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studied previously, and Delay interval (Factor B) be-
tween the study and test phase (i.e., the test follows
immediately or after a delay). In this case, M SSXB is
quite dissimilar from the other two error terms, so we
might wish to plot a confidence interval based on
pooling MSSXA and MSSXAXB, to be plotted with each
mean, then construct a separate confidence interval
based on MSSXB for use in the interpretation of Factor
B. The confidence interval obtained by pooling across
MSSXA and MSSXAXB is found by pooling the MS error
terms

MSSxC = 0.082 + 0.059
15 +15

 = 0.0047 ,

then computing the confidence interval using a t-
ratio with dfSXA + dfSXAXB = 15 + 15 = 30 degrees of
freedom:

CI = ± 0.0047
16

 (2.042) = ±0.035 .

The confidence interval for the main effect of B is
based on a t-ratio with dfSXB = 15 degrees of freedom:

CI = ± 0.011
16

 (2.132) = ±0.056 .

This latter confidence interval could be strategi-
cally placed so that it is centered at a height equal to the
grand mean, as shown in the left panel of Figure 6. This
display gives an immediate impression of the magni-
tude of the B main effect. In addition, the right panel of
Figure 6 shows all three effects of this design with the
appropriate confidence interval for each. The contrast
weights for each effect were the same as in the be-
tween-subject design above. Thus, the confidence inter-
vals for the A main effect and for the interaction effect
are different, despite being based on the same MS error
term. The extension of these methods to designs with
more than two factors, each having two levels, could

proceed as described for the case of between-subject
designs.

Mixed designs. In a mixed design, there is at least
one between-subject and at least one within-subject
factor. We will consider in detail this minimal case,
although our analysis can be extended to cases involv-
ing a larger number of factors. In the 2-factor case,
there are two different MS error terms. One is the MS
within groups and is used to test the between-subject
factor's main effect; the other is the MS for the interac-
tion between the within-subject factor and subjects (i.e.,
the consistency of the within-subject factor across sub-
jects) and is used to test the within-subject factor's main
effect and the interaction between the between-subject
and the within-subject factors. Unlike two-factor de-
signs in which both factors are between- or both are
within-subject factors, it would be inappropriate to pool
the two MS error terms in a mixed design. Rather, sepa-
rate confidence intervals must be constructed because
the variability reflected in these two MS error terms are
of qualitatively different types––one reflects variability
between subjects and the other represents variability of
the pattern of condition scores across subjects. The con-
fidence interval based on the within-subject MS error
term (MSSxC) is computed using Equation 3, and the
confidence interval for the MS error term for the be-
tween-subject factor (M SWithin) is computed using
Equation 2.

Consider a hypothetical study in which subjects
perform a lexical decision task and are presented with a
semantically related versus unrelated prime for each
target (the within-subject factor). The between-subject
factor is the proportion of trials on which related primes
are used (say, .75 vs. .25), and we will refer to this fac-
tor as relatedness proportion (RP). A hypothetical set of
data is summarized in Table 6, which presents mean
response time for word trials as a function of prime
(factor P) and relatedness proportion (factor RP). There

TABLE 6
Hypothetical Data for a Two-Factor Mixed Design

Prime ANOVA Summary Table
RP Related Unrelated Source df SS MS F
25 497 (59) 530 (67) RP 1 23,018 23,018 2.74

0.75 517 (65) 577 (71) Within 38 318,868 8,391
Prime 1 43,665 43,665 166.35
RP x P 1 3,605 3,605 13.73
S/RPXP 38 9,974 262

Total 79 399,130
Note. Standard deviation in parentheses
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are 20 subjects in each RP condition. The table also
shows the results of a mixed-factor ANOVA applied to
these data. In this case, the prime main effect and the
interaction are clearly significant. Notice also that the
two MS error terms in this design are, as will usually be
the case, very different, with the MSWithin term much
larger than the MS error for the within-subject factor
and the interaction. The corresponding confidence in-
tervals, then, are also very different. For the main effect
of the between-subject factor, RP, the confidence inter-
val (based on the number of observations contributing
to each mean; two scores per subject in this case), using
Equation 2, is

CI = ± 8, 391
(2)20

 (2.025) = 29.33 .

The confidence interval for the within-subject fac-
tor, P, and the interaction, using Equation 3, is

CI = ± 262
20

 (2.025) = 7.33 .

The means for the four cells of this design are
plotted in the left panel of Figure 7. Here, we have
elected to display the confidence interval for the prim-
ing factor with each mean and have plotted the confi-
dence interval for the main effect of RP separately. In
addition, the right panel of the figure shows each of the
main effects and the interaction effect plotted as con-
trast effects with their appropriate confidence intervals,
as computed by Equations 5 and 6. The contrast
weights for each effect were the same as in the factorial
designs presented above.2 An alternative approach to
plotting these data is to compute a priming effect for
each subject as a difference score (unrelated – related).

An ANOVA applied to these difference scores
could then be used to compute a confidence interval for
comparing the mean priming score at each level of RP
and the two means and this confidence interval could be
plotted, as was done in Figure 5.
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Figure 7. Condition means (left panel) and contrasts for each effect (right panel) plotted with 95% confidence interval for data
from Table 6.  For convenience, each contrast is plotted as a positive value.

2The main effect of RP in this case is based on just two
means, one for high and one for low, so the contrast weights
are 1 and –1.  Therefore, the appropriate confidence interval
for this main effect contrast is the original confidence inter-
val multiplied by 2 , as per Equation 6.
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DESIGNS WITH THREE OR MORE LEVELS OF A
FACTOR

The techniques described above can be generalized
to designs in which at least one of the factors has more
than two levels. In general, the first step is to plot
means with confidence intervals based on a pooled MS
error estimate where possible (in a pure within-subject
design with MS  error terms of similar size) or a MS
error term that emphasizes a theoretically motivated
comparison. In addition, one can plot main effects and
interactions as illustrated in the previous section. With
three or more levels of one factor, however, there is an
additional complication: For any main effect or interac-
tion involving a factor with more than two levels, more
than one contrast can be computed. This fact does not
mean that one necessarily should compute and report as
many contrasts as degrees of freedom allow. Indeed,
there may be only one theoretically interesting contrast.
The important point to note here is simply that one has
the choice of defining and reporting those contrasts that
are of theoretical interest. Moreover, in designs with
one within-subject factor that has two levels, an inter-
action plot can be generated by computing difference
scores based on that factor (e.g., for each subject, sub-
tract the score on level 1 of that factor from the score on
level 2), as described above. The mean of these differ-
ence scores for each level of the other factor(s) can then
be plotted, as in Figure 5.

Let us illustrate, though, an approach in which
contrast effects are plotted in addition to individual
condition means. For this example, consider a 2 x 3
within-subject design used by a researcher to investi-
gate conscious and unconscious influences of memory
in the context of Jacoby's (1991) process-dissociation
procedure. In a study phase, subjects encode one set of
words in a semantic encoding task and another set in a

nonsemantic encoding task. In the test phase, subjects
are given a word stem completion task with three sets
of stems. One set can be completed with semantically
encoded words from the study list, another set can be
completed with nonsemantically encoded words, and
the final set is used for a group of nonstudied words.
For half of the stems of each type, subjects attempt to
recall a word from the study list and to use that item as
a completion for the stem (inclusion instruction). For
the other half of the stems, subjects are to provide a
completion that is not from the study list (exclusion
instructions). The factors, then, are encoding (semantic,
nonsemantic, nonstudied) and test (inclusion, exclu-
sion).

A hypothetical data set from 24 subjects is shown
in Table 7, representing mean proportion of stems for
which target completions were given. The three MS
error terms in the accompanying ANOVA summary
table are similar to one another, so a combined MS error
term can be used to compute a single confidence inter-
val for the plot of condition means. The combined MS
error is

MSSxC = 0.615 + 1.084 + 0.675
23 + 46 + 46

 = 0.021 .

Based on M SSxC, the confidence interval associ-
ated with each mean in this study is

CI = ± 0.021
24

 (1.982) = ± 0.042 .

The means from Table 7 are plotted in the left
panel of Figure 8 with this confidence interval.

A number of inferences can be drawn from this
pattern of means (e.g., semantic encoding produces
more stem completion than nonsemantic encoding un-
der inclusion instructions, but the reverse occurs under

TABLE 7
Hypothetical Data for a Two-Factor Within-Subject Design with Three Levels of One Factor

Encoding Tasl ANOVA Summary Table
Instr Sem Nonseman New Source df SS MS F
Incl. .66 (.11) .51 (.16) .30 (.11) Subjects 23 0.635 0.028
Excl. .32 (.16) .47 (.20) .28 (.14) Instr. 1 0.618 0.618 23.13

S x Instr. 23 0.615 0.027
Encoding 2 1.278 0.639 27.13
S x Enc. 46 1.084 0.024

I x E 2 0.802 0.401 27.32
S x I x E 46 0.675 0.015

Total 143 5.707
Note. Standard deviation in parentheses
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exclusion instructions). In addition, one may wish to
emphasize specific aspects of one or more main effects
or the interaction. Notice that in the ANOVA shown in
Table 7, the encoding main effect and its interaction
with test instruction have two degrees of freedom be-
cause the encoding factor has three levels. To display
either of these effects using the general method illus-
trated in the earlier discussion of 2 x 2 designs, specific
contrasts can be defined and plotted. For example, the
main effect of encoding task could be expressed as two
orthogonal contrasts combined across instruction con-
dition: (1) semantic vs. nonsemantic and (2) seman-
tic/nonsemantic combined vs. new. The weights defin-
ing the first contrast (semantic vs. nonsemantic encod-
ing) for the inclusion instruction and exclusion instruc-
tion conditions, respectively, could be 0.5, –0.5, 0, 0.5,
–0.5, 0. That is, the semantic conditions within each of
the two instructional conditions are averaged, then con-
trasted with the average of the nonsemantic conditions
within each of the instructional conditions. For the
other contrast (semantic/nonsemantic combined vs.
new), the contrast weights could be 0.25, 0.25, –0.5,
0.25, 0.25, –0.5. These weights reflect the fact that we
are averaging across four conditions and comparing that
average to the average of the two new conditions. The
resulting contrast effects, then, would be

Contrast Effect 1 = 0.5(0.66) + (–0.5)(0.51) +
0.5(0.32) + (–0.5)(0.47) = 0 ,

Contrast Effect 2 = 0.25(0.66) + 0.25(0.51) +
(–0.5)(0.30) + 0.25(0.32) +
 0.25(0.47) + (–0.5)(0.28) = 0.07 .

The square root of the sum of squared weights for
Contrast 1 is equal to 1, so the confidence interval for
that contrast is equal to the original confidence interval.
For Contrast 2, the square root of the sum of squared
weights is 0.87, so the original confidence interval is
scaled by this factor, in accordance with Equation 6, to
yield a contrast-specific confidence interval of ±0.037.
These two contrasts for the main effect of encoding task
are plotted as the first two bars in the right panel of
Figure 8.

Finally, consider two theoretically relevant con-
trasts based on the Encoding x Instruction interaction.
Let us suppose that, as in the main effect contrasts, the
first interaction contrast compares the semantic and
nonsemantic conditions, ignoring the new condition.
But now the weights are set to produce an interaction,
which can be done by using opposite sign contrasts in
each of the two instruction conditions, producing the
following contrast weights for the semantic vs. nonse-
mantic interaction contrast: 1, –1, 0, –1, 1, 0. The
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Figure 8. Condition means (left panel) and contrasts for effects involving the Encoding factor and its interaction with the Instruc-
tion factor (right panel) plotted with 95% confidence interval for data from Table 7.  For convenience, each contrast is plotted as
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weights reflect the intended expression of the interac-
tion effect as a difference between difference scores.
This contrast effect is

Contrast Effect 3 = 1(0.66) + (–1)(0.51) + (–1)(0.32)
+ 1(0.47) = 0.30 .

The square root of the sum of the squared contrast
weights in this case is 2, so the corresponding confi-
dence interval is (±0.042)(2) = ±0.084. Let us further
assume that the other contrast for the interaction effect
will also parallel the second main effect contrast, in
which the average of the semantic and nonsemantic
conditions is compared to the new condition, but again
using opposite signs for the two instruction conditions:
0.5, 0.5, –1, –0.5, –0.5, 1. Applying these weights to the
means produces the following contrast:

Contrast Effect 4 = 0.5(0.66) + 0.5(0.51) + (–1)(0.30)
+ (–0.5)(0.32) +
 (–0.5)(0.47) + 1(0.28) = 0.17 .

The confidence interval for this interaction is
(±0.042)(1.73) = ±0.073. The two interaction contrasts
are plotted as the final two bars in the right panel of
Figure 8.

There are, of course, other possible contrasts that
could have been defined and plotted. Loftus (2002)
presented further examples of contrast effects that can
be used to make full use of graphical displays of data
from factorial designs.

Power
One particularly important advantage of graphical

presentation of data, and especially confidence inter-
vals, is that such presentations provide information
concerning statistical power. The power of an experi-
ment to detect some effect becomes very important
when the effect fails to materialize and that failure car-
ries substantial theoretical weight. The prescription for
computing power estimates under the standard NHST
approach requires that one specify a hypothetical effect
magnitude. Although it is possible to select such a value
on the basis of theoretical expectation or related empiri-
cal findings, the estimate of power depends to a large
degree on this usually arbitrary value. An alternative
approach is to report not just a single power estimate
based on a single hypothesized effect magnitude, but a
power curve that presents power associated with a wide
range of possible effect magnitudes. In practice, this is
rarely (if ever) done.

With graphical plots of data, however, we have a
ready-made alternative means of displaying the power
of an experiment. Specifically, the smaller the confi-

dence intervals, the greater the amount of statistical
power and, more important, the greater the confidence
we can place in the observed pattern of means. To il-
lustrate this concept, consider two different data sets
from a reaction time task, each representing a one-
factor within-subject design with two levels of the fac-
tor. The means and the MSSxC in the two data sets are
the same, but the sample size is much larger in the sec-
ond case leading to a smaller confidence interval for the
means. The means and confidence intervals are shown
in Figure 9. The floating confidence interval in each
case is the 95% confidence interval for the difference
between means, computed using Equation 6 and the
contrast weights 1 and –1. It is immediately obvious
that we can have greater confidence in the pattern of
means in the set of data on the right side of Figure 9.

In normal situations, only one of these two sets of
data would be available, so how can one know whether
the confidence interval, either for means or for differ-
ences between means is small enough to indicate that
substantial statistical power is available? There are a
number of benchmarks one might rely on. For example,
for commonly used tasks there often are well estab-
lished rules of thumb regarding how small an effect can
be detected (e.g., in lexical decision tasks, reliable ef-
fects are usually 20 ms or more). Alternatively, as in
power estimation under NHST, there may be empirical
or theoretical reasons to expect an effect of a particular
magnitude. If an expected effect size is larger than the
observed effect and larger than the confidence interval
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for the difference between means, it is reasonable to
conclude that the true effect is smaller than what was
expected.

Another kind of benchmark for evaluating power
comes from inherent limits on scores in a particular
experiment. For instance, consider an experiment on
long-term priming. If one is assessing differences in
priming between two study conditions, it is possible to
see immediately whether the study has adequate power
to detect a difference in priming, because adequate
power depends on whether the confidence interval for
the difference between means is smaller or larger than
the observed priming effects. If the confidence interval
for the difference between means is larger than the
priming effects themselves, then clearly there is not
adequate power––one condition would have to have a
negative priming effect for a difference to be found!

Conclusion
We have described a number of approaches to

graphical presentation of data in the context of classical
factorial designs that typify published studies in ex-
perimental psychology. Our emphasis has been on the
use of confidence intervals in conjunction with graphi-
cal presentation to allow readers to form inferences
about the patterns of means (or whatever statistic the
author opts to present). We have also tried to convey
the notion that authors have a number of options avail-
able with respect to construction of graphical presenta-
tions of data and that selection among these options can
be guided by specific questions or hypotheses about
how manipulated factors are likely to influence behav-
ior. The approach we have described represents a sup-
plement or, for the bold among us, an alternative to
standard NHST methods.
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