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We contrast 2 theories within whose context problems are conceptualized and data interpreted. By
traditional linear theory, a dependent variable is the sum of main-effect and interaction terms. By
dimensional theory, independent variables yield values on internal dimensions that in turn determine
performance. We frame our arguments within an investigation of the face-inversion effect—the greater
processing disadvantage of inverting faces compared with non-faces. We report data from 3 simulations
and 3 experiments wherein faces or non-faces are studied upright or inverted in a recognition procedure.
The simulations demonstrate that (a) critical conclusions depend on which theory is used to interpret data
and (b) dimensional theory is the more flexible and consistent in identifying underlying psychological
structures, because dimensional theory subsumes linear theory as a special case. The experiments
demonstrate that by dimensional theory, there is no face-inversion effect for unfamiliar faces but a clear
face-inversion effect for celebrity faces.

Understanding the implications of any experimental outcome
requires a fundamental quantitative theory, within whose context
the numbers constituting the data may be transformed into con-
clusions about the underlying processes that generated the data.
This article is about the general consequences for eventual con-
clusions of deciding to use one such theory or another and about
the specific consequences for understanding a well-known phe-
nomenon in the domain of face processing.

The article is divided into five sections. In the first section (“The
Face-Inversion Effect”), we describe an extant psychological prob-
lem that serves as a vehicle for illustrating the points that we make
regarding theories. In the second section (“Theories to Analyze
Data”), we describe two quantitative theories: The first, traditional
linear theory, is used almost universally within many disciplines,
including psychology, whereas the second, dimensional theory, is
considerably less known and less used. In the third section (“Sim-
ulations”), we describe three simulations, whose purpose is to
illustrate some costs and benefits of interpreting data using linear
and dimensional theory. In the fourth section (“Experiments”), we
describe three experiments that, given the foundation we have
established, allow us to make some tentative conclusions about the
face-inversion effect in particular and about face processing in
general. Finally, in the fifth section, our General Discussion, we

compare the two theories that we have been considering: We show
formal mathematical relations between them, we comment on the
advantages and disadvantages of using one versus the other as a
tool for inferring the underlying processes that generated a data set,
and we articulate the resulting implied conclusions about face
processing.

These five sections are designed in pursuit of three interrelated
goals. The first goal is to demonstrate (yet again) that traditional
linear theory has severe limitations as a basis for conceptualizing
problems and for analyzing and interpreting data. The second goal
is to describe the usefulness of dimensional theory and to provide
several kinds of tutorial information about how to use it as a basis
for interpreting data. The third goal is to provide an insight and an
associated quantitative theory for understanding the circumstances
under which a face-inversion effect does or does not emerge.

The Face-Inversion Effect

The face-inversion effect (FIE) refers to a finding first reported
by Yin (1969, 1970) and subsequently by many others (see, e.g.,
Bradshaw, Taylor, Patterson, & Nettleton, 1980; Diamond &
Carey, 1986; Ellis & Shepherd, 1975; Leehey, Carey, Diamond, &
Cahn, 1978; Phelps & Roberts, 1994; Phillips & Rawles, 1979;
Valentine & Bruce, 1986) that the processing disadvantage of
inverting a visual stimulus is worse for faces than for other kinds
of visual stimuli (e.g., houses). The FIE is one of the primary bases
for the claim that face processing is special, i.e., is qualitatively
different from processing other visual stimuli: As noted in a classic
review article, for example, “. . . the evidence from the effect of
inversion . . . provides the most direct indication that face recog-
nition may involve a unique process” (Valentine, 1988, p. 472).
Although Valentine himself concluded otherwise, the debate is still
far from settled (see, e.g., Kanwisher, McDermott, & Chun, 1997;
Kanwisher, Tong, & Nakayama, 1998; Gauthier, Curran, Curby, &
Collins, 2003).

In using the FIE to assess face-processing uniqueness or any-
thing else, no one would argue that there is a universal FIE—that
is, that a FIE emerges whenever faces are compared with some
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other stimulus type. Rather, the question is almost invariably
“under what circumstances does a FIE emerge or not emerge?” For
instance, a FIE has been claimed to emerge for 10-year-old chil-
dren but not 6- or 8-year-old children (Carey & Diamond, 1977),
for faces learned normally but not for faces learned as parts (Farah,
Tanaka, & Drain, 1995), in a recognition task but not in a matching
task (Bruyer & Velge, 1981; see discussion by Valentine, 1988, p.
474), and for naı̈ve observers but not for experts in the alternative
stimulus class (Diamond & Carey, 1986). In short, the quest is
usually for the effect of some other variable on the FIE, and
seeking such interactions has been a staple of face-processing
research. It is our hope that in the course of our discussion, we will
both clarify the consequences of using one theory or another to
interpret data (our major goal) and elucidate the issue of when the
FIE does or does not emerge (our secondary goal).

Theories to Analyze Data

Below, we report three simulations and three analogous exper-
iments concerning the FIE. The simulations and experiments all
have the same general design, which we briefly describe here in
order to provide a context for our discussion of theory. In the
simulations and experiments, Faces or non-Faces (Houses or City-
scapes) are shown in a study phase, followed by an old-new
recognition test. At study, stimuli are shown upright or inverted for
varying exposure durations. Thus, there are three independent
variables: exposure duration at study, orientation at study, and
stimulus type.

A comment about notation is useful here. We index duration by
i, orientation by j, and stimulus type by k. In the simulations and
experiments that we report, there can be an arbitrarily large num-
ber, I, of durations; hence, duration is designated di, where i � {1,
2, . . . , I}. There are always J � 2 orientation levels, Upright and
Inverted; hence j � {U, I}. There are always K � 2 stimulus types,
Faces and non-Faces. Because non-Faces are mostly Houses, we
find it notationally convenient to let k � {F, H}. We use this
indexing notation extensively throughout this article, it plays a
central role in our discourse, and we urge the reader to mem-
orize it.

We now discuss the two theories within whose context we will
analyze and interpret the data from these experiments: linear
theory and dimensional theory. For ease of discourse, we establish
here the subtle but useful distinction between a structure and a
theory: A structure is a representation of the information and
information processing that characterizes some system, whereas a
theory is a set of assumptions concerning the structure’s nature that
is used to guide the analysis of that structure. Below, we will
discuss linear theories designed to describe linear structures and
dimensional theories designed to describe dimensional structures.

Linear Theory

The vast majority of experiments in many disciplines, including
psychology, are designed, analyzed, and interpreted within the
context of general linear theory. Linear theory, described at least
implicitly in any statistics text and explicitly in any mathematically
based statistics text (e.g., Hays, 1973), holds that the dependent
variable in an experiment is the sum of terms corresponding to
main effects of and interactions among independent variables. In

the present experiments with three independent variables, proba-
bility, pijk in the condition defined by level i of exposure duration,
level j of orientation, and level k of stimulus type, is

pijk � � � �i � �j � �k � �ij � �ik � 	jk � 
ijk � error terms,

(1)

where � is the grand mean; �i, �j, and �k are main effects of
exposure duration, orientation, and stimulus type, respectively; �ij,
�ik, and 	jk are two-way interaction effects; 
ijk is the three-way
interaction effect; and “error terms” are all the error terms appli-
cable given the particular design of the experiment. A FIE within
the context of this linear theory consists of a linear structure that
includes a set of nonzero, appropriately signed orientation �
stimulus type interaction terms, 	jk; conversely, lack of a FIE
consists of a linear structure with all 	jk � 0.

Although linear theory has been a standard tool in understanding
myriad data sets, it has some serious disadvantages (see, e.g.,
Loftus, 2002, pp. 343–344). Briefly, they are as follows. First,
linear theory is entirely linear, hence its name. Although linearity
may bear an approximation to some actual psychological relations,
many other such relations are decidedly nonlinear, which means
that investigating them within the context of linear theory produces
profoundly misleading results. A classic example of this problem
involves interpretations of interactions (see, e.g., Bogartz, 1976;
Loftus, 1978, 1985; Loftus & Bamber, 1990): As interpreted
within the context of linear theory, nonordinal interactions ob-
served with one dependent variable (e.g., recognition performance)
can disappear or reverse with another dependent variable (e.g., d�)
or a theoretical construct (e.g., “memory strength”) that is mono-
tonically but nonlinearly related to the dependent variable.

The second disadvantage of linear theory is more subtle but also
more insidious: Because linear theory is both seductively plausible
and almost universally welcomed, it blinds investigators to alter-
native theories that might better elucidate underlying psychologi-
cal processes. We will argue that dimensional theory includes
many such theories as special cases.

Dimensional Theory

The general idea of dimensional theory is that independent
variables combine at various stages into internal psychological
dimensions that underlie performance. By determining (a) how
many such dimensions are necessary to account for performance in
a given situation along with (b) the nature of the mathematical
functions that describe how the independent variables combine to
produce the dimensional values, the underlying nature of the
relevant structures can be unveiled.

Dimensional theory is related to conjoint measurement (e.g.,
Krantz, Luce, Suppes, & Tversky, 1971; Krantz & Tversky, 1971;
Tversky & Russo, 1969), functional measurement (e.g., Anderson,
1974, 1979), multidimensional scaling (e.g., Kruskal, 1964; Shep-
ard, 1962), the concept of integral and separable dimensions (Gar-
ner, 1974), and the concept of “mental modules” (Pinker, 1997).
The incarnation of it with which we are concerned here was
independently described by Bamber (1979) and Dunn and Kirsner
(1988), although it was not called “dimensional theory” in either
article. Dimensional theory has proven useful in illuminating var-
ious psychological phenomena, including visual displacement dis-
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crimination (Palmer, 1986a, 1986b); the relation between iconic
memory and visible persistence (Loftus & Irwin, 1998); the rela-
tion between confidence and accuracy in face recognition (Busey,
Tunnicliff, Loftus, & Loftus, 2000); the relation between degree of
original learning and forgetting rate (Loftus, 1985; Loftus & Bam-
ber, 1990); the relations among stimulus duration, stimulus con-
trast, confidence, and accuracy in visual recognition (Harley, Dil-
lon, & Loftus, 2004); and the logical, theoretical, and empirical
underpinnings of the dissociation technique (Dunn & Kirsner,
1988). Dunn and James (2003) have recently offered a technique
founded on dimensional theory called signed difference analysis
and have illustrated its use in addressing three problems within
cognition: First, does the “remember-know” distinction in recog-
nition memory reflect qualitatively different cognitive states or
different regions on some unidimensional scale? Second, do three
measures of spatial attention—visual search, texture segregation,
and location precuing—reflect the same underlying process?
Third, is a “dual-route model” of dyslexia proposed by Coltheart
(e.g., Coltheart, 1985) viable?

Dimensional theory is central within vision science. Two exam-
ples of its use there are as follows. The first is that of color
metamers: that an indefinitely large number of independent vari-
ables, in the form of different monochromatic hues, reduce, in the
form of cone quantum-catch values, to three retinal-output dimen-
sions whose values determine color perception. The second is
Bloch’s law: that the two independent variables of stimulus dura-
tion and stimulus intensity combine multiplicatively into a single
dimension of “total intensity” whose values determine brightness
perception.

D-Dimensional Theory

By dimensional theory, a particular combination of M indepen-
dent variables in some experiment yields D values—one on each
of D internal psychological dimensions. Thus,

V2 � f1�IV1, IV2, . . . , IVM�
V2 � f2�IV1, IV2, . . . , IVM�

···
VD � fD�IV1, IV2, . . . , IVM�,

(2)

where the IV’s are the independent variables, the Vd’s are the
values on the D dimensions, and the fd’s are unconstrained func-
tions. The D values are then mapped to N dependent variables,

DV1 � g1�V1, V2, . . . , VD�
DV2 � g2�V1, V2, . . . , VD�

···
DVN � gN�V1, V2, . . . , VD�,

(3)

where the DVn’s are the dependent variables. When D � 1, that is,
when there is only a single dimension, g1 � g is monotonic. When
D � 1, the situation is somewhat more complicated, but the gn’s
are still constrained in a manner described by Dunn and James
(2003). Equations 2 and 3 thereby define a D-dimensional struc-
ture. If the inferred number of internal dimensions, D, is less than
the number of independent variables, M, one concludes that at least
two of the independent variables have lost their unique represen-

tations somewhere in the structure, when they merge into fewer
dimensions.

We are by no means the first to suggest this kind of structure.
The distinction between dimensional values and the relations be-
tween these values and the dependent variable has been embodied
in the distinction between a structural model and a measurement
model (Busemeyer & Jones, 1983) or between an integration
function and a response function (Anderson, 1981). Similarly, and
most recently, Dunn and James (2003) used the term structural
mapping in reference to a set of functions relating the V1, . . . , VD

to performance expressed in terms of an abstract, unobservable,
psychological metric and the term measurement mapping in ref-
erence to a set of monotonic functions relating the psychological
metric to observable performance. Dunn and James’s character-
izations have the advantage of making a very clear distinction
between the central psychological assumptions of the theory (ex-
pressed by the structural mapping) and the necessary, although less
interesting, relation between the performance expressed in terms of
the psychological metric and performance expressed in terms of
the actual dependent variable.

An illustration of a dimensional structure is found in color
metamers, mentioned above. Suppose that a mixture of M mono-
chromatic hues of differing intensities is presented to the visual
system. Each hue acts as an independent variable; thus the differ-
ent experimental conditions correspond to the different combina-
tions of hue intensity. It has long been known that the sensory
result of any combination of such hue intensities can be described
completely by the three numbers corresponding to the three cone
quantum catches engendered by that combination. Therefore, any
dependent variable used to measure color perception in this kind of
experiment depends only on D � 3 dimensions corresponding to
the output of the three cone classes. This finding, embodied in the
classic color-matching experiment, was pivotal in color science: It
formed the basis for the trichromacy theory of color vision and laid
the groundwork for the eventual discovery of cone photoreceptors.

Unidimensional Theory

The simplest dimensional theory is a unidimensional theory in
which D � 1; that is, only a single dimension is required to
account for a data set. An illustration of unidimensional theory is
Bloch’s law, mentioned above, which describes the results of an
experiment in which different stimulus durations and stimulus
intensities are combined. Bloch’s law states that when duration is
less than some threshold (around 100 ms), performance—
measured, for example, by detection—depends only on the prod-
uct of duration and intensity; in other words, the two independent
variables, duration and intensity, combine (multiplicatively) to
produce a value on the D � 1 dimension of “summed intensity.”
This means that neither the physical value of duration nor the
physical value of intensity is represented within the sensory sys-
tem; rather, only their product is represented. This finding was
useful in understanding how the sensory system processes inten-
sity; viz., for a certain period, about 100 ms, the system simply
integrates arriving photons over time and maintains a representa-
tion of the photon sum.

A unidimensional theory is somewhat akin to a null hypothesis
within a linear theory: It is a default version of the theory that in
general, is tested first. However, a unidimensional theory is unlike
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most null hypotheses in an important respect. Usually a null
hypothesis is deliberately constructed so as to be uninteresting, and
the investigator’s goal is to reject it. In contrast, a unidimensional
theory such as Bloch’s law is generally viewed as simple and
elegant: If a unidimensional theory is correct, it implies strong and
interesting constraints on how some system works. Therefore, an
investigator generally wants to confirm a unidimensional theory. If
one must reject unidimensional theory, then one must add theo-
retical dimensions until the data can be accounted for.

Depending on the questions to be addressed and the experimen-
tal design, many kinds of unidimensional theories may be con-
structed. Here we are concerned with the FIE. Accordingly, a
useful unidimensional theory to test would be one in which there
is no FIE. A unidimensional theory designed to accomplish this
goal is as follows. First, the two perceptual variables, duration, d,
and orientation, O, combine to produce a value on a single dimen-
sion that we will somewhat arbitrarily term S � “Strength”; thus,

S � f�d, O�, (4)

where the function f, although in principle unconstrained, would be
expected to yield higher S values with longer durations, and for
upright compared to inverted stimuli. A fundamental element of
such a theory has been suggested by Valentine (1988), who noted
that “. . . the available evidence suggests that inversion and brief
presentation affect perception in similar ways” (p. 483). The
critical element that Valentine does not suggest is that these
“similar ways”—formally embodied here in Equation 4, which
states that duration and orientation both operate in the common
currency of Strength—are identical for Faces and non-Faces.

The next component in our unidimensional theory is the map-
ping from Strength to recognition performance, which is assumed
to be monotonic. However, it makes little sense to assume that
Face performance and non-Face performance are related to
Strength in identical ways. There are many reasons to believe that
the Strength-performance function might differ for the two stim-
ulus types; for instance, the set of Faces may be more homoge-
neous than the set of non-Faces (or vice versa), or Faces may be
more intrinsically recognizable than non-Faces (or vice versa), and
so on. Thus we allow separate monotonic functions relating rec-
ognition performance to Strength, namely,

p � �mF�S� for Faces
mH�S� for non-Faces , (5)

where p is recognition performance and mF and mH are monotonic
functions.

We emphasize that within the context of this unidimensional
theory, the mechanism affected by orientation is embodied only in
the function, f, in Equation 4 that maps a duration � orientation
combination to Strength. At that point, stimulus type has not yet
come into play; rather the stimulus-type effect is embodied in the
functions, mF and mH, of Equation 5, which operate only on
Strength. Therefore, by this unidimensional theory, there is no FIE;
that is, there is no direct connection between orientation on the one
hand and stimulus type on the other. Below, we describe a formal
and unambiguous prediction of this unidimensional theory.

Simulations

The simulations and experiments that we report are designed to
simulate or to investigate the FIE with respect to memorization of

faces in anticipation of an old-new recognition test. As we have
noted, we treat both simulations and experiments primarily as a
vehicle for discussing theory. However, they are also designed to
illuminate a specific aspect of face processing and of the effects of
face inversion. In particular, Valentine (1988) has asserted that
“the orientation of the inspection series [in a recognition proce-
dure] does not appear to be critical [in producing a FIE],” and went
on to conjecture, “Therefore it is possible that the disproportionate
effect of face inversion only emerges when the task involves
recognizing a face as one stored in memory” (p. 474). If true, this
would suggest that face inversion does not differentially affect
encoding of faces for subsequent recognition but rather affects
processing only of already stored faces. Thus our experiments are
designed to address this issue—to determine whether there is a FIE
in a very powerful and stringently controlled experiment in which
orientation is varied only in the study phase of a recognition
procedure.

Our simulated data were designed to be qualitatively similar to
the data that emerged from our experiments. In each simulation,
the data issued from a particular structure, and the data were
analyzed within the contexts of both linear theory and dimensional
theory. In Simulation 1, we generate data from a unidimensional
structure, in which the single dimension is “Strength.” In Simula-
tions 2 and 3, we generate data from a linear structure. The linear
structure generating the Simulation-2 data includes a FIE, whereas
the linear structure generating the Simulation-3 data does not
include a FIE.

To foreshadow our findings, the simulations serve as demon-
strations that data interpretation using linear theory produces a
somewhat chaotic pattern of results, whereas interpretation using
dimensional theory produces a consistent pattern of results. We
argue that this superiority of dimensional theory over linear theory
is general rather than specific to our demonstrations, and we
describe underlying reasons why this is so.

Simulation 1: Unidimensional Structure

The method used in all simulations is as follows. Two stimulus
sets, Faces and Houses, are presumed to have been assembled.
Target stimuli are shown, one by one, in the study phase of a
recognition experiment. Half the target stimuli are shown upright,
while the remainder are shown inverted. A test phase follows in
which the target stimuli are randomly intermingled with distract-
ers, also consisting of Faces and Houses, drawn from the same
population as the targets. All test pictures are shown upright, and
old-new recognition performance is measured. There are 14 levels
of study exposure duration, ranging from 30 to 420 ms in 30-ms
increments. So here, as in all our simulations and experiments,
there are three independent variables: stimulus duration (here, 14
levels) � orientation (Upright/Inverted) � stimulus type (here
Faces/Houses).

In Simulation 1, we generated data from a unidimensional
structure defined by Equations 4 and 5. We did so by implement-
ing specific versions of the functions f, mF, and mH, selected to
produce data that are qualitatively similar to the data that emerged
in the experiments. In particular, to generate Strength, Sij for
duration di and orientation j,

Sij � �MU � di for Upright stimuli
M1 � di for Inverted stimuli . (6)
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To generate recognition performance, pijk,

pijk � � �G�Sij/BF� � 0.5� � YF for Faces
�G�Sij/BH� � 0.5� � YH for Houses , (7)

where G(Z) is the cumulative Gaussian probability of a normal
deviate, Z. The free parameters in Equations 6 and 7 are interpreted
as follows. MU and MI (Mj � 0) are proportionality constants
mapping exposure duration to Strength for Upright and Inverted
stimuli. The four parameters, BF, BH, YF, and YH, specify the
monotonic functions mapping Strength to probability: The Bk’s (Bk

� 0) are scaling parameters for the Gaussian transformations, and
the Yk’s (0 	 Yk 
 2) are asymptotic values (actually asymptotic
values multiplied by 2, as the bracketed portions of Equation 7
produce values between 0.0 and 0.5). These parameter values are
designed to produce p values in the 0–1 range, which may be
interpreted as probabilities. The six parameter values were set to
MU � 1.50, MI � 0.75, BF � 400, BH � 250, YF � 2.0, and YH �
1.3.

We emphasize, as we did earlier with respect to the general case,
there is no FIE within the context of this unidimensional structure.

Orientation combines with duration to produce a Strength value.
Once Strength has been generated, orientation no longer has a
unique representation. Face and House performance then depend
only on Strength.

For simplicity, we assume that there is no statistical error, and
that the experiment is perfectly counterbalanced. These assump-
tions allow us to directly compare linear theory and dimensional
theory in their ideal forms when population parameters are known
rather than estimated. We do not, of course, deny the existence of
statistical error in the real world; however, in the context of the
present discussions, such error constitutes an add-on complication
whose consideration serves no useful purpose.

Results

The structure defined by Equations 6 and 7 yields the data
shown in Figure 1. Figures 1A and 1B show the main results for
Faces and Houses: memory performance as functions of stimulus
duration (ignore for the moment the arrows and associated text).
Within each panel, there are two curves: In this, as in subsequent

Figure 1. Simulation 1: Hypothetical data generated by a unidimensional structure. All data points are as
functions of study exposure duration. A and B: Recognition performance for Faces and Houses, respectively; the
two curves in each panel are for Upright and Inverted stimuli. C: Inversion magnitudes (Upright minus Inverted
performance) for Faces and Houses. D: Face-inversion effect (FIE) magnitude (Face minus House inversion
magnitudes). Subscripts in ordinate labels refer to duration (i), Orientation (j �{U, I}), and Stimulus Type (k �
{F, H}).
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figures, solid upright triangles represent Upright conditions, and
open inverted triangles represent Inverted conditions. Figure 1C
shows what we refer to as the inversion magnitudes—Upright
performance minus Inverted performance—for both Faces and
Houses, also as functions of duration. Finally, Figure 1D shows the
FIE directly, in the form of the difference between the Face and
House inversion magnitudes.

Although we of course know how these data were generated, we
will for the moment act as if, just like normal investigators, we do
not know, would like to find out, and will try to do so using an
appropriate analysis and interpretation technique.

Analysis and interpretation within the context of linear theory.
We first analyze and interpret the data within the context of
traditional, i.e., linear theory. The equation for linear theory in this
experiment is Equation 1 above (minus the error terms, as we are
assuming no error), where the �i’s, �i’s, and �k’s represent the
effects of duration, orientation, and stimulus type.

A FIE would be implied by an appropriately signed orienta-
tion � stimulus type interaction. This interaction—the difference
between Face and House inversion magnitudes—is shown as a
function of exposure duration in Figure 1D. Its value, averaged
across durations, is 0.077. Overall, therefore, a FIE would be
inferred from the results of this experiment.

However, Figure 1D also indicates that the story is more com-
plicated: There is an orientation � stimulus type � exposure
duration interaction; that is, FIE magnitude varies with exposure
duration. In particular, the FIE is virtually nil for stimuli shown for
an exposure duration of less than about 100 ms and then increases
with increasing exposure duration. One might therefore conclude
that stimuli must be shown for some threshold duration in order
that the FIE has a chance to develop.

Analysis and interpretation within the context of dimensional
theory. In Simulation 1, we are, as noted, in the felicitous posi-
tion of knowing the unidimensional structure that produced the
data because we created it. Normally of course, the epistemolog-
ical situation is reversed: We collect the data and then analyze
them in quest of inferring the structure that generated them. How
would we have confirmed that a unidimensional structure under-
lies the Simulation-1 data if we didn’t know so to begin with?

The answer is that even a weak unidimensional theory of the
sort expressed in Equations 4 and 5 makes a strong and unambig-
uous prediction that can be tested via a technique described by
Bamber (1979) and Dunn and Kirsner (1988). Following Bamber’s
terminology, we refer to the technique as state-trace analysis, a
tutorial on which is provided by Harley et al. (2004; see Harley et
al.’s Appendix).

To understand the prediction and the analysis, consider Figure
1A. Two conditions—the 210-ms Upright condition and the
420-ms Inverted condition—happen to yield identical perfor-
mance for Faces ( pF � 0.569). This is indicated by the horizontal
arrow connecting the two data points. By Equation 5, this means
that these two conditions must have produced the same Strength
value, specifically S � mF
1 (0.569), where the superscript “
1”
signifies “inverse.” Equation 5 then also implies that because these
two conditions have the same Strength value, they must produce
equal performance values for Houses, specifically pH � mH(S) �
mH[mF


1 (0.569)]. This prediction is confirmed, as indicated by
the horizontal arrow in Figure 1B connecting the corresponding
data points: House performance for both conditions is pH � 0.515.

To maximize this example’s comprehensibility, we deliberately
chose a set of durations and theory parameters that would produce
convenient instances of shorter-duration Upright conditions (e.g.,
210-ms Upright) and longer-duration Inverted conditions (420-ms
Inverted) yielding equal performance. However, the success of
state-trace analysis does not require that one be lucky enough (in
real life) to find such pairs. Instead, unidimensional theory is
generally tested by constructing a state-trace plot which like the
familiar receiver-operating characteristic (ROC) of signal-
detection theory, is a scatterplot, over experimental conditions, of
one dependent variable (here, House performance) against another
dependent variable (here, Face performance). The prediction is
that across all conditions—all 28 duration � orientation conditions
in this instance—the scatterplot points must form a monotonic
function. The reason for this monotonicity prediction is as follows.
Consider two duration � orientation conditions, C11 � (d1, O1)
and C22 � (d2, O2). Condition C11 gives rise to Strength S11 and
to performance values p11F and p11H, whereas Condition C22 gives
rise to Strength S22 and to performance values p22F and p22H.
Suppose that for Faces, Condition C11 produces poorer perfor-
mance than Condition C22, that is, p11F 	 p22F. Because the mk’s
are monotonic, they can be inverted to recover Strength, which has
the same ordering: S11 � mF


1( p11F) 	 mF

1 ( p22F) � S22. This, in

turn, means that the ordering of house performance must also be
the same because p11H � mH (S11) 	 mH(S22) � p22H. In other
words, if this unidimensional theory is correct, then any two
scatterplot points ordered in one way for faces must be ordered in
the same way for houses. This defines a monotonic relation be-
tween the two.1

A more complete and formal treatment of this issue is provided
by Bamber (1979). Briefly, one assumes that the measured data
points are samples from an underlying continuous function whose
form can be estimated from the data. Because the continuous
function is not measured completely but only sampled—the sam-
ple corresponding here to the chosen set of stimulus durations—we
must estimate the underlying function by “connecting the dots” in
the scatterplot. Unidimensional theory’s prediction remains that
the sampled scatterplot points be monotonic. We will see instances
of such monotonic state-trace plots in Simulations 1 and 3 and in
Experiment 1. If the scatterplot points are nonmonotonic, we reject
unidimensional theory and are required to posit additional dimen-
sions. We will see instances of this process in Simulation 2 and in
Experiments 2 and 3.

The state-trace plot for the Simulation-1 data is shown in Fig-
ure 2. Again, the solid and open curve symbols represent Upright
and Inverted conditions. On a state-trace plot, two contrast �
duration conditions that happen to be equal for both Face and
House performance appear as two scatterplot points that fall atop
one another. The two such conditions that we discussed earlier,
and that are indicated in Figures 1A and 1B, indeed appear as two
overlapping points enclosed by the small square in Figure 2.
Overall, the scatterplot points form a monotonic function, just as

1 We have one caveat: The foregoing assumes that the functions mk are
monotonically increasing. If instead they were monotonically decreasing,
the ordering would change in the inverse transition from pijF to S and then
would change back in the transition from S to pijH; thus, the end result
would be the same.
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they must, given the underlying unidimensional structure that
generated them.

The simplest way of representing degree of monotonicity is with
a Spearman rank-order correlation, termed rs. If rs � 1.0, then the
function is monotonic; if rs 	 1.0, then the function is nonmono-
tonic. The Simulation-1 state-trace plot monotonicity is indicated
at the top of Figure 2 by “rs � 1.000.”

Discussion

We began by creating a simple, unidimensional theoretical
structure within whose context there was no FIE: Duration and
orientation combined to produce a single value of Strength, and
once the duration-orientation combination took place, neither du-
ration nor orientation was represented separately. Recognition
performance was then determined only by Strength, with different
functions mapping Strength to recognition performance for the two
stimulus types, Faces and Houses. Thus, the performance differ-
ence between Faces and Houses is not connected to orientation;
rather it occurs only because of differences in the monotonic
functions, mF and mH, mapping Strength to performance.

Analysis using linear theory. Despite the FIE-less underlying
structure, analyzing and interpreting the data within the context of
traditional linear theory resulted in the inference of a FIE, based on

the orientation � stimulus type interaction. Moreover, this FIE
was inferred to be somewhat complicated in that its magnitude
depends on the study exposure duration of the stimuli: There is
inferred to be no FIE for durations less than about 100 ms, whereas
for durations greater than 100 ms, the magnitude of the FIE is
inferred to increase with exposure duration. If such data were
observed and thusly analyzed in real life, they would doubtless
spark a spirited General Discussion that would include confirma-
tion of the FIE’s existence in this paradigm, along with specula-
tions about the intriguing manner in which the FIE appears to
develop following the first 100 ms of stimulus processing. Unbe-
knownst to the investigator, alas, these conclusions and specula-
tions would be entirely without foundation. (We justify this
gloomy assessment below.)

Analysis using dimensional theory. In contrast, analyzing the
data within the context of dimensional theory—that is, construct-
ing a state-trace plot and making conclusions accordingly—imme-
diately reveals the underlying unidimensional structure that pro-
duced the data. One would conclude, given this analysis and
inferred structure, that there is no FIE; that is, that in this exper-
iment, Faces and Houses are not differentially affected by orien-
tation. This conclusion is, of course, contrary to that issuing from
standard analysis within the context of linear theory, wherein a FIE
was inferred from the orientation � stimulus type interaction.
Equally important is that the elegance and simplicity of the theo-
retical structure actually responsible for the data is entirely lost
with the classical linear-theory analysis: As we have seen, within
the context of linear theory, a rather complex and untidy theoret-
ical picture emerges.

The generality issue. Above we used the phrase, “without
foundation” referring to conclusions about the Figure-1 data based
on linear theory. Is the situation really this grim?

One might argue that because an investigator in real life does
not know the nature of the structure under investigation, classical
linear theory provides a safe and comfortable haven within whose
context data should be analyzed and interpreted. That is, in order
to foster communication among investigators and uniformity
across conclusions, it makes sense to agree on a basic theory
(linear theory) and then stick to it. On the one hand, we might all
agree that linear theory is not quite appropriate to describe many
cognitive structures, but on the other hand, we might also agree
that perhaps it provides reasonable approximations to such struc-
tures. Given that a particular effect like the FIE can be inferred to
exist only within the context of some theory, we may as well infer
the state of its existence using the theory that most of us grew up
with.

A crucial presupposition of such an argument is that there is
some degree of generalizability: That is, small variations on the
basic structure that underlies the data—variations that would come
about from different materials, observers, retention intervals, set-
tings, and so on—must, if this argument is to be tenable, produce
results that are at least qualitatively similar to one another. To test
this assumption, we carried out the following exercise. Note first
that Equations 6 and 7, which generated the Simulation-1 data
include six free parameters. On each of a series of iterations, we
randomly selected new values of these parameters, drawing each
new parameter from a normal distribution whose mean was the
original assigned value (indicated in the paragraph just below
Equation 7) and whose standard deviation was 20% of that mean

Figure 2. Simulation 1: State-trace plot for the Figure-1 hypothetical
data. House performance is plotted as a function of Face performance.
Each data point represents a particular duration for an Upright stimulus
(solid upright triangles) or an Inverted stimulus (open inverted triangles).
The two overlapping boxed points represent the 210-ms Upright and
420-ms Inverted conditions indicated in Figures 1A and 1B by the arrows
and associated text: These two conditions produce equal performance for
both Faces ( pF � 0.569) and for Houses ( pH � 0.515). The rs of 1.000,
which refers to the rank-order correlation between all House conditions and
all Face conditions, signifies that the state-trace plot is perfectly mono-
tonic, thereby correctly confirming a unidimensional theory.
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value. We constrained each parameter set so as to produce prob-
abilities only in the allowable 0–1 range. We then generated data
from this new parameter set and examined the FIE. We ran
100,000 iterations of this procedure. Each of these 100,000 itera-
tions can be viewed as a replication of the original experiment that
produced the Figure-1 data.

There are several noteworthy results of this enterprise, which are
shown in the “Simulation 1” column of Table 1 in the “Linear-
theory generalizations for the FIE” section and in Figure 3. To
begin with, we calculated the mean FIE—the difference of Face
and House inversion magnitudes averaged over durations—for
each iteration. Recall that this value was 0.077 for the Figure-1
data. Over all 100,000 iterations, this mean FIE averaged 0.040
with a standard deviation of 0.052. Approximately 20% of the
mean FIE values were negative, while the remaining 80% were
positive.

Figure 3 shows six instances, generated by this process, of FIE
magnitude as a function of duration. They are analogous to the
Figure-1D curve, and for comparison, one of them is the original
Figure-1D curve, with the original solid square curve symbols. All
six of these patterns—the original and the remaining five—are
representative of some of the different general patterns that
emerged across the 100,000 iterations. The five new patterns were
not particularly unusual; all turned up within the first 30 iterations
of our 100,000-iteration simulation. Our main point here is that
these patterns are (loosely speaking) all over the map. Sometimes
the FIE is uniformly negative over all durations, whereas other times it is uniformly positive. Sometimes it monotonically in-

creases or decreases over exposure duration, whereas other times
it is nonmonotonic. All in all, there is not one qualitative aspect of
the FIE or of the interaction between FIE and duration that remains
constant across relatively small variations in parameter values.

In contrast to this mess, the monotonic state-trace plot implied
by the unidimensional structure that generated the data to begin
with is guaranteed to show up in every iteration. This fact is
underscored in the “Simulation 1” column of Table 1 in the “State
trace: Distributions of rs” section where 100% of the 100,000 rs

scores are equal to 1.0.
In short, analysis using linear theory to analyze any particular

iteration, that is, any particular experiment in this simulation,
would produce one sample from a profoundly chaotic underlying
reality, whereas analysis using dimensional theory would consis-
tently reveal the underlying unidimensional structure.

Simulation 2: Positive-FIE Linear Structure

In Simulation 1, we generated data with a unidimensional struc-
ture and found that the data were more accurately and consistently
described by dimensional theory than by linear theory. Obviously,
it is not especially surprising that the theory corresponding to the
structure which generated the data is better at describing them than
a theory corresponding to the structure which did not generate the
data. In Simulations 2 and 3, we generated data from a linear
structure.

In Simulation 2, we wanted to define a simple linear structure in
which there were the expected main effects of orientation (better
performance for Upright than for Inverted stimuli) and of duration
(better performance for longer durations) along with a positive FIE
(greater inversion magnitude for Faces than for Houses), but
without any other interactions and without a stimulus-type effect.

Table 1
Various Measures of Generality for Simulations 1–3

Measure Simulation 1a Simulation 2b Simulation 3c

Linear-theory generalizations for the FIE

M 0.040 0.085 
0.023
SD 0.052 0.046 0.037
Maximum 0.335 0.320 0.172
Minimum 
0.287 
0.113 
0.231
% 	 0 19.9 3.1 74.6
% � 0 80.1 96.9 25.4

State trace: Distribution of rs (%)

rs 	 0.95 0.0 33.4 0.0
0.95 
 rs 	 0.96 0.0 18.7 0.0
0.96 
 rs 	 0.97 0.0 0.0 0.0
0.97 
 rs 	 0.98 0.0 44.1 0.0
0.98 
 rs 	 0.99 0.0 0.0 0.0
0.99 
 rs 	 1.00 0.0 3.7 0.0

% rs

	1.00 0.0 100.0 0.0
1.00 100.0 0.0 100.0

% FIE implied

Positive 100.0
Negative 0.0

Note. All data are based on 100,000-iteration simulations. FIE � face-
inversion effect.
a This simulation used a unidimensional structure (no FIE). b This sim-
ulation used a linear structure with a positive FIE. c This simulation used
a linear structure with no FIE.

Figure 3. Simulation 1: Face-inversion effect (FIE) magnitudes as func-
tions of study exposure duration generated by unidimensional structures.
The curve with the solid square symbols is the same as the one in Figure
1D. The remaining curves result from small variations in the theory
parameters that generated the Figure-1 data.
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Achieving this goal proved to be a challenge because the pre-
sumed dependent variable in our experiment—recognition proba-
bility—is, like many dependent variables, bounded—in this case
between 1.0 and 0.0—whereas a linear structure, such as the one
defined by Equation 1, is unbounded. In subsequent discussion
sections, we have more to say about this issue. For the moment, we
solved the problem by creating the linear structure in terms of a
variable that we again call Strength and we again map Strength to
probability using a cumulative Gaussian transform.

In particular, for the ith duration level, jth orientation level, and
kth stimulus-type level we define

Sijk � � � di � �j � 	jk, (8)

where j � {U, I} and k � {F, H}. In keeping with common
linear-theory notation, we define �j, the one-degree-of-freedom
orientation main effect, to be �U, and �I � 
�U. Similarly, we
define 	jk, the one-degree-of-freedom orientation � stimulus type
interaction terms, to be as shown in Table 2. A positive FIE
implies that 	UF � 0, whereas no FIE implies that 	UF � 0 and
therefore that all 	jk’s be zero.

To map Strength to performance, we again use a Gaussian
transform,

pijk � � �G�Sijk/B�� � YF for Faces
�G�Sijk/B�� � YH for Houses , (9)

where G(Z) is the cumulative Gaussian probability of a normal
deviate, Z. The six free parameter values were set to � � 
250,
�U � 50, 	UF � 19, B � 150, YF � 0.7, and YH � 0.9. As in
Simulation 1, we assume infinite statistical power and perfect
counterbalancing.

Results

The structure defined by Equations 8 and 9 yields the data
shown in Figure 4, which is organized like Figure 1.

Analysis and interpretation within the context of linear theory.
As with Simulation 1, we first analyze and interpret the data within
the context of linear theory. The conclusions are much the same as
they were in Simulation 1: There are main effects of duration and
orientation along with a positive FIE whose magnitude averaged
over duration is 0.078. Superficially at least, these effects are to be
expected given that they were built into the structure that produced
them, via Equation 8. What is superficially less expected because
they were not explicitly built into the structure are a duration �
orientation interaction (as shown in Figure 4C, the difference
between Upright and Inverted curves changes over exposure du-
ration for both Faces and Houses) and a duration � orientation �

stimulus type interaction, as shown by the inverted U-shaped FIE
curve in Figure 4D.

Analysis and interpretation within the context of dimensional
theory. Neither a casual look at the Figure-4 data nor a casual
look at Equations 8 and 9 that generated them provides much
insight about whether the data do or do not conform to a unidi-
mensional theory. Intuitively, one would expect that a unidimen-
sional theory is sufficiently constrained that it would rarely if ever
characterize data that didn’t actually issue from an underlying
unidimensional structure. Such intuition is confirmed by the state-
trace plot, which is shown in Figure 5. Clearly it is nonmonotonic
(rs � 0.977), which indicates that the Simulation-2 data do not
issue from a unidimensional structure. The particular pattern in the
state-trace plot is instructive: Note that the Inverted data points are
displaced to the left of the Upright data points. This means that if
two duration-orientation conditions of the sort indicated in Figure
5—a long-duration Inverted condition and a short-duration Up-
right condition—are found for which House performance is iden-
tical, then for the same two conditions, Face performance is poorer
for the Inverted condition compared with the Upright condition.
We have more to say about this kind of data pattern in conjunction
with its appearance in Experiments 2 and 3; for now, we note that
this is the kind of state-trace plot pattern that within the context of
dimensional theory implies a positive FIE—a greater deleterious
effect of inversion on Faces than on Houses.

Generality. We have reported two main findings for Simula-
tion 2. First, within the context of linear theory, there was an
orientation � stimulus type interaction, of the sort that implied a
positive FIE. Within the context of dimensional theory, there was
a systematically nonmonotonic state-trace plot, also of the sort that
implied a positive FIE. As with Simulation 1, we investigated the
generality of these findings using the procedure described in
conjunction with Simulation 1. We generated data sets using
variations of the parameter set used in Equations 8 and 9. Each
parameter in a parameter set was drawn from a normal distribution
again with a standard deviation equal to 20% of the mean param-
eter value. In addition to constraining the parameter sets to produce
only valid probabilities, we also constrained them to allow only
positive FIE’s; that is, we excluded any instances of kUF 
 0. We
again ran 100,000 iterations.

The results are shown in the “Simulation 2” column of Table 1
and in Figure 6. Table 1 indicates that within the context of linear
theory, 96.9% of the iterations produced a positive FIE, whereas,
despite the constraint that 	UF � 0, the remaining 3.1% produced
a negative FIE. Figure 6, like Figure 3, indicates that even when
the underlying structure is explicitly set up to be linear and simple,
the observed FIE as well as the relation between FIE and exposure
duration is chaotic over small variations of the underlying
structure.

Within the context of dimensional theory, 100% of the state-
trace plots were nonmonotonic, that is, had a less-than-1.0 rs,
thereby disconfirming a unidimensional theory. However, there
are two interrelated issues to be contended with. First, disconfir-
mation of a unidimensional theory implies only that there is some
kind of FIE, without specifying whether it is positive or negative.
Second, rejection of unidimensional theory is based on a strict
criterion that one rejects unidimensional theory whenever rs is less
than 1.0. One might argue that this criterion is too strict, and in real
life, one might fail to reject the null hypothesis of a FIE when rs

Table 2
Organization of the Orientation � Stimulus Type Interaction
Terms (	jk)

Orientation Faces Houses

Upright 	UF 	UH � 
	UF

Inverted 	IF � 
	UF 	IH � 	UF

Note. There is only one free parameter, 	UF.
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is close to 1.0, while not requiring rs to be 1.0. We address these
issues in three ways.

First, and most straightforwardly, this argument does not apply
to our simulations, which assume no statistical error: For each
iteration, the rs value (and every other statistic) can be accepted as
100% accurate. This means that there is no need to equivocate
about the value of rs—either it is 1.0 or it is not.

Second, even in real life, where there is statistical error, the
Spearman rs, because it uses ranked data, is a discrete or “grainy”
measure; thus, it can yield a value of 1.0 even when the data are
somewhat noisy (unlike, for example, a Pearson r). The graininess
in rs is exacerbated to the degree that there are few data points.
Even with the 28 data points in our present scatterplots, the
graininess is evident in the “Simulation 2” column of Table 1,
where there are no rs values between 0.96 and 0.97 or between
0.98 and 0.99. Thus it is reasonable to use a strict criterion of rs 	
0 to disconfirm a unidimensional theory.

Our third set of comments directly addresses both the issues that
we have raised. We note that although rs is the most straightfor-
ward measure expressing the degree to which a unidimensional

structure may be inferred from a state-trace plot, it is not the only
measure. Simply eyeballing the data can provide a start at detect-
ing instances when even very high values of rs—even, in fact, an
rs value of 1.0—although necessary are not sufficient to reject a
single-dimension theory. This is illustrated in Figure 7, which
shows scatterplots corresponding to various rs values. In every
case, even when rs � 1.0, there is notable divergence between the
Upright and Inverted curves.

More important, it is often possible to find empirical functions
that characterize each of the implied functions within the scatter-
plot—in the case of the Figure-5 state-trace plot, for instance, the
functions relating Houses to Faces for Upright stimuli (solid-
triangle data points) and for Inverted stimuli (open-triangle data
points). Such functions can then be used to infer more precisely the
nature of the underlying structure that produced the data. Again
harkening to a familiar example, the usual observed cumulative
Gaussian form of an ROC curve provides a tool that allows an
investigator to infer the ratio of signal to noise distribution vari-
ances. We will see an instance of this technique in a later section
when we describe specific (linear) functions fitting the real state-

Figure 4. Simulation 2: Hypothetical data generated by a linear structure that includes a positive face-inversion
effect (FIE). A and B: Recognition performance for Faces and Houses, respectively; the two curves in each panel
are for Upright and Inverted stimuli. C: Inversion magnitudes (Upright minus Inverted performance) for Faces
and Houses. D: FIE magnitude (Face minus House inversion magnitudes). Subscripts in ordinate labels refer to
duration (i), orientation (j �{U, I}), and stimulus type (k � {F, H}).
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trace plots obtained in Experiments 1–3, along with theoretical
constraints that are implied by these observed linear functions.

Such functions can be used to determine whether a rejected
single-dimension theory implies a positive or a negative FIE. In the
present instance, we made such a determination as follows. First,
we observed that the individual curves in all our simulated state-
trace plots could be fit very well by quadratic functions, as shown
by the solid lines in Figure 5. Thus, we were able to compute such
quadratic curves for each iteration and to determine the mean
amount by which the Inverted curve was displaced to the left of the
Upright curve. As we have already described, such a pattern
implies a positive FIE. This mean displacement amount was pos-
itive, thereby implying a positive FIE, for 100% of the 100,000
iterations.

Discussion

The Simulation-2 data were generated by a linear structure in
which there was a positive FIE. This positive FIE was correctly
inferred from approximately 97% of variants on the data by using
linear theory and from 100% of variants on the data by using
dimensional theory. Even though these data sets were generated by
a linear structure, dimensional theory is perfect in producing the
correct inference of a positive FIE, whereas linear theory is im-
perfect. As was the case in Simulation 1, the relation between the
FIE and exposure duration was chaotic over minor changes in the
data structure.

It is apparent that even when the data are generated from a linear
structure to begin with, data interpretation within the context of
dimensional theory produces more coherent and consistent results
than interpretation within the context of linear theory. A major
reason for this is that the actual data being analyzed depart from

the structure that underlies them via a monotonic but nonlinear
(Gaussian) measurement mapping. As we discussed earlier and as
we elaborate below, there are, however, no reasonable alternatives
to this.

Simulation 3: Zero-FIE Linear Structure

In Simulation 3, as in Simulation 2, we generated data from a
linear structure. Unlike Simulation 2, there was no FIE in the
Simulation-3 structure. This was accomplished by using Equations
8 and 9, which generated the Simulation-2 data, with the same
parameter values as in Simulation 2, except that for Simulation 3,
all 	jk � 0.

Results

The Simulation-3 data are shown in Figure 8, which is organized
like Figures 1 and 4.

Analysis and interpretation within the context of linear theory.
As with Simulations 1 and 2, we first analyze and interpret the data
within the context of linear theory. Even though there was no FIE
in the structure that generated the data, the data themselves imply
a negative FIE whose mean magnitude is 
0.039 and which as
shown in Figure 8D, varies in a U-shaped fashion with exposure
duration.

Analysis and interpretation within the context of dimensional
theory. The state-trace plot corresponding to the Simulation-3
data is shown in Figure 9. It is completely monotonic, which
implies no FIE. We consider this observation to illustrate a criti-
cally important point, about which we say more below.

Generality. We ran the same kind of 100,000-interation sim-
ulation described for Simulations 1 and 2. In addition to the
constraints already described, 	UF was set to 0, thereby implying

Figure 6. Simulation 2: Face-inversion effect (FIE) magnitudes as func-
tions of study exposure duration for data generated by linear structures
within whose contexts a FIE exists. The curve with the solid square
symbols is the same as the one in Figure 4D. The remaining curves resulted
from small variations in the theory parameters that generated the Figure-4
data.

Figure 5. Simulation 2: State-trace plot for the Figure-4 hypothetical
data. Solid lines through the data points are best quadratic fits, as explained
in the text.
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no FIE, for all iterations. The “Simulation 3” column of Table 1
shows the results. Across the 100,000 iterations, the mean magni-
tude of the FIE was 
0.023, with a standard deviation of 0.037.
About 25% of the FIE’s were positive, and the rest were negative.
Within the context of dimensional theory, the value of rs was 1.0,
thereby implying no FIE for every iteration. Figure 10, which is
organized like Figures 3 and 6, shows that the FIE � duration
interaction is again chaotic over small variations in the data
structure.

Discussion

Although the data were generated by a linear structure that did
not include a FIE, a small negative FIE would be inferred by
analysis assuming a linear theory. Analysis assuming dimensional

theory, however, yielded the correct inference of no FIE, both with
the data shown in Figure 8 and with all 100,000 variants of the
Figure-8 data.

This latter finding turns out to be entirely understandable. The
FIE-less linear-theory equation generating the Simulation-3 data is

Sij � � � di � �j. (10)

That is, it is the same as Equation 8, which generated the
Simulation-2 data, except that there are no interaction terms, 	jk.
Therefore Equation 10, wherein Sij depends only on duration and
orientation, is an instance of Equation 4, which describes a unidi-
mensional theory. Mapping Strength to performance is accom-
plished with Equation 9, which is an instance of Equation 5.
Therefore, Equations 10 and 9, which generated the Simulation-3

Figure 7. Examples of state-trace plots corresponding to various rank-order correlation values. Each curve was
generated using minor variations of the parameters used by the linear theory that generated the Figure-4 data.
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data, are instances of Equations 4 and 5, which define a unidimen-
sional theory. In short, the Simulation-3 data were generated by a
disguised unidimensional structure, which is reflected in the uni-
versally monotonic state-trace plots.

Despite being an extraordinarily simple linear structure, the
pattern of the FIE over exposure duration was again chaotic.
Again, this results from the nonlinear relation between the under-
lying Strength structure and the measured probabilities. More
generally, as we will eventually detail in our General Discussion,
a linear structure involving no stimulus-type interactions implies a
monotonic state-trace plot.

Discussion: Simulations

Our three simulations were designed to generate data from
either a unidimensional structure or a linear structure and then to
determine how effective are both linear theory and dimensional
theory as a context for inferring the existence of a FIE.

Summary

In Simulation 1, data were generated from a unidimensional
structure that included no FIE. Analysis within the context of

linear theory never produced the inference of no FIE; rather, it led
to the inference of a positive FIE about 80% of the time and to the
inference of a negative FIE the remaining 20% of the time.
Analysis within the context of linear theory also produced incon-
sistent inferences about the relation between FIE magnitude and
exposure duration. Analysis within the context of dimensional
theory produced, as it logically had to, the inference of no FIE
100% of the time.

In Simulation 2, data were generated from a linear theory that
included a positive FIE. Analysis within the context of linear
theory produced the inference of a positive FIE approximately
97% of the time but also produced inconsistent inferences about
the relation between FIE magnitude and exposure duration. Anal-
ysis within the context of dimensional theory produced the infer-
ence of a positive FIE 100% of the time.

In Simulation 3, data were generated from a linear theory that
included no FIE. Analysis within the context of linear theory never
produced the inference of no FIE; rather, it led to the inference of
a positive FIE about 25% of the time and to the inference of a
negative FIE the remaining 75% of the time. As in Simulations 1
and 2, analysis within the context of linear theory also produced

Figure 8. Simulation 3: Hypothetical data generated by a linear structure that includes no face-inversion effect
(FIE). A and B: Recognition performance for Faces and Houses, respectively; the two curves in each panel are
for Upright and Inverted stimuli. C: Inversion magnitudes (Upright minus Inverted performance) for Faces and
Houses. D: FIE magnitude (Face minus House inversion magnitudes). Subscripts in ordinate labels refer to
duration (i), orientation (j �{U, I}), and stimulus type (k � {F, H}).
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inconsistent inferences about the relation between FIE magnitude
and exposure duration. Analysis within the context of dimensional
theory produced the correct inference of no FIE 100% of the time.
This occurred because the linear structure that generated the data
was an instance of a unidimensional structure.

The Unnatural Nature of a Linear Structure

Earlier, we mentioned that a linear structure cannot accurately
characterize actual perceptual or cognitive data when some form of
probability or other bounded variable is used as the response
measure. We view this as an “elephant in the living room” prob-
lem: It is a big, serious, in-your-face problem that is rarely ac-
knowledged. It was to solve this problem that in Simulations 2 and
3, we devised the linear structure in terms of “Strength,” and then
transformed Strength to probability via a nonlinear (Gaussian)
mapping. The consequences of such nonlinearities have been dis-
cussed in the literature (see Loftus, 1978) and can lead to all
manner of illusion and inconsistency, particularly when interpre-
tation of interactions are at issue. The inconsistencies, apparent
over iterations in all simulations when analyzed within the context
of a linear theory, are simply examples of this general problem.

One might complain that in Simulations 2 and 3 we short-
changed linear theory by not making the actual data structure—the
probabilities—linear. The problem is that there is no realistic
alternative to this procedure. If the linear structure is constructed in
terms of probabilities, then the equations, unless constrained, will
routinely produce illegal less-than-zero or greater-than-one values.
Constraining probabilities to be between 0.0 and 1.0 creates func-
tions that are, again, nonlinear. One could very carefully constrain
the linear-theory parameters and values of the independent vari-
ables in such a way that no probability exceeds legal bounds, but
this procedure implies very limited theory construction—it se-
verely constricts the range of realistic situations to which linear

theory could potentially apply. Finally, one might argue that a
hypothesized underlying linear structure could be recovered by
applying an appropriate nonlinear transformation to the raw prob-
abilities that will, at the very least, unbound them. This is done, for
example, when probability is transformed to d�. It could have been
done in the present experiments by applying the inverses of Equa-
tion 9 to the Simulation-2 and Simulation-3 data. But this is not a
viable general procedure because there is an infinite number of
possible nonlinear transformations, and one can never know a
priori which one should be applied. Equation 9 illustrates this
point: Its inverse would be far from obvious if one didn’t know
exactly what it was to begin with.

Conclusions Based on Our Simulations

Given the results of our simulations, we make several conclu-
sions. First, even if a linear structure underlies the data, a linear
theory does poorly in identifying its nature. In Simulation 2, we
constructed the simplest possible linear structure consistent with
the undebated effects of exposure duration and orientation, plus a
FIE. Analysis within the context of linear theory was inconsistent
with respect to both recovering the FIE itself and with respect to
determining the relation between the FIE and other variables,
particularly exposure duration. It is true that we could construct
other linear structures besides the one that we chose; for example,
we could add a stimulus-type main effect and/or other interactions
to the structure. However, any other such linear structure would be
more complex—it would include the one that we examined as a
special case—and the data would therefore be even less consistent
across variation in parameter values. Analogous arguments apply
to the results of Simulation 3. Here analysis within the context of
a linear theory was similarly inconsistent and was similarly poor in
detecting the lack of a FIE and the lack of a FIE � exposure

Figure 10. Simulation 3: Face-inversion effect (FIE) magnitudes as func-
tions of study exposure duration for data generated by linear structures
within whose context there is no FIE. The curve with the solid square
symbols is the same as the one in Figure 8D. The remaining curves resulted
from small variations in the theory parameters that generated the Figure-8
data.

Figure 9. Simulation 3: State-trace plot for the Figure 8 data.
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duration interaction that characterized the underlying linear
structure.

In contrast, analysis within the context of dimensional theory
was considerably more successful in determining whether a par-
ticular effect—in this case a FIE—exists. Given that a unidimen-
sional structure describes the data, as in Simulations 1 and 3, a
monotonic state-trace plot emerges with a 100% probability,
thereby producing an unambiguous conclusion. Even when a linear
structure generated the data, as in Simulation 2, analysis within the
context of dimensional theory was still 100% effective—better, in
other words, than linear theory—in revealing the positive FIE that
was built into the linear structure.

Experiments

With our simulations, we have accomplished much of what we
set out to do in this article: On the basis of our demonstrations, we
have argued that dimensional theory should be considered as a
preferable alternative to standard linear theory as a means of
designing experiments, along with thinking about, analyzing, and
interpreting data. We now change tack: We return to the real world
of real data and describe three real experiments whose purpose is
to address a specific question about the genesis of the FIE. The
designs of the experiments were similar to those of the simulations.

There are two points of connection between the first part of this
article (i.e., the simulations and what we have discussed so far
about linear theory versus dimensional theory) and the second half
(i.e., the real data and their interpretation). The first point of
connection is the Experiment-1 data, which, as it turned out,
resemble the Simulation-1 data: A conclusion about whether there
is a FIE depends on whether the data are interpreted within the
context of linear theory or within the context of dimensional
theory. Because interpretation of the Experiment-1 data is pivotal
in interpretation of the Experiments 1–3 data taken as a whole, we
must choose one theory or the other. For reasons that we have
already discussed, we argue that interpretation within the context
of dimensional theory is more meaningful. The second point of
connection is the use of dimensional theory itself: We show how
to develop a set of successively stronger dimensional theories to
account for our data.

Our primary goal in Experiments 1–3 was to investigate whether
the FIE is confined to retrieval of already stored faces or whether
it emerges during encoding of novel faces as well. In quest of this
goal, we varied orientation in the study phase but not in the test
phase of an old-new recognition procedure. In Experiment 1, we
ensured that only encoding of faces occurred at study by using
computer-generated faces that were unfamiliar to our observers. In
Experiment 2, we induced face retrieval at the time of study by
using faces of known celebrities. Experiment 3 was a replication
and generalization of Experiment 2 using complex, heterogeneous
Cityscapes instead of homogeneous Houses as our alternative
stimulus set.

Experiment 1: Unfamiliar Faces and Houses

In Experiment 1, we compared computer-generated Faces with
Houses. The general design was much the same as that described
in conjunction with the simulations.

Method

Observers. A total of 366 University of Washington undergraduates
participated in 48 groups of 6 to 8 observers per group, in exchange for
course credit.

Stimuli. Two stimulus sets were created: Faces and Houses. The
FACES Identikit program (IQ Biometrix, Fremont, CA) was used to
generate a set of 144 lifelike faces: 73 male faces and 71 female faces.
Houses were 144 photos of similar houses in a middle-class Seattle
neighborhood. All stimuli were rendered as grayscale images, 450 pixels
high � 400 pixels wide. Each picture’s luminance ranged from 0.2 to 14.8
cd/m2 across pixels. Examples of the stimuli are provided in the top two
rows of Figure 11.

Apparatus. Stimuli were displayed on a flat-white wall via an LCD
projector interfaced to a Macintosh G4. Stimulus displays were accom-
plished within MATLAB, using the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997). Observers sat in eight seats arranged in two rows of
four. Stimuli subtended visual angles of 44° or 26° vertically and 57° or
34° horizontally for observers in the front or back row. When no stimulus
was displayed (a blank screen), luminance was 3.7 cd/m2.

Design. Each group participated in an experimental session that incor-
porated two subsessions. For 24 of the 48 groups, Faces were stimuli in the
first subsession, while Houses were stimuli in the second subsession. The
Faces-Houses subsession order was reversed for the other 24 groups.
Except for the different stimuli, the two subsessions were identical.

The basic unit of each subsession, called a tray (honoring its physical
slide-tray ancestry), consisted of 24 virtual “slides” or pictures. There were
six trays in each subsession. For each tray, 12 target pictures were shown
in a study phase. A test phase immediately followed in which all 24
pictures in the tray—the 12 just-viewed targets, randomly intermingled
with 12 never-seen distracters—were presented in an old-new recognition
procedure.

Each target stimulus fell into one of 12 study conditions, defined by
combining Upright/Inverted with six stimulus durations: 17, 33, 50, 83,
150, and 250 ms. During the study phase of each tray, each of the 12 study
conditions was assigned to one of the 12 target stimuli in a manner that
although constrained by counterbalancing procedures (see below), ap-
peared random to the observers: Thus the observers never knew the
duration or orientation of an upcoming target picture. They did, however,
know its stimulus type because, as indicated, subsessions were blocked by
stimulus type.

Procedure. An experimental session began with the display of four
practice pictures (Faces or Houses depending on which stimulus type was
to be used during the first subsession) shown in a randomly selected 4 of
the 12 study conditions, along with detailed study instructions and general
test instructions. After the first study phase, detailed test instructions were
provided. Following the six trays in the first subsession, observers had a
brief break before proceeding through the second subsession.

Each study trial began with a 1,000-ms fixation cross in the center of the
screen, accompanied by a 1000-Hz warning tone. Next came a 300-ms
blank screen, then the target picture in its assigned orientation for its
assigned duration, and then the blank screen again. To maintain moderate
performance, we reduced target-picture contrast by scaling pixel luminance
to range from 2.4 to 5.6 cd/m2 for each picture. Following each study
picture, observers rated their confidence that they would subsequently be
able to recognize the picture on a scale from 1 (definitely no) to 4
(definitely yes). The purpose of this rating procedure was to encourage the
observers to attend to the target pictures, and the study-phase rating data
are not further considered in this article.

A single test picture was shown during each test trial. Observers rated
their confidence that they had seen it during the previous study phase, using
a scale value of 1 (definitely no), 2 ( probably no), 3 ( probably yes), or 4
(definitely yes). All test pictures were shown upright at full contrast and
remained visible until everyone had responded.
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Counterbalancing. Each stimulus picture was seen as a target by 24
groups and as a distracter by the remaining 24 groups. Each picture was
seen twice in each of the 12 study conditions over the 24 groups that saw
it as a target. This counterbalancing was done independently for each of the
12 trays.

Results

The dependent variable was mean test confidence rating, which
ranged from 1–4. For each stimulus type, Faces and Houses, there
were 13 separate mean confidence ratings: 12 for targets in the 12
study conditions, which are akin to hit rates, plus the mean con-
fidence rating for distracters, which is akin to a false-alarm rate. To
produce comparable performance across the two stimulus types,
we carried out the following procedure. First, we transformed
confidence rating (CR) to proportion ( pr) by the transformation,
pr � (CR 
 1)/3; thus for each stimulus type, we had 12 hit rates
(Hijk) plus 1 false-alarm rate (FAk), k � {F, H}. Then, for each
stimulus type, we generated a single performance measure for each
of the 12 study conditions. This measure, which we term p,
combines the hit rates and the false-alarm rate, using the equation

pijk �
Hijk � FAk

1 � FAk
. (11)

Note that although the high-threshold assumptions embodied in
Equation 11 are dubious, this transformation causes no serious
interpretational difficulties because (a) we are not interested in
differences between the two stimulus types per se, (b) we are not
interested in differences between the two false-alarm rates, and (c)
because there is only a single false-alarm rate for each stimulus
type, the transformation embodied in Equation 11 preserves the
ordering among the hit rates within each stimulus type. Moreover,
pijk, which ranges from 0.0 corresponding to no memory to 1.0
corresponding to perfect memory, is a convenient measure to use
as a basis for evaluating theoretical predictions that we describe
following our presentation of Experiment 2.

The main results—performance as functions of exposure dura-
tion—are shown in Figures 12A and 12B. In Figure 12, as in all
our real-data figures, error bars represent standard errors. The
theoretical curves through the data points are described following
our presentation of Experiment 2. As expected, performance in-

Figure 11. Examples of stimuli used in Experiment 1 (Rows 1 and 2), Experiment 2 (Rows 2 and 3), and
Experiment 3 (Rows 3 and 4). From “Why Is It Difficult to See in the Fog? How Contrast Affects Visual
Perception and Visual Memory,” by E. M. Harley, A. Dillon, and G. R. Loftus, 2004, Psychonomic Bulletin &
Review, 11, p. 213. Copyright 2004 by the Psychonomic Society. Adapted with permission.
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creases with exposure duration and is greater for upright than for
inverted pictures.

Analysis and interpretation within the context of linear theory.
As is apparent by comparing the difference between the two curves
in Figure 12A with the difference between those of Figure 12B,
there is a stimulus type � orientation interaction: Inversion affects
Faces more than Houses. The interaction’s mean magnitude is
0.042 � 0.022 (95% confidence interval). Accordingly, within the
context of linear theory, one would conclude that there is a small
but unequivocal FIE in Experiment 1.

Analysis and interpretation within the context of dimensional
theory. Figure 12C shows the state-trace plot from Experiment 1.
It is clearly monotonic (rs � 1.0), and there is nothing about the
nature of the plot that would lead one to conclude that it reflects
anything but a unidimensional structure. Accordingly, within the
context of dimensional theory, one would conclude that there is no
FIE in Experiment 1. The data are perfectly consistent with the
unidimensional theory expressed in Equations 4 and 5: Orientation

and duration combine at perception to form a single value on a
single dimension (“Strength”), and Face and House recognition
performance are then determined by different monotonic functions
of Strength.

Discussion

In short, the Experiment-1 data resemble the Simulation-1 data.
A reasonable conclusion is that this happens because the
Experiment-1 data reflect the kind of structure that generated the
Simulation-1 data: an underlying unidimensional structure but
including, within the context of a linear theory, a positive
orientation � stimulus type interaction. It is with this kind of
structure that the conjunction of results seen in Experiment
1—a positive FIE (within the context of linear theory) along
with a monotonic state-trace plot (within the context of dimen-
sional theory)— emerges.

Figure 12. Experiment-1 data. A and B: Basic data, performance as functions of duration for Faces and Houses,
respectively. C: The state-trace plot. Solid lines represent predictions from the theory described in the text. Each
data point is based on 2,196 observations. Error bars are standard errors.
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Given that the Experiment-1 data reflect such a structure, the
conclusion about the existence or nonexistence of a FIE depends,
as it did in Simulation 1, entirely on which theory within whose
context one chooses to interpret the data: If one operates within the
context of linear theory, one infers a FIE in Experiment 1, whereas
if one operates within the context of dimensional theory, one infers
that there is no FIE. For reasons that we have discussed earlier in
conjunction with our simulations, and to which we return in our
General Discussion, we find it most parsimonious and sensible to
operate within the context of dimensional theory, to conclude that
the Experiment-1 data are well described by a unidimensional
theory, and to therefore infer there is no FIE in Experiment 1. This
provides support for Valentine’s (1988) assertion that there is no
FIE when orientation is manipulated only in the study phase of a
recognition experiment. It suggests that whatever processing is
responsible for the FIE applies to retrieval of known faces but not
to encoding of unfamiliar faces.

Experiment 2: Celebrity Faces and Houses

In Experiment 1, we concluded that there is no FIE when
stimulus sets are unfamiliar faces and homogeneous Houses and
when orientation is manipulated in the study phase of a recognition
procedure. We hypothesized that this comes about because the FIE
results from processing that occurs when faces are retrieved from
memory rather than processing that occurs when facial features are
stored in memory. In Experiment 2, we used the same paradigm as
in Experiment 1 but with a change in stimuli: Instead of unfamiliar
computer-generated faces, we used celebrity faces. With the
Experiment-1 computer-generated faces, the observer’s task at
study was to encode visual information from a target face in hopes
of being able to eventually match such information when the same
face is eventually shown at test. In contrast, with celebrity faces,
the observer’s task becomes one of recognizing the celebrity and
encoding the celebrity’s appearance as a target (e.g., “Oh, that’s
Jennifer Lopez; I’d better remember that she showed up during this
study phase”). At test, it then suffices to re-recognize the celebrity
and simply remember her appearance during the test phase (e.g.,
“Hmmm, it’s Jennifer Lopez; oh yes, I saw her during the study
phase”). If the FIE occurs when already known faces are retrieved
from memory, then a FIE should be observed in Experiment 2.

Method

Observers. A total of 295 University of Washington undergraduates
participated in 48 groups of 5 to 8 observers per group, in exchange for
course credit.

Stimuli. A new stimulus set, Celebrity Faces was created. These were
144 photos of recognizable celebrities: 90 men and 54 women. All were
rendered as grayscale images. Faces were 450 pixels high and ranged in
width from 294 to 466 pixels. Examples are provided in the third row of
Figure 11. Houses were the same as in Experiment 1.

Apparatus. The apparatus was the same as that used in Experiment 1.
Design, procedure, and counterbalancing. Procedures and counterbal-

ancing measures were the same as in Experiment 1. The design was
identical to that of Experiment 1 except that exposure durations were
longer by a factor of 3 for the Inverted than for Upright pictures. For
Upright pictures, exposure durations were 17, 33, 50, 83, 150, and 250 ms,
whereas for Inverted pictures, they were 50, 100, 150, 250, 450, and 750
ms. This procedure was implemented as a compromise between two
conflicting goals: The first goal was to allow more performance overlap

between the Upright and Inverted scatterplot points on the state-trace plot
so as to allow a more stringent test of monotonicity—and hence of
unidimensional theory—and the second goal was to allow enough
exposure-duration overlap between the Upright and Inverted orientation
levels to be able to reasonably estimate linear-theory parameters.

Results

The results are shown in Figure 13, which is organized like
Figure 12. The orientation � stimulus type interaction cannot be
computed for the complete data set because of the different expo-
sure durations for the two orientations. However, three exposure
durations—50, 150, and 250 ms—are common to both orienta-
tions. Considering these three durations, the orientation effect is
greater for Faces than for Houses: The interaction’s mean magni-
tude is 0.224 � 0.031. Inspection of Figures 13A and 13B indi-
cates that allowing curve interpolation, the interaction is present
over exposure duration at least up to 250 ms. Similarly, curve
extrapolation strongly suggests that it would exist for longer du-
rations as well. In short, there is every reason to infer a strong
interaction, which, by linear theory, would imply a FIE in Exper-
iment 2.

Figure 13C shows the state-trace plot, which is very different
from its Experiment-1 counterpart. Here it is nonmonotonic: The
Inverted stimulus points are displaced leftward—that is, toward
poorer Face performance—compared with the Upright stimuli.
The interpretation of this finding is, as in Simulation 2, that when
two orientation � duration conditions lead to the same perfor-
mance for Houses, inverted performance is worse for Faces than
for Houses. We emphasize that this is what it means, when
rejecting unidimensional theory, to say that “inversion affects
Faces more than Houses.”

Discussion

The Experiment-2 results are unambiguous: The Inverted points
are displaced to the left of the Upright points, which indicates a
positive FIE. This finding, in conjunction with a lack of FIE in
Experiment 1, supports the proposition that when retrieval of
known faces does not occur, as with the Experiment-1 computer-
generated faces, no FIE will emerge; conversely when retrieval of
known faces does occur, as with the Experiment-2 celebrity faces,
a FIE will emerge.

A Two-Dimensional Theory

We now describe a multidimensional—specifically a two-di-
mensional—theory that is designed to account for our data. The
theory has two purposes. First, it provides a tutorial demonstration
of how specific, quantitative theories may be constructed within
the context of general dimensional theory. Second, it provides a
bona fide account of the FIE in our real experiments, thereby
constituting a foundation for further testing and further research.

We first describe our theory at a general level. We then add
specific quantitative assumptions that allow it to make numerical
predictions.

A General Theory

Our general theory, which is schematized in Figure 14, draws
from numerous nonquantitative theories of face processing. In
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particular it incorporates the idea that face processing is often
claimed to be done in a way that is different from processing of
other visual stimuli. Although the proposed nature of this differ-
ence varies from one theory to another, there is a pervasive general

notion that face processing is based on two kinds of information.
Depending on the specific theory, face processing is assumed to
be, more than other kinds of visual stimuli, based on “second-order
features,” based on “configural information” (e.g., Awh et al.,

Figure 13. Experiment-2 data. A and B: Basic data, performance as functions of duration for Celebrity Faces
and Houses, respectively. C: The state-trace plot. Each data point is based on 1,770 observations. Error bars are
standard errors.

Figure 14. A two-dimensional theory to account for the Experiment-2 results. See the text for further explanation.
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2004; Carey & Diamond, 1977; Collinshaw & Hole, 2000; Reed,
Stone, Bozova, & Tanaka, 2003; Rhodes, 1988), based on
“second-order relational information” (e.g., Diamond & Carey,
1986), based on “holistic” or “gestalt” information (Farah et al.,
1995; Farah, Wilson, Drain, & Tanaka, 1998; Sargent, 1984), or
“carried out in parallel” (e.g., Bradshaw & Wallace, 1971). This
processing mode is contrasted to featural or serial processing that
is assumed to be relatively more important in processing non-Face
stimuli.

Given these considerations, we retain the notion of “Strength”
but assume two Strength dimensions. The first is featural Strength
(SFij), which depends only on duration (di) and orientation (Oj)
The second is configural Strength (SCjk), which depends only on
orientation (Oj) and stimulus type (Tk). Face and non-Face perfor-
mance are determined by monotonic functions mF and mH of these
two kinds of Strength.

This theory is not meant to favor any one of the many proposed
theories of face processing and of the FIE that are in the literature
but rather represents an attempt to incorporate the general idea of
two processing modes—one relatively more important for face
processing—that are common to most of the theories. We recog-
nize that the particular terms configural and featural are used in
some theories but not others, but we note that even in the specific
theory that we present in the next section, we use the terms only as
somewhat arbitrary stand-ins for what we intend to be more
general concepts.

A Specific Theory

The next theory-construction step was to specify the functions
f1, f2, mF, and mH (see Figure 14) such that they would produce
quantitative predictions. Our choice of these specifications was
based on two considerations. First, we designed our theory to be
one of a quite successful class of information-processing theories,
variants of which have been described by numerous investigators
(e.g., Busey & Loftus, 1994; Loftus, Busey, & Senders, 1993;
Massaro, 1970; Rumelhart, 1970; Shibuya & Bundesen, 1988),
that assume random sampling over time of information from a
visual stimulus. Such theories imply some internal measure, for
example, “Information” or “Strength”, and/or observed perfor-
mance to increase with stimulus duration by the function (1 

e
kd), where d is duration and k is a constant.

The second consideration driving theory design was based on
the data obtained in Experiments 1 and 2. We have already shown
why the monotonic state-trace plot in Figure 12C and the non-
monotonic state-trace plot in Figure 13C confirm a unidimensional
theory and imply a multidimensional theory, respectively. How-
ever there is additional information in these state-trace plots that
allows stronger inferences: As is apparent in Figures 12C and 13C
and as is indicated in Table 3, both the Upright and the Inverted
functions are approximately linear. Accordingly, we decided to
restrict our choice of quantitative theory to those that imply linear
state-trace functions. This decision strongly constrains our poten-
tial theories.

Equations for featural Strength and configural Strength. To
generate quantitative predictions, we specify the various functions
of the Figure-14 theory. For featural Strength SFij in duration
condition i and orientation condition j (j � {U, I}),

SFij � � �1 � e
di/b� � YU for Upright stimuli
�1 � e
di/b� � YI for Inverted stimuli , (12)

where di is duration. The parameter b, constrained to be positive,
is an exponential growth rate common to all stimuli; it may be
viewed as representing a low-level characteristic of the system that
is ignorant of stimulus meaning. The parameters YU and YI, con-
strained to fall between 0 and 1, reflect asymptotic featural
Strength that can differ for Upright compared to Inverted stimuli.
Note that SFij must fall between 0 and 1 and can therefore be
treated as a probability.

Configural Strength, SCjk for orientation j and stimulus-type k
(k � {F, H}), is defined to be

SCjk � �CUk for Upright stimuli
CIF � 0 for Inverted faces
CIH for Inverted non-Faces

, (13)

where the Cjk are free parameters, constrained to fall between 0
and 1, and therefore interpretable as probabilities. The assumption
incorporated in Equation 13 that CIF � 0 means that no informa-
tion is acquired from inverted Faces. This assumption is motivated
in part by Valentine’s (1988) observation that, “. . . configural
information is seen as a means of encoding upright faces, but
configural information cannot be extracted from an inverted face”
(p. 480). Equation 13 also incorporates the idea that configural
Strength can be different for Upright Faces compared with Upright
non-Faces; that is, CUF does not necessarily equal CUH. In short,
featural Strength is the same for Faces and non-Faces, whereas
configural Strength can differ in systematic ways for the two
stimulus types.

Note that Equation 13 also implies that configural Strength is
acquired essentially instantaneously; that is, it does not depend on
stimulus exposure duration. In the limit of course, this assumption
must be false; some time must be required to acquire any kind of
information from a stimulus. Realistically, this assumption be-
comes more precisely that in our experiments, all the configural
Strength that will ever be acquired can be acquired from an
unmasked stimulus that is as brief as 17 ms.

Performance based on independent featural-Strength and
configural-Strength contributions. We assume, as suggested by
Collinshaw and Hole (2000), that recognition can be carried out

Table 3
Measures of Linearity for State-Trace Plot Functions for
Experiments 1–3

Orientation Slope Intercept r2

Experiment 1

Upright 0.800 
0.020 0.986
Inverted 0.873 
0.034 0.987

Experiment 2

Upright 0.851 
0.309 0.956
Inverted 0.615 0.020 0.956

Experiment 3

Upright 1.687 
0.882 0.982
Inverted 0.795 
0.034 0.934
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independently on the basis of either featural or configural Strength,
and accordingly we combine them via a probability-summation
rule. We also include, because our data require it, a different
performance asymptote for Faces and non-Faces. Thus,

pijk � � �SFij � �1 � SFij�SCjF�YF for Faces
�SFij � �1 � SFij�SCjH�YH for non-Faces , (14)

where the asymptotes, YK (K � {F, H}), are free parameters
between 0 and 1.

Temporal boundary conditions. We note that this theory is
only applicable to information acquisition within a single eye
fixation: At the beginning of the second and each subsequent eye
fixation on a stimulus, new featural Strength would become avail-
able, and the acquisition process embodied in Equation 12 would
begin anew. It would be possible to model this process in the
present experiments wherein eye fixations have not been explicitly
monitored. However, such modeling would be quite cumbersome,
and accordingly, we do not attempt to do so. Instead, we confine
our data fit to conditions involving durations 250 ms or less. This
process excludes only the two longest-duration Inverted conditions
of Experiment 2.

Outcomes that imply a unidimensional theory. If CUF and CUH

are equal and in addition CIH � CIF � 0, the theory collapses into
a unidimensional theory. The reasoning that leads to this assertion
is as follows. From Equation 12, it is evident that featural Strength,
SFij, is always a function only of duration (i) and orientation (j).
Likewise, from Equation 13, when CUF � CUH and CIH � 0, SCjk

becomes a function only of orientation (k): For Upright stimuli, we
can define CUF � CUH � CU, whereas for Inverted stimuli, CIH �
CIF � CI � 0. Thus we are left with only two states of C: CU and
CI. Given these constraints, an overall measure of “Strength,”
which depends only on duration, i, and orientation, j, can be
derived from the bracketed portions of Equation 14 to be

Sij � SFij � �1 � SFij�Cj, (15)

where j � {U, I}. Performance is then simply

pijk � �SijYF for Faces
SijYH for non-Faces . (16)

Note that Equations 15 and 16 are instances of Equations 4 and 5,
respectively, which define a unidimensional theory.

State-trace plot linearity. Earlier, we noted that we con-
strained our choice of theories to those that predicted linear state-
trace plots. Appendix A shows that by the theory defined by
Equations 12–14, the state-trace functions relating House to Face
performance are linear with predicted slope and intercept values
for orientation j of

Slope j �
YH�1 � CjH�

YF�1 � CjF�
(17)

and

Intercept j �
YH�CjH � CjF�

�1 � CjF�
. (18)

Note that a zero intercept value for some orientation, j, implies that
(CjH 
 CjF) � 0 or that CjH � CjF. In particular, this must happen
for both orientation functions when the theory collapses to a
unidimensional theory: Here, as described above, CUH � CUF, and
CIH � CIF � 0.

Theory Fits

We first apply the theory to the Experiment-2 data and show that
it fits reasonably well. We then apply it to the Experiment-1 data
whereupon, as we demonstrate, it collapses into a unidimensional
theory, as implied by the monotonic Experiment-1 state-trace plot.

Theory fit to Experiment 2. We fit the theory to the
Experiment-2 data using a least mean-square criterion. The best-
fitting values of the eight free parameters, along with fit measures
are shown in the third row of Table 4. The theoretical predictions
are shown as the smooth lines in Figure 13. As can be seen, the fit
is reasonably good as shown by the relatively small root-mean-
square error (0.022) and the high data-theory correlation (r2 �
0.994). Accordingly, it is appropriate to interpret the estimated
parameter values in meaningful ways.

There are several noteworthy aspects of the fits. First, Upright
configural Strength, CUk, is greater for Faces (CUF � 0.478) than
for Houses (CUH � 0.166). Second, Inverted configural Strength is

Table 4
Theory Fits for Experiments 1–3

Experiment

Theory parameter Fit measurea

b
(ms)b YU YI CUF CUH CIH YF YH

Root-mean-square
error (df) Pearson r2

1c 45.3 0.988 0.621 0.294 0.270 0.000 0.444 0.330 0.018 (16) 0.978
1d 45.3 0.838 0.551 0.253 0.253 0.000 0.502 0.371 0.018 (17) 0.978
2 40.4 0.734 0.524 0.478 0.166 0.036 1.000 0.550 0.022 (12) 0.994
3 46.9 0.910 0.613 0.619 0.116 0.000 0.931 0.693 0.023 (12) 0.992

Note. b � featural Strength growth rate; YU � featural Strength Upright asymptote; Y1 � featural Strength Inverted asymptote; CUF � configural Strength
(Upright faces); CUH � configural Strength (Upright non-Faces); CIH � configural Strength (Inverted non-Faces); YF � performance asymptote (Faces);
YH � performance asymptote (non-Faces).
a Root-mean-square error is total squared theory-data deviations divided by number of data points minus number of free parameters. Pearson r2 is between
the predicted and observed data points over the 24 duration � orientation � stimulus type conditions. The fits in Experiments 2 and 3 exclude the
longest-duration conditions for both Faces and non-Faces; accordingly, they are based on 20 rather than 24 conditions. b A lower value implies faster
feature acquisition rate. c CUF and CUH vary independently. d CUF and CUH are constrained to be equal.
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close to zero for Houses (CIH � 0.036). We also note that featural
Strength, SFij, asymptotes at a higher level for Upright stimuli
(YU � 0.734) than for Inverted stimuli (YI � 0.524), thereby
implying (unsurprisingly) that more featural Strength can be ac-
quired from Upright than from Inverted stimuli.

Theory fit to Experiment 1. We fit the same theory to the
Experiment-1 data. We did so in two ways. First, we allowed all
eight parameters to vary freely, and second, we constrained the
Upright configural-Strength values to be equal for Faces and
Houses. The results are shown in the first two rows of Table 4.
When the CUk’s are allowed to vary freely, they are estimated to be
almost identical (CUF � 0.294 and CUH � 0.270). When the CUk’s
are constrained to be equal, the resulting estimated parameter
values change somewhat, but the fit measures are unchanged. The
Inverted-House configural Strength value, CIH, was estimated to
be zero in both cases. The theory fits shown in Figure 12 are from
the fit in which the CUk’s are constrained to be equal. It seems safe
to conclude that as we inferred from the state-trace plots, a unidi-
mensional version of our theory can account for the Experiment-1
data (where CUF � CUH and CIH � CIF � 0) but not for the
Experiment-2 data (where CUF � CUH).

Discussion: Theory Fits

Our theory fit both the Experiment-1 and the Experiment-2 data
quite well. The estimated parameter values are instructive in sev-
eral ways. First, configural Strength for Inverted Faces was esti-
mated to be zero or close to zero for both experiments. This
observation extends to Houses, Valentine’s (1988) assertion that
configural Strength can reasonably be construed to be zero for
Inverted Faces. Confirming our conclusions based on the state-
trace plots, the parameter estimates indicated that two dimensions,
featural Strength and configural Strength, were necessary and
sufficient to account for the Experiment-2 data (CUF was estimated
to be greater than CUH), whereas in Experiment 1, the near equality
of CUF and CUH (in conjunction with CIF � CIH � 0) indicated
that a single-dimension theory suffices to account for the data.

Experiment 3: Celebrities and Cityscapes

Experiment 2 indicated that when face retrieval is required in
the study phase of a recognition experiment, a FIE emerges.
Experiment 3 was designed to extend and replicate Experiment 2
under somewhat different conditions: The non-Face stimuli con-
sisted of pictures of heterogeneous Cityscapes rather than the
homogeneous Houses used in Experiments 1 and 2.

We had, in particular, three goals in Experiment 3. First, as
indicated, we wanted to replicate Experiment 2 and show that it
generalizes to a stimulus class beyond Houses. Second, our quan-
titative theory was developed post hoc, based in part on the
Experiment-1 and Experiment-2 data patterns. Accordingly, it is
desirable to confirm that it can also fit data from a new experiment,
that is, that with its eight free parameters, it was not simply fitting
noise from Experiments 1 and 2. Third, both Experiments 1 and 2
indicated that within the context of our theory, configural Strength
was zero for Houses as well as for Faces. Is configural Strength
equal to zero for inverted stimuli from any mono-oriented stimulus
class? We cannot, of course, answer this question completely
without carrying out the impossible task of testing all such stim-

ulus classes. However, generalization to a quite different stimulus
class, Cityscapes, would strongly suggest a phenomenon that is
fairly general, not specific to homogeneous stimuli such as Faces
and Houses.

Method

Observers. A total of 160 University of Washington undergraduates
participated in 24 groups of 6 to 11 observers per group, in exchange for
course credit.

Stimuli. A new stimulus set, Cityscapes was created. These were 144
photos of skylines, individual buildings, street scenes, and bridge–water
scenes from numerous cities (excluding Seattle), all rendered as grayscale
drawings 450 pixels high and 400 pixels wide. Examples are provided in
the bottom row of Figure 11.

Apparatus. The apparatus was the same as that used in Experiments 1
and 2.

Design, procedure, and counterbalancing. Procedures and counterbal-
ancing measures were the same as in Experiment 2 except that only 24
groups were run: In all groups, Faces were shown in the first subsession,
followed by Cityscapes in the second subsession. This was an efficiency
measure implemented because Experiments 1 and 2 indicated no stimulus-
type order effects, and the additional power gained by doubling the number
of observers didn’t appear to be needed.

Results

The results are shown in Figure 15, which is organized like
Figures 12 and 13. For the three durations that are common to both
orientations, the orientation effect is greater for Faces than for
Cityscapes: The interaction’s mean magnitude is 0.161 � 0.028.

Figure 15C shows the state-trace plot, which like its
Experiment-2 counterpart, is nonmonotonic: The Inverted stimulus
points are shifted leftward—that is, toward poorer Face perfor-
mance—compared with the Upright stimuli. Again, we reject
unidimensional theory and conclude that there is a FIE, that is, that
inversion affects Faces more than Cityscapes.

We fit our quantitative theory to the Experiment-3 data. The
best-fitting parameter values are shown in the fourth row of Table
4, and the predictions are shown as the smooth curves through the
Figure-15 data points. The fits and the parameter values are similar
to those of Experiment 2.

Discussion

Experiment 3 nicely replicates Experiment 2, thereby providing
another demonstration of a FIE when face retrieval is required
during the study phase of a recognition experiment. The estimated
parameter values are qualitatively quite similar to those of Exper-
iment 2. Of most note is that configural Strength for Inverted
Cityscapes is estimated to be zero, thereby adding credence to the
proposition that configural Strength, whatever it is defined to be, is
not acquired from inverted stimuli in general.

General Discussion

In this article, we have developed two quite distinct themes. The
first focuses on a comparison between linear theory and dimen-
sional theory, and the second focuses on a specific question about
the circumstances under which the FIE does or does not emerge.
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These two themes are united by a critical observation: One can
make a decision about whether some effect, for example, a FIE,
has emerged only within the context of some fundamental theory.
Simulation 1 and Experiment 1 are pivotal in demonstrating the
consequences of this observation: In both, the data patterns were
such that a FIE was inferred to have emerged if one interpreted the
data within the context of linear theory, but was inferred to have
not emerged if one interpreted the data within the context of
dimensional theory. If this kind of data pattern had been observed
only in Experiment 1, it might have been dismissed as some kind
of weird statistical fluke. That the same data pattern was observed
in the noise-free Simulation-1 data demonstrates that the conun-
drum raised by it is real.

In what follows, we first summarize the relations between linear
theory and dimensional theory. We conclude, as we tentatively did
following discussion of our simulations, that dimensional theory is
more flexible and more realistic than linear theory as a context for
thinking about psychological problems, for designing experiments,

and for analyzing and interpreting data. After offering these argu-
ments, we turn to the FIE and summarize what we have learned
about it.

Linear Theory and Dimensional Theory

In this section, we compare the benefits of using linear theory
versus dimensional theory as a foundation for data interpretation.

Linear Theory Is a Special Case of Dimensional Theory

Earlier we characterized dimensional theory as comprising two
components: a mapping from the independent variables to dimen-
sional values (Equation 2) and a mapping from the dimensional
values to the dependent variables (Equation 3). Linear theory can
be construed as having the same structure. In the most general
case, there are 2M 
 1 dimensions corresponding to the main and
interaction effects of the M independent variables. In the present

Figure 15. Experiment-3 data. A and B: Basic data, performance as functions of duration for Celebrity Faces
and Cityscapes, respectively. C: The state-trace plot. Each data point is based on 960 observations. Error bars
are standard errors.
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case of M � 3 independent variables, there are 23 
 1 � 7
dimensions, and we can recast Equation 1, the linear-theory rep-
resentation in terms of the dimensional-theory representation of
Equations 2 and 3. Assume some condition Cijk corresponding to
level i of IV1, level j of IV2, and level k of IV3. Then, we can
denote the value of the dth dimension for Cijk as Vdijk, and the
instantiation of Equation 2 becomes

V1ijk � f1�IV1, IV2, IV3� � f1�IV1� � �i

V2ijk � f2�IV1, IV2, IV3� � f2�IV2� � �j

V3ijk � f3�IV1, IV2, IV3� � f3�IV3� � �k

V4ijk � f4�IV1, IV2, IV3� � f4�IV1, IV2� � �ij

V5ijk � f5�IV1, IV2, IV3� � f5�IV1, IV3� � �ik

V6ijk � f6�IV1, IV2, IV3� � f6�IV1, IV2� � 	jk

V7ijk � f7�IV1, IV2, IV3� � f7�IV1, IV2, IV3� � 
ijk

. (19)

The seven values then simply sum to produce a single dependent
variable for Cijk; so the instantiation of Equation 3 is

pijk � �
d�1

D

Vdijk. (20)

This treatment makes it clear that Equation 19 is a special case of
Equation 2, and Equation 20 is a special case of Equation 3.
Therefore, linear theory is a special case of dimensional theory.2 It
is, indeed, a special case that does not have a great deal of
psychological validity, in that linearity is rarely a property of
psychological processes. As we have discussed, for example, prob-
ability correct is not gracefully predicted by linear processes in
which sums of effects, unlike probabilities, are not constrained to
lie between 0.0 and 1.0. It is for this reason that the simulated
probabilities in our simulations could not themselves issue from a
linear structure, which, in turn, was responsible for the chaotic
behavior of the results.

In our view, this stark demonstration of the relation between
linear theory and dimensional theory underscores the point that the
more general and flexible dimensional theory, rather than the more
specific and inflexible linear theory, should be viewed as a starting
point for construction of theory within psychology, or, for that
matter, within most sciences. This point should come as no sur-
prise. The literature is bespeckled with warnings about limitations
of linear theory (e.g., Loftus, 2002), particularly when interpreta-
tions of nonordinal interactions are at issue (e.g., Bogartz, 1976;
Loftus, 1978). The linear-theory based inconsistencies that we
have reported in conjunction with Simulations 1–3 are simply
explicit manifestations of these limitations.

Linear theory and dimensional theory as models of the FIE. A
major point of this article was to determine circumstances under
which a FIE does and does not emerge. To do so requires a specific
model of when there is no FIE, which can then be either confirmed
or disconfirmed by the data. Both linear theory and dimensional
theory offer a means way of modeling lack of a FIE: Within the
context of linear theory, lack of FIE is specified by the absence of
an orientation � stimulus type interaction, whereas within the
context of dimensional theory, lack of FIE is embodied in a
unidimensional theory. How useful are these two models? Some
insights can be gleaned by considering the formal relations be-
tween linear theory and unidimensional theory.

The specific unidimensional theory that we have considered
throughout this article is one in which two independent variables,

duration and orientation, combine into a single measure (Strength)
that then determines performance for both Faces and Houses. In
Appendix B, we elaborate on the relations between linear theory,
dimensional theory, and the particular unidimensional theory that
we have considered. In Appendix B, we demonstrate that when,
within the context of linear theory, there are any nonzero interac-
tions involving stimulus type, linear theory is a multidimensional
theory. The converse, as implied by the results of Appendix B and
as illustrated in Simulation 3, is that when there are no interactions
involving stimulus type, linear theory is a unidimensional theory.
This is a useful result: Confirmation of unidimensional theory, in
the form of a monotonic state-trace plot (see Figures 2, 12, and
especially 9), implies the existence of a linear structure involving
no stimulus-type interactions—which, of course, implies no FIE,
even within the context of linear theory.

Suppose, in other words, that one observes a classical stimulus
type � orientation interaction in the data. As we have shown, most
specifically in Simulation 3, such an observation does not neces-
sarily imply that there is an interaction in the underlying linear
structure: Any nonlinear mapping from the underlying linear struc-
ture to the observed data almost certainly introduces some kind of
interaction even if there was none there to begin with. However, an
observed monotonic state-trace plot implies that there are no
underlying interactions involving stimulus type.

Reassessing data. The foregoing is such a critical point that
we would like to elaborate on it in the form of revisiting some of
the data presented earlier. First, consider Simulation 3. Suppose
that Simulation 3 were a real experiment, that is, that the Figure-8
data were observed in real life. Again, supposing that we had
essentially infinite statistical power, we would have inferred a
small negative FIE, which is seen most directly in Figure 8D.
Switching now to our actual status of the data’s creators, we know
that the structure underlying the data, expressed in Equation 10,
included no FIE and indeed no interactions at all involving stim-
ulus type: It was only the nonlinear (Gaussian) measurement
mapping that produced the FIE observed in the data.

However—and this is what we wish to emphasize—even if we
did not know about the underlying FIE-less linear structure to
begin with, we could have inferred it from the monotonic state-
trace plot of Figure 9. Indeed, the same point holds true with the
Simulation-1 data (see Figure 1). Even though the Simulation-1
structure was not originally expressed as a linear structure, we
know from the monotonic state-trace plot (see Figure 2) that it
could have been expressed as a FIE-less linear structure—in fact a
linear structure with no stimulus-type interaction terms at all—
along with a nonlinear mapping from the structure to performance.

Finally, we can make the same inference with our real
Experiment-1 data (see Figure 12). Even though, as in Simulation
1, there is an observed FIE in the form of an orientation � stimulus
type interaction, we can infer from the monotonic state-trace plot
(see Figure 12C) that there exists an underlying FIE-less linear
structure, along with a nonlinear mapping from this structure to the
data. This is a very powerful conclusion and affords an alternative
perspective on the assertion that despite the FIE observed in the
data, there is no FIE in the underlying structure.

2 We thank John Dunn for pointing out this relation between linear
theory and dimensional theory, along with its implications.

858 LOFTUS, OBERG, AND DILLON



Difficulties in Interpreting Data From Simpler Designs

The simulations and experiments in this article all involve
designs in which stimulus duration is manipulated along with the
two other independent variables—orientation and stimulus type—
that are central in assessing the FIE. However, an investigator
embarking on a standard investigation of the FIE would normally
consider inclusion of duration, or any other independent variable,
to be superfluous. Of critical interest, from the investigator’s
perspective, is the interaction between orientation and stimulus
type. Thus the standard FIE investigation would entail a simple
2 � 2 design in which only orientation and stimulus type are
manipulated. Such 2 � 2 designs are a staple of FIE investigations
and of psychological research in general. One might ask how the
logic that we have described—particularly the logic underlying
state-trace plots and associated tests of dimensional theories—
would apply to such simpler designs.

Scaling problems (serious ones): Comparisons of difference
scores are not robust. The answer is that a 2 � 2 design is
insufficient to test theories of any complexity. The reason is this:
Most scales used in psychology are generally valid only up to a
monotonic transformation; that is, two potential dependent vari-
ables, for example, probability and d�—or a potential dependent
variable and an internal construct, for example, probability and
“Strength”—can, in general, be assumed to be only monotonically
related. Therefore, differences on such scales cannot be meaning-
fully compared; two differences that are, say, equal in one scale are
usually unequal in some other equally valid but nonlinearly related
scale, and vice versa. This leads directly to the difficulties in
interpretations of interactions that have been discussed in the past
(e.g., Bogartz, 1976; Loftus, 1978): An interaction observed with
some particular dependent variable, for example, probability cor-
rect, can disappear or even reverse when expressed either in terms
of some other dependent variable or in terms of some hypothetical
internal construct.

The virtues of equality. So, comparisons of differences are
unstable across monotonic transformations. In contrast, equality is
preserved across all monotonic transformations: Two conditions
that are equal on one scale, for example, probability, are likewise
equal on any other monotonically related scale, be it another
dependent variable (e.g., d�) or some internal construct of interest
(e.g., “Strength”). Therefore, robust conclusions follow when per-
formance is equated for one pair of conditions—Upright and
Inverted Houses, say—and then compared for another pair of
conditions—Upright and Inverted Faces. Corresponding equality
of Upright and Inverted Faces would unequivocally imply one
conclusion, whereas corresponding inequality of Upright and In-
verted Faces would unequivocally imply another conclusion.

To equate levels on a variable such as orientation, however,
requires trading off with levels of some other variable, for exam-
ple, duration or contrast, such that the intrinsically better level of
orientation (Upright) is combined with an intrinsically worse level
of duration (short), whereas the intrinsically worse level of orien-
tation (Inverted) is combined with an intrinsically better level of
duration (longer). By using multiple duration levels, state-trace
curves are mapped out such that equality of Upright and Inverted
Houses can be observed over a wide range of performance levels,
and relative performance for Faces can be compared across this
range (see, e.g., Figures 2 and 5). Robust conclusions then ensue:

In the present examples, no FIE is inferred if Upright and Inverted
Face performance is equal when Upright and Inverted House
performance is equal (see Figure 2), whereas a standard, positive
FIE is inferred when equal Upright and Inverted House perfor-
mance is associated with poorer Inverted compared with Upright
Face performance (see Figure 5). We note that other investigators
have manipulated other variables to attain equality. For instance,
Biederman and Tsao (1979) equated Chinese and American ob-
servers on a control task in a Stroop paradigm by eliminating fast
American observers and slow Chinese observers.

Impoverished information with 2 � 2 designs. Another way of
conceptualizing the difficulty in interpreting standard 2 � 2 de-
signs is by reference to Figure 1D. Assuming a 2 � 2 design, the
exposure duration would have to be selected to have been some-
thing, and the observed magnitude of the FIE would then depend
on which particular duration value had been selected. As is evident
in Figure 2D, the observed FIE would have been observed to be nil
had the selected duration been less than about 100 ms and would
have been greater with greater selected durations. As if this were
not bad enough, even these conclusions are tenuous because as is
apparent in Figure 3, even the relation between duration and FIE
magnitude is not very robust.

Nested Dimensional Theories

We now turn to a brief review of the usefulness of thinking in
terms of dimensional theories. The complex designs of Simula-
tions 1–3 and Experiments 1–3 have guided the construction of
three nested dimensional theories—that is, theories devised such
that each successive theory is a special case of the preceding
one—within whose context we have sought to understand the
results of our experiments. In what follows, we summarize how
these theories provide an increasingly specific understanding of
the nature of the FIE. In the present experiments, these theories
were used to investigate whether the FIE is characteristic of
storage of face information and/or retrieval of face information;
however, the theories, or variants of them, could be used to assess
any question about face processing, the FIE, and the circumstances
under which the FIE does or does not emerge.

Theory I: Generic Dimensional Theory

Theory I, the most general, is generic dimensional theory (Equa-
tions 2 and 3), wherein we simply assume that the independent
variables in our experiments result in some number of internal
dimensions, the values of which then determine performance. Like
generic linear theory, Theory I is not in and of itself particularly
useful in understanding the FIE or any other process; it simply
provides a theoretical shell within which more specific theories
may be formulated.

Theory II: Configural and Featural Strength

We deem that actual insight into the nature of the FIE begins
with Theory II: the two-dimensional theory presented in Figure 14.
Here, we identify constructs that have been used in the past to
explain face processing in general and the FIE in particular.
Specifically, we postulated two kinds of Strength—drawn from
many past accounts of face processing—that are assumed to accrue
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during inspection of a visual stimulus. In this incarnation of the
theory, we assume that featural Strength accrues over time in a
manner that is indifferent to the nature of the stimulus but never-
theless depends on stimulus duration and stimulus orientation.
Configural Strength is, in keeping with the notion of face-
processing “specialness,” allowed to be different for Faces and
non-Faces as well as for different orientations.

Theory III: A Quantitative Version of Theory II

In Theory III, we fleshed out these assumptions with specific
functions that allowed quantitative fits to the data from our three
real experiments. Our decisions about exactly how to structure this
strong version of the theory were somewhat but not entirely
arbitrary: As noted, they were constrained by the nature of past
quantitative visual-information-acquisition theories and indepen-
dently by the observed approximately linear forms of the Experi-
ments 1–3 state-trace plot functions. The theory fits to the data sets
were quite good (see Figures 12, 13, and 15), and the estimated
parameter values (see Table 4) therefore constitute a useful tool for
interpreting the subtle and complex language spoken by the data.

Face Recognition and the FIE

Experiments 1–3 were designed to assess Valentine’s (1988)
assertion that a FIE does not emerge when orientation is manipu-
lated in the study phase of a visual-recognition experiment. What
can we conclude about this issue?

In our experiments, we manipulated orientation only during the
study phase of a visual-recognition procedure: A FIE did not
emerge when unfamiliar computer-generated Faces were com-
pared with Houses (Experiment 1), but a FIE did emerge when
photographs of familiar (celebrity) Faces were compared with
Houses (Experiment 2) or Cityscapes (Experiment 3). This finding
is consistent with the proposition that the FIE emerges when
familiar faces are retrieved from memory, as almost certainly
happens during the study phase of Experiments 2 and 3, but does
not emerge when unfamiliar faces are encoded for subsequent
recognition, as must happen during the study phase of Experiment
1. Such a proposition is reasonable given the findings that pro-
cessing of familiar faces differs in many respects from processing
of unfamiliar faces (see, e.g., Bruce, Henderson, Newman, &
Burton, 2001; Hancock, Bruce, & Burton, 2000).

However, this conclusion must be tempered by (at least) two
caveats. First, this pattern of results may not be unique to faces but,
rather, may characterize any stimulus set that can occur in a
familiar or an unfamiliar configuration. An example is buildings,
which, like faces, come in unfamiliar versions (i.e., most build-
ings) and familiar versions (e.g., the Empire State Building, the Taj
Mahal, etc.). Although, to our knowledge, the experiment has not
been done, it seems perfectly plausible that a “building-inversion
effect” would emerge when familiar but not unfamiliar buildings
are compared with a uniform set of unfamiliar stimuli, such as
houses.

The second caveat is that as is evident from even a quick glance
at Figure 11, the computer-generated faces used in Experiment 1,
though guaranteed to be unfamiliar, differ in many respects from
the celebrity faces used in Experiments 2 and 3. Possibly our
observers were not treating these computer-generated faces as

actual faces, and that is why they didn’t differ from houses with
respect to the inversion effect. Numerous research projects suggest
themselves to test this possibility.

On the Prevalence of the FIE

In the introduction to this article, we provided numerous refer-
ences to reports of a FIE measured by the traditional stimulus
type � orientation interaction. Generally speaking, these findings
appear to have formed a robust and reasonably harmonious pattern
that has assisted us in understanding face processing. Are we
suggesting that because of the interpretational difficulties implied
by Simulations 1–3, these findings simply be declared invalid until
they are reinvestigated within the context of dimensional theory?
And where, by the way, are all those negative FIE’s whose
existence is suggested by the chaotic demonstrations illustrated in
Figures 3, 6, and 10?

These questions do not have obvious answers. We do, however,
make a general observation, which is that the greater the magni-
tude of the FIE as characterized by the traditional interaction, the
less likely that it will be associated with a lack of a FIE as
demonstrated by confirmation of a unidimensional theory: Note
that the Experiment-1 data involved quite a small-magnitude in-
teraction, whereas the data from Experiments 2 and 3 involved
much larger-magnitude interactions. As for the lack of negative
FIE’s in the literature, there are (at least) two plausible explana-
tions. The first is that we have made faulty assumptions—perhaps,
unlike our simulation parameters, the structural parameters that
govern real-life FIE data are constrained in such a way as to not
allow negative FIE’s. The second explanation rests on the “file-
drawer problem” (Rosenthal, 1979): Given no a priori reason to
expect a negative FIE, it is unlikely that anyone who obtained such
a result would publish it.

Conclusions

In this article, we have tried to make two main points. The first,
which in our view is the less important, has to do with the FIE: We
have provided evidence suggesting that a FIE emerges when
known faces are retrieved from memory but not when unknown
faces are encoded in memory. Although consistent with prior
conjectures, our data are nevertheless subject to a number of
alternative interpretations and should thus be viewed as a starting
point for future research projects rather than as grounds for unam-
biguous conclusions about the nature of face processing.

The second point, which we consider the more important, is
quite radical: We have asserted and have tried to demonstrate that
standard, off-the-shelf linear theory is highly limited in its useful-
ness as a foundation for conceptualizing psychological problems
and analyzing psychological data. We have described an alterna-
tive, dimensional theory, which as we have shown, subsumes
linear theory: Dimensional theory is more general both in terms of
the functions mapping independent variables to presumed internal
constructs and in terms of the functions mapping the presumed
internal constructs to the observed dependent variables.

As we have indicated, tests of specific dimensional theories
generally require relatively complex designs; the standard 2 � 2,
for example, is generally inadequate. We are convinced, however,
that such complex experiments, carried out in conjunction with
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carefully specified dimensional theories, will bear fruit in the form
of deeper and more robust understandings of all manner of psy-
chological phenomena.
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direct examination la perception des visage: Specificité du deficit? Acta
Neurological Belgica, 81, 321–332.

Busemeyer, J. R., & Jones, L. E. (1983). Analysis of multiplicative com-
bination rules when the causal variables are measured with error. Psy-
chological Bulletin, 88, 237–244.

Busey, T. A., & Loftus, G. R. (1994). Sensory and cognitive components
of visual information acquisition. Psychological Review, 101, 446–469.

Busey, T. A., Tunnicliff, J., Loftus, G. R., & Loftus, E. F. (2000). Accounts
of the confidence-accuracy relation in recognition memory. Psy-
chonomic Bulletin & Review, 7, 26–48.

Carey, S., & Diamond, R. (1977, January 21). From piecemeal to config-
ural representation of faces. Science, 195, 312–314.

Collinshaw, S. M., & Hole, G. J. (2000). Featural and configural processes
in the recognition of faces of different familiarity. Perception, 29,
893–909.

Coltheart, M. (1985). Cognitive neuropsychology and the study of reading.
In M. I. Posner & O. S. M. Marin (Eds.), Attention & performance XI
(pp. 3–37). Hillsdale, NJ: Erlbaum.

Diamond, R., & Carey, S. (1986). Why faces are and are not special: An
effect of expertise. Journal of Experimental Psychology: General, 115,
107–117.

Dunn, J. C., & James, R. N. (2003). Signed difference analysis: Theory and
application. Journal of Mathematical Psychology, 47, 389–416.

Dunn, J. C., & Kirsner, K. (1988). Discovering functionally independent
mental processes: The principle of reversed association. Psychological
Review, 95, 91–101.

Ellis, H. D., & Shepherd, J. W. (1975). Recognition of upright and inverted
faces presented in the left and right visual fields. Cortex, 11, 3–7.

Farah, M. J., Tanaka, J. N., & Drain, M. (1995). What causes the face
inversion effect? Journal of Experimental Psychology: Human Percep-
tion and Performance, 21, 628–634.

Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is
“special” about face perception? Psychological Review, 105, 482–498.

Garner, W. R. (1974). The processing of structure and information. New
York: Wiley.

Gauthier, I., Curran, T., Curby, K. M., & Collins, D. (2003). Perceptual
interference supports a non-modular account of face processing. Nature
Neuroscience, 6, 428–432.

Hancock, P. J. B., Bruce, V., & Burton, A. M. (2000). Recognition of
unfamiliar faces. Trends in Cognitive Science, 4, 330–337.

Harley, E. M., Dillon, A., & Loftus, G. R. (2004). Why is it difficult to see
in the fog? How contrast affects visual perception and visual memory.
Psychonomic Bulletin & Review, 11, 197-231.

Hays, W. (1973). Statistics for the social sciences (2nd ed.). New York:
Holt.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face
area: A module in human extrastriate cortex specialized for face per-
ception. Journal of Neuroscience, 17, 4302–4311.

Kanwisher, N., Tong, F., & Nakayama, K. (1998). The effect of face
inversion on the human fusiform face area. Cognition, 68, B1–B11.

Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations
of measurement. New York: Academic Press.

Krantz, D. H., & Tversky, A. (1971). Conjoint measurement analysis of
composition rules in psychology. Psychological Review, 78, 151–169.

Kruskal, J. B. (1964). Multidimensional scaling: A numerical method.
Psychometrica, 29, 115–129.

Leehey, S., Carey, S., Diamond, R., & Cahn, A. (1978). Upright and
inverted faces: The right hemisphere knows the difference. Cortex, 14,
411–419.

Loftus, G. R. (1978). On interpretation of interactions. Memory & Cogni-
tion, 6, 312–319.

Loftus, G. R. (1985). Evaluating forgetting curves. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, 11, 396–405.

Loftus, G. R. (2002). Analysis, interpretation, and visual presentation of
data. In H. Pashler (Ed.) & J. Wixted (Vol. Ed.), Stevens’ handbook of
experimental psychology (3rd ed., Vol. 4, pp. 339–390). New York:
Wiley.

Loftus, G. R., & Bamber, D. (1990). Learning–forgetting independence:
Unidimensional memory models and feature models: Comment on Bo-
gartz (1990). Journal of Experimental Psychology: Learning, Memory,
and Cognition, 16, 916–926.

Loftus, G. R., Busey, T. A., & Senders, J. W. (1993). Providing a sensory
basis for models of visual information acquisition. Perception & Psy-
chophysics, 54, 535–554.

Loftus, G. R., & Irwin, D. E. (1998). On the relations among different
measures of visible and informational persistence. Cognitive Psychol-
ogy, 35, 135–199.

Massaro, D. W. (1970). Perceptual processes and forgetting in memory
tasks. Psychological Review, 77, 557–567.

Palmer, J. C. (1986a). Mechanisms of displacement discrimination with a
visual reference. Vision Research, 26, 1939–1947.

Palmer, J. C. (1986b). Mechanisms of displacement discrimination with
and without perceived movement. Journal of Experimental Psychology:
Human Perception and Performance, 12, 411–421.

Pelli, D. G. (1997). The videotoolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10, 437–442.

Phelps, M. T., & Roberts, W. A. (1994). Memory for pictures of upright
and inverted primate faces in humans (Homo sapiens), squirrel monkeys
(Saimiri sciureus), and pigeons (Columba livia). Journal of Comparative
Psychology, 108, 114–125.

Phillips, R. J., & Rawles, R. E. (1979). Recognition of upright and inverted
faces: A correlational study. Perception, 8, 577–583.

861LINEAR AND DIMENSIONAL THEORIES



Pinker, S. (1997). How the mind works. New York: Norton.
Reed, C. L., Stone, V. E., Bozova, S., & Tanaka, J. (2003). The body-

inversion effect. Psychological Science, 14, 302–308.
Rhodes, G. (1988). Looking at faces: First-order and second-order features

as determinants of facial appearance. Perception, 17, 43–63.
Rosenthal, R. (1979). The file drawer problem and tolerance for null

results. Psychological Bulletin, 86, 638–641.
Rumelhart, D. E. (1970). A multicomponent theory of the perception of

briefly exposed visual displays. Journal of Mathematical Psychology, 7,
191–218.

Sargent, J. (1984). An investigation into component and configural pro-
cesses underlying face perception. British Journal of Psychology, 75,
221–242.

Shepard, R. N. (1962). The analysis of proximities: Multidimensional
scaling with an unknown distance function. Psychometrica, 27, 125–
140.

Shibuya, H., & Bundesen, C. (1988). Visual selection from multielement
displays: Measuring and modeling effects of exposure duration. Journal
of Experimental Psychology: Human Perception and Performance, 14,
591–600.

Tversky, A., & Russo, J. E. (1969). Substitutability and similarity in binary
choices. Journal of Mathematical Psychology, 6, 1–12.

Valentine, T. (1988). Upside-down faces: A review of the effect of inver-
sion upon face recognition. British Journal of Psychology, 79, 471–491.

Valentine, T., & Bruce, V. (1986). The effect of race, inversion and
encoding activity upon face recognition. Acta Psychologica, 61, 259–
273.

Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental
Psychology, 81, 141–145.

Yin, R. K. (1970). Face recognition by brain-injured patients: A dissociable
ability? Neuropsychologia, 8, 395–402.

Appendix A

Slopes and Intercepts of the Linear State-Trace Plots Implied by Equations 12–14

This appendix concerns the quantitative theory specified by Text Equa-
tions 12–14. Our goals are (a) to prove that by this theory, the Upright and
Inverted state-trace functions relating House performance to Face perfor-
mance are linear and (b) to derive the slopes and intercepts of these
functions. We prove linearity by deriving the expression for the slope and
demonstrating that slope does not depend on duration.

Assume two duration values, d1 and d2 � d1. Text Equation 14 provides
predicted performance,

pijk � �SFij � �1 � SFij�Cjk�Yk � YkSFij�1 � Cjk� � YkCk, (A1)

where, as usual, j � {U, I} and k � {F, H}. Here i is restricted to i � {1,
2} for the two durations under consideration. Note that SFij and Cjk are
obtained from Text Equations 12 and 13.

The slope is the ratio ( p2jH 
 p1jH)/( p2jF 
 p1jF). Substituting the right
side of Equation 1 for the pijks,

Slope �
�YHSF2j�1 � CjH� � YHCjH� � �YHSF1j�1 � CjH� � YHCjH�

�YFSF2j�1 � CjF� � YFCjF� � �YFSF1j�1 � CjF� � YFCjF�

�
YH�1 � CjH��SF2j � SF1j�

YF�1 � CjF��SF2j � SF1j�

or

Slope �
YH�1 � CjH�

YF�1 � CjF�
, (A2)

which is the expression indicated in the text. Because the Equation A2
expression for slope contains no terms involving di—it depends only on
parameters relevant to orientation, j, and stimulus type, k—the slope will be
the same no matter what values of d1 and d2 are chosen, and the state-trace
functions must therefore be linear for both orientation values.

The intercept may be derived by picking performance values for Houses,
pijH, and Faces, pijF, and noting that because the functions are linear,

Intercept � pijH � Slope � pijF; (A3)

or, substituting Equations A1 and A2 into Equation A3,

Intercept � �YHSFij�1 � CjH� � YHCjH�


 �YH�1 � CjH�

YF�1 � CjF�
� �YFSFij�1 � CjF� � YFCjF�

� �YHSFij�1 � CjH� � YHCjH� � YHCjH]


 �YH�1
CjH�YFSFij�1
CjF�

YF�1
CjF�
�
�YH�1
jH�CjFYF

YF�1
CjF�
�

� �YHSFij�1 � CjH� � YHCjH� � YHSFij�1 � CjH�


 �YH�1 � CjH�CjF

�1 � CjF�
�

� YHCjH �
YHCjF�1 � CjH�

�1 � CjF�

�
�1 � CjF�YHCjH � YHCjF�1 � CjH�

�1 � CjF�
;

or, finally,

Intercept �
YH�CjF � CjH�

�1 � CjF�
,

which is the expression for intercept indicated in the text.
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Appendix B

On the Relations Between Linear Theory and Dimensional Theory

Our goal here is to define relations between linear theory and dimen-
sional theory. For convenience, we again assume no statistical error.

Linear theory is defined by

pijk � � � �i � �j � �k � 	jk � �ij � �ik � 
ijk, (B1)

where i, j, and k index duration, orientation, and stimulus type,
respectively.

To define unidimensional theory, we slightly rewrite Text Equation 4 to
obtain Strength, Sij, in duration � orientation condition ij,

Sij � f�di, Oj�, (B2)

and we similarly rewrite Text Equation 5 to obtain performance,

pijk � mk�Sij�, (B3)

where k � {F, H}. Thus, performance depends on both Strength, Sij, and
stimulus type as instantiated in the two monotonic functions, mk.

We now attempt to recast linear theory as a unidimensional theory. We
first define Strength to be

Sij � � � �i � �j � �ij. (B4)

Thus Strength defined by linear theory (Equation B4) is a special case of
Strength defined by unidimensional theory (Equation B2). To predict
performance, we substitute Equation 4 into Equation B1 to obtain

pijk � Sij � �k � 	jk � �ik � 
ijk � mk�Sij, di, Oj�. (B5)

By Equation B5, therefore, performance depends not only on Strength, Sij,
and stimulus type, �k, but also on 	jk, �ik, and 
ijk, that is, on duration and
orientation. Therefore, unless 	jk, �ik, and 
ijk are all zero, linear theory
cannot be a unidimensional theory; it must be multidimensional.

In the most general case in which all interaction terms are nonzero, linear
theory is a three-dimensional theory. We define the first dimension,
Strength, by Equation B4. Two additional dimensions, which we call F and
H both depend only on duration and orientation. They are defined as

Fij � 	j1 � �i1 � 
ij1 (B6)

and

Hij � 	j2 � �i2 � 
ij2. (B7)

Thus, F is determined only by terms relevant when faces are shown (k �
1), and H is determined only by terms relevant when houses are shown
(k � 2). Finally, there are separate performance equations for faces and
houses:

Faces: pij1 � Sij � Fij (B8)

and

Houses: pij2 � Sij � Hij. (B9)
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New Editor Appointed for History of Psychology

The American Psychological Association announces the appointment of James H. Capshew, PhD,
as editor of History of Psychology for a 4-year term (2006–2009).

As of January 1, 2005, manuscripts should be submitted electronically via the journal’s Manuscript
Submission Portal (www.apa.org/journals/hop.html). Authors who are unable to do so should
correspond with the editor’s office about alternatives:

James H. Capshew, PhD
Associate Professor and Director of Graduate Studies
Department of History and Philosophy of Science
Goodbody Hall 130
Indiana University, Bloomington, IN 47405

Manuscript submission patterns make the precise date of completion of the 2005 volume uncertain.
The current editor, Michael M. Sokal, PhD, will receive and consider manuscripts through
December 31, 2004. Should the 2005 volume be completed before that date, manuscripts will be
redirected to the new editor for consideration in the 2006 volume.

863LINEAR AND DIMENSIONAL THEORIES


