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On the Time Course of Perceptual Information That Results From a
Brief Visual Presentation

Geoftrey R. Loftus, Janine Duncan, and Paul Gehrig
University of Washington

A briefly presented visual stimulus engenders an available-information function that lags behind
the physical stimulus. We report two experiments that focus on, the iconic-decay portion of this
function, which falls to 0 over a 200-300 ms period following stimulus offset. In each experiment,
to-be-reported digit strings were shown for varying durations followed by a noise mask at varying
poststimulus intervals. We found the shape of the performance curve relating digit-report
probability to stimulus exposure duration to be independent of stimulus-mask interstimulus
interval. This finding is consistent with the proposition that the iconic-decay function’s shape is
independent of stimulus duration and allows us to identify this shape. We rejected exponential
iconic decay for 6 of 8 observers; however, all observers’ decay functions could be adequately fit
by gamma decay, a generalization of exponential decay.

It has been known for more than 30 years that a briefly
presented visual stimulus is generally followed by a fading
iconic image (Averbach & Coriell, 1961; Niesser, 1967; Sper-
ling, 1960). The iconic image is often informally represented
in a fashion similar to that in Figure 1 (e.g., Averbach &
Sperling, 1961). Figure 1a, which depicts the physical stimu-
lus, shows some measure of physical presence (e.g., contrast)
as a function of ¢, the time since stimulus onset. In this
example, the stimulus instantly appears, remains on for 100
ms, and then instantly disappears.’ Figure 1b depicts a psy-
chological correlate of physical stimulus presence. We have
labeled the ordinate proportion available information. We
later define this construct within the context of a specific
model; for the moment it is meant to be an intuitive descrip-
tion. The general idea is that all stimulus information becomes
available by some time M following stimulus onset, and the
information remains available throughout stimulus presence.
When the stimulus physically vanishes, available information
decays, eventually to zero. This decay of available information
constitutes the fading iconic image.

In this article, we report data concerning iconic decay and
formulate a descriptive model that accounts for these data.
The data, set within the context of the model, allow us to
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estimate the shape of the iconic-decay function (the right
portion of the Figure 1b curve); in particular, we can evaluate
the common assumption that such decay is exponential. At
the end of the article, we dicuss an alternative class of models
that, if viable, would allow generation of the entire a(¢)
function.

Measuring the Icon’s Worth

The paradigm that we used, along with the logic that will
carry us from data to conclusions, has its origins in work
described by Loftus, Johnson, and Shimamura (1985). Ac-
cordingly, we begin with a sketch of this work.

Loftus et al. presented stimuli (naturalistic pictures) for
varying durations. The stimuli were followed either by an
immediate noise mask or by a noise mask that was delayed
by 300 ms following stimulus offset. The noise mask was of
much higher luminance and contrast than the stimuli; when
the mask and a stimulus were physically superimposed, the
stimulus could not be seen at all. Accordingly, it was assumed
that no icon followed an immediate-mask stimulus, whereas
a relatively complete icon followed a delayed-mask stimulus.
Memory for the stimuli was measured in several ways.

Figure 2 shows generic data from this experiment. Here,
performance is plotted as a function of exposure duration; we
refer to such curves as performance curves. As expected,
performance increases with exposure duration. The perform-
ance advantage for delayed-mask stimuli in relation to im-
mediate-mask stimuli reflects information acquired from the
iconic image. Of principal interest is that the delayed- and
immediate-mask performance curves were horizontally par-
allel, separated by approximately 100 ms throughout their
extent. This finding was quite robust; the constant horizontal
curve separation held and was of approximately the same

' By “instantly” we mean within a few milliseconds, which might
be, for example, the amount of time for a mechanical shutter to open
completely or close completely.
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Figure 1. Top panel: Representation of a stimulus input function

(contrast as a function of time since stimulus onset). Bottom panel:
available information as a function of time since stimulus onset.

magnitude for a variety of memory measures, a variety of
stimulus sets, and two stimulus-contrast levels.

At the most general level, one can characterize these results
as demonstrating additivity between stimulus duration and
stimulus-mask interstimulus interval (ISI). That is, the results
could be captured by

P(d, 300) = P(d + w, 0), (1)

where P(x, a) refers to performance for an x-ms stimulus
followed a ms after its offset by a mask, and w refers to the
horizontal separation between the curves.

Loftus et al. (1985) interpreted their results in terms of what
they called the icon’s worth, concluding that the information
acquired from an icon is the same as the information that can
be acquired from an additional w ms of physical exposure
duration; that is, the icon was “worth” w ms of additional
physical stimulus exposure. As noted, their estimate of w was
100 ms.

The present experiments replicate and extend the Loftus et
al. findings. The most important modification is that whereas
Loftus et al. used only two stimulus-mask ISIs, the present
Experiment 2 used many ISIs. This allowed us to test a more

general form of Equation [:
P, a) = P(d + w,, 0). 2)

That is, performance engendered by d-ms stimulus followed
by an a-ms ISI is equal to performance engendered by a (d +
w, )-ms stimulus followed by a 0-ms ISI, where a and w, are
monotonically related. As we shall see, Equation 2 constitutes
the prediction of a specific information-acquisition and per-
formance model.

To anticipate, this prediction was confirmed, which in turn
allowed us to estimate the shape of the iconic-decay function.
We did this by estimating w,,, which we term the icon’s partial
worth at varying times following stimulus offset. These partial
worths correspond to the iconic-decay function’s integral at
varying times, following stimulus offset. As will be described
in detail, estimation of this integral provides sufficient infor-
mation to test various forms of the iconic-decay function
itself.

In the remainder of this introduction we describe the ex-
perimental paradigm that was used in the present experiments
and then describe a model of some psychological processes
involved in this paradigm.

The Paradigm

The experimental paradigm is a variant of one that has
been used extensively (e.g., Kowler & Sperling, 1980; Rumel-
hart, 1969; Shibuya & Bundesen, 1988; Sperling, 1963, 1967;
Townsend, 1981; Turvey, [973; van der Heijden, 1978). We
have used it in our laboratory and have described it in Loftus
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Figure 2. Schematic representation of the Loftus, Johnson, and

Shimamura (1985) results. {The delayed- and immediate-mask curves
are horizontally parallel, separated by approximately 100 ms.)
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(1985), Loftus, Kaufman, Nishimoto, and Ruthruff (in press),
and Loftus, Truax, and Nelson (1986).

In each of a series of trials, a stimulus consisting of four
digits is presented to an observer whose job is to report
immediately as many of the digits as possible in their correct
positions. Stimuli are presented briefly (30-300 ms) and are
followed by a noise mask that occurs at an a-ms ISI following
stimulus offset. The mask’s luminance and contrast are such
that the mask conforms to Eriksen’s (1980) minimal test:
When mask and stimulus are visually superimposed, the
stimulus cannot be seen at all.

Data From the Paradigm: Performance Curves

The data in this paradigm are captured in a curve that
relates the proportion of correctly reported digits (corrected
for guessing) to stimulus duration. As noted, we refer to such
a curve as a performance curve. We have discovered empiri-
cally that performance curves in this paradigm can be de-
scribed essentially perfectly by

P =10 — ¢t (3)

for d = L and P = 0 otherwise.? Here, P is performance, d is
stimulus duration, and ¢ and L are free parameters. The
parameter L (for “lift-off”) represents the minimum duration
necessary for above-chance performance, whereas the param-
eter ¢ determines the curve’s shape. Note that ¢ is the duration
required for performance to rise from chance to a value of
1.0 — 1/e = 0.63. Informally, ¢ may be viewed as reflecting
the reciprocal of the information-acquisition rate: The greater
the information-acquisition rate, the lower is c.

Figure 3 (top panel) shows typical data for 2 observers
obtained in our laboratory by using this task. The solid lines
represent the best fitting exponential functions. In the bottom
panel of Figure 3, the performance measure has been trans-
formed from P to —In(1.0 — P). This measure is convenient
because Equation 3 implies that it is linear with stimulus
duration (which, as is evident in Figure 3, it is). Accordingly,
we use it in subsequent descriptions of data from this para-
digm.

Present Experiments

In the present experiments, we used factorial designs in
which both stimulus-mask ISI and stimulus duration within
each ISI level were varied. This design produces a family of
performance curves, with one family member corresponding
to each ISI level. The major job of the model that we introduce
in the next section is to predict the relationship of these
performance curves to one another.

A Model of Visual Information Acquisition and
Performance

The model that we describe here is a variant of one that
has been described elsewhere (Loftus & Hanna, 1989; Loftus,
Hanna, & Lester, 1988; Loftus & Hogden, 1988). In what
follows we describe the model’s assumptions and its applica-
tion to the present task.
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Figure 3. Typical data obtained in the digit-recall paradigm. (Both
panels show performance as a function of stimulus duration for two
observers. Solid lines show best exponential fits. The performance
measure is P, proportion correct in the upper panel and —In[1.0 — P]
in the bottom panel.)

Assumptions

The model consists of five assumptions, which are as fol-
lows.

Available Information

A stimulus consists of information. As indicated in Figure
1b, some proportion of the information is available to be
acquired by the observer at any given time, ¢, following
stimulus onset. Available information, a(¢), is

o(t) fort= M
a(t) = 1.0 forM<i1=d 4)
b(t — d)y fort>d,

where ¢ is time since stimulus onset, d is stimulus duration,
M is a free parameter, and ¢ and b are functions. Note that

2 Variants of this equation have been used to describe the speed—
accuracy relationship in speeded-response tasks (e.g., McClelland,
1979; Wickelgren, 1977).
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a(1), being the proportion of available information, is a pure
number; it has no units.

By Equation 4, all information becomes available at time
M following stimulus onset and remains available during the
stimulus’s physical presence (1 < d). The parameter M does
not play an important role in the model; we assume that M
is relatively small. Following stimulus offset (1 > d), available
information is described by some function b, which is inter-
preted to be the iconic-decay function. The only restrictions
that we place on b are that it be nonnegative and that its
integral from 0 to infinity, B(e), be finite. We refer to this
integral B(x) as w, the icon’s worth.

Note that because the argument of b is (1 — d), the iconic-
decay function’s shape is, according to the model, independ-
ent of the stimulus duration d, as indicated in Figure 4 for a
100- and a 200-ms stimulus. This property seems reasonable
and is certainly parsimonious. There is some empirical evi-
dence that iconic decay as measured by partial report is
independent of stimulus duration (Irwin & Yeomans, 1986;
Yeomans & Irwin, 1985), and this proposition has been
explicitly incorporated into iconic-decay models proposed by
Irwin and Yeomans as well as by Di Lollo and Dixon (1988).
Independence of iconic-decay-function shape and stimulus
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Figure 4. The iconic-decay function of the information-available
curve is independent of stimulus duration (stimulus durations of 100
and 20 ms are illustrated).

duration is tested explicitly (and confirmed) in the present
Experiment 2.

Information-Acquisition Rate

Available information is acquired by the observer and
placed into short-term store, where further processing can
continue indefinitely and independently of stimulus presence.
At any time ¢ following stimulus onset, some proportion of
the available information, I(¢), has been acquired. The instan-
taneous information-acquisition rate at time ¢, designated (),
is

r(1) = {aOrlIO}/c. &)

Thus, r(z) is a multiplicative function of a(t), the available
information, and some function, A, of I, the proportion of
already-acquired information. We assume that the function
h(I) is nonnegative, equals 1.0 when /(¢) equals 0, and ap-
proaches O as () approaches 1.0. Finally, ¢ is a scaling
constant that has units of time.

This expression for r(7) implies the following properties.
First, the smaller is a(¢), the available information, the smaller
the information-acquisition rate, {(t); in the extreme, when
a(t) is zero, r(r) is also zero. Second, because A(/) and thus
r(t) approaches 0 as /(1) approaches 1.0, I(t) cannot exceed
1.0.

One parenthetical note is in order. A stronger form of the
model would make the stronger assumption that /([) is strictly
monotonically decreasing. This would capture the intuitively
reasonable property that the more information that has been
acquired from the stimulus, the slower the acquisition of new
information. However, this stronger assumption is not nec-
essary for any of the predictions that we make.

Masking

We assume that our mask, which is much brighter and of
higher contrast than the stimulus, immediately terminates
available information. Thus, if a mask occurs at time (d + a),
then a(t) =0 forall 1 > (d + a).

Unidimensionality of Information

Acquired information, /(¢), is unidimensional; that is, it
can be represented by a single number on an ordinal scale.
At first glance, this assumption seems untenable. Intuitively,
it seems that the memory representation of a complex visual
stimulus must be multidimensional, and most extant models
reflect this intuition. At the very least, such models typically
posit item and location information (e.g., Irwin & Yeomans,
1986, Mandler & Parker, 1976).

However, the following interpretation of unidimensionality
is tenable. Suppose that there are J relevant memory dimen-
sions (e.g., in a model positing item and location information,
J = 2). At time ¢ following stimulus onset, the memorial
representation of the stimulus can be represented by a point
in J-dimensional stimulus space. Encoding consists of the
point’s movement along some path through the space, and
information can be defined as the distance traversed along
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this path. By this definition, information is unidimensional,
whereas the memory representation is multidimensional.

Performance

Performance (£) on any memory task (e.g., the digit-recall
task described earlier) is monotonically related to amount of
acquired information; that is, P = m(I), where m is a mono-
tonic function.

Remark

As noted, we have empirically determined that the function
relating performance to stimulus duration in the present task
is exponential (see Equation 3 and Figure 3). In Appendix A,
we prove that Equation 3 follows if A[I(t)] = 1.0 — I(¢) and
m is the identity function.

The Model's Application to the Present Paradigm:
Estimating the Form of Iconic Decay

In this section we first derive the performance-curve equa-
tions and the relations to one another of performance curves
corresponding to different stimulus-mask ISI levels. We then
show how iconic-decay curve shape can be estimated within
the model’s context.

Performance Curves for Different 1SIs

In Appendix B, we derive an equation for acquired infor-
mation at time ¢ following the onset of a d-ms stimulus,

= 'k + d]
= H'[k + d + B(t — d)}

fort<d

Id, 1 = d fort>d

(6)
where I is information, /{~' is a monotonic function, B(t — d)
is the integral of b(1 — d), the iconic-decay function, and £ is
a constant.

We refer to B(¢t — d) as w,, the icon’s partial worth at time
(t — d) = a ms following stimulus offset. Accordingly, from
Equation 6 we can infer that information acquired from a d-
ms delayed-mask stimulus (g > 0) is

Id a)=H'k+d+ w] 7

From Equation 6, we can also infer that information acquired
from an immediately masked (d + w,)-ms stimulus is

Id + w,, 0) = H'[k + (d + wa)]. ®)

Because the right sides of Equations 7 and 8 are the same, the
left sides are the same as well, or

I(d, a) = I{d + w,, 0). %)

Finally, because performance, P, is assumed to be monoton-
ically related to information, /, two conditions producing the
same amount of information also must produce equal per-
formance. This allows us to write the equation for our fun-
damental prediction:

P(d, a) = P(d + w,, 0). (10)

The prediction embodied in Equation 10 is thus: Performance
engendered by a d-ms stimulus followed by an g-ms ISI is the
same as performance engendered by a (d + w,)-ms stimulus
followed by a 0-ms ISI, where w, is independent of stimulus
duration d. This implies that a factorial design in which 4 and
a are varied should result in a family of horizontally parallel
performance curves, one curve for each value of g, with the
a-ms ISI curve separated from the 0-ms ISI curve by w, ms.
As depicted in Figure 2, we have seen that this prediction was
confirmed by Loftus et al. (1985) for an a value of 300 ms.

The Iconic-Decay Function’s Shape

Consider the kind of stimulus-duration-stimulus-mask ISI
factortal experiment that we have been describing. Confir-
mation of Equation 10 in such an experiment is consistent
with the proposition that iconic-decay-function shape is in-
dependent of stimulus duration. Accordingly, such confir-
mation permits us to proceed under the supposition that there
is only a single iconic-decay shape to measure, as illustrated
in Figure 4. In what follows, we describe how this putative
single shape is estimated under such circumstances.

The hornizontal distance between an a-ms ISI performance
curve and the zero-ISI performance curve constitutes an
estimate of w, = B(t — d), the integral of the iconic-decay
function from ¢ = d to t = (d + a). Accordingly, the data from
this paradigm permit us to estimate directly the shape of
B(t — d).

Ideally, we could then recover the original iconic-decay
function, b(t — d), from its integral. Unfortunately, this is not
possible because any real experiment, measuring performance
at a discrete set of ISIs, allows one to estimate the value of
B(t — d) only at discrete times (viz. the particular ISIs used
in the experiment), and there is a one-to-many relationship
between an integral, B(x), evaluated at discrete points, and
its corresponding derivative, b(x).

Accordingly, to estimate the decay function’s shape, we
must nominate candidate functions (e.g., exponential decay is
a reasonable candidate function) and compare the candidate-
function integrals with the empirically estimated integrals.
The adequacy of any candidate function’s fit can then be
evaluated with standard statistical procedures.

Visible Persistence

Although it is not the focus of this article, we wish to
comment on the model’s application to visible persistence.
Several researchers, particularly Coltheart (1980), have eluci-
dated difficulties in explaining both informational and visible
persistence within the same model. The crux of the problem
is that two important variables—stimulus duration and stim-
ulus luminance—have a null or a positive effect on informa-
tion acquisition from the icon (as measured by partial report)
but strong negative effects on visible-persistence duration (cf.
Adelson & Jonides, 1980; Bowen, Pola, & Matin, 1974; Di
Lollo & Dixon, 1988; Efron, 1970a, 1970b; Haber & Standing,
1970).
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Available Information and Information-Acquisition
Rate

Our model posits that the iconic-decay function, b(t), is
independent of stimulus duration. Accordingly, if visible per-
sistence were posited to be determined by b(z), the model’s
prediction about the stimulus-duration effect on visible per-
sistence would be incorrect. However, for a variety of reasons,
we have assumed visible persistence at time ¢ to be determined
by the information-acquisition rate, r(t). The key to this
assumption’s success in explaining visible persistence is that
r(t) declines with acquired information, I; accordingly it is
lower at the offset of both longer duration and higher lumi-
nance stimuli. Elsewhere, Loftus and his colleagues have
shown how this assumption quantitatively accounts for both
duration and luminance effects in temporal-integration and
synchrony-judgment tasks (Loftus & Hanna, 1989; Loftus &
Hogden, 1988).

Relation to Existing Models

This account of the information-visible-persistence rela-
tionship is formally similar (although conceptually dissimilar)
to accounts proposed by Irwin and Yeomans (1986) and Di
Lollo and Dixon (1988). In these models, there is a visual
(i.e., an analogue or schematic but nonvisible) representation
that begins to decay following stimulus offset (such decay is
explicitly exponential in Di Lollo and Dixon’s model) and is
independent of stimulus duration. In addition, in Di Lollo
and Dixon’s model there is a separate visible representation
that begins to decay at stimulus onset (thus accounting for
the inverse effect of stimulus duration on tasks requiring
visible persistence).

Formally, the present model’s poststimulus available infor-
mation, b(r), corresponds to the nonvisible representation in
both the Irwin and Yeomans and Di Lollo and Dixon models,
whereas the present model’s information-acquisition rate, r(t),
corresponds to Di Lollo and Dixon’s visible representation.

EXPERIMENTS

We report two experiments. Experiment 1 was designed to
replicate the Loftus et al. experiments with simpler stimuli, a
more powerful experimental design, and a more sophisticated
statistical assessment technique. Experiment 1 permits a test
of the Equation 10 prediction with two ISI values.

Experiment 2, an extension of Experiment 1, was designed
to test the general Equation 10 prediction when many ISI
values are used. Assuming the prediction’s confirmation, the
Experiment 2 data further permit us to estimate the iconic-
decay function’s shape by using the technique that we have
just described.

Experiment 1

As noted, Loftus et al. (1985) found immediate- and de-
layed-mask performance curves to be horizontally parallel
(see Figure 2). This finding suggests that information acquired
from an icon is equivalent to information acquired from a w-

ms extension of the physical stimulus, where w = B() is
independent of stimulus duration. Such a conclusion, if valid,
would be interesting for several reasons. First, it provides a
simple, parsimonious description of information acquisition
from an icon. More generally, it constrains models that are
designed to account for such information acquisition. In
particular, it strongly favors models (like the one described
earlier) in which the nature of information acquired from the
icon is qualitatively the same as information acquired from
the physical stimulus.

There were, however, two shortcomings in the Loftus et al.
procedure. First, their experiments involved gathering a rela-
tively small amount of data from each of many observers,
which means that (1) subtle averaging artifacts could have
obscured the main results, and (2) icon-worth estimates could
not be obtained from individual observers. Second, Loftus et
al. did not use any formal statistical procedure to evaluate the
hypothesis that immediate- and delayed-mask performance
curves are horizontally parallel.

Experiment |1 was designed to replicate the Loftus et al.
results with these shortcomings removed. Two major proce-
dural modifications were introduced. First, a great deal of
data were collected from individual observers. Second, a more
sophisticated statistical procedure was used to assess the hy-
pothesis that immediate- and delayed-mask performance
curves are parallel. This procedure rests on the finding that
Equation 3 provides an adequate description of performance
curves. Because the parameter ¢ determines a performance
curve’s shape, different performance curves are horizontally
parallel if and only if the ¢ values for the curves are identical
(see Appendix C). Identical ¢ values constitute a testable null
hypothesis.

Method

The basic experimental procedure consisted of a series of trials. On
each trial, a four-digit string was presented for some exposure duration
(on the order of 30-400 ms) followed by a mask at either a 0- or 250-
ms ISI. The observer’s task was to report immediately as many of the
digits as possible in their correct positions, guessing if necessary.

Observers

Four observers participated in the experiment: the 3 authors and
an undergraduate female observer. All observers were intimately
familiar with the purposes of the experiments. All observers were
highly practiced, having participated in a minimum of 3,000 practice
trials prior to beginning the experiments.

Stimuli and Apparatus

Observers viewed stimuli and a random-noise mask, all prepared
as 35-mm slides. A stimulus consisted of a 4 (columns) X 3 (rows)
array of black digits on a white background. Eighty such stimuli were
prepared and used repeatedly. The 4 X 3 x 80 = 960 digits composing
all stimuli were selected randomly and with replacement from the set
of 10 digits. Each digit subtended a visual angle of 0.56° verticaily
and 0.28° horizontally. Digits were separated by 0.37° vertically and
0.74° horizontally. On a given experimental trial, one four-digit row
of one stimulus was the to-be-reported target. Target row was blocked
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over trials; accordingly, an observer always knew far in advance which
row was the target.> The noise mask consisted of black visual noise
on a white background.

Stimulus contrast was substantially reduced to avoid ceiling per-
formance. Contrast reduction was accomplished by (1) attenuating
stimulus luminance with a neutral-density filter and (2) by superim-
posing a uniform adapting field over the stimuli. Stimulus contrast
varied from observer to observer. A summary of luminances and
contrasts for both experiments is provided in Table 1. Note that in
Table 1 observers are referred to by their initials.

All stimuli were displayed by using Kodak projectors equipped
with Gerbrands tachistoscopic shutters. A random-access projector
was used to display the stimuli, whereas standard carousel projectors
were used to present the noise mask, the contrast-reducing uniform
light field, and a fixation point that initiated each trial. Responses
were made on a numeric keypad. All display equipment was enclosed
in a soundproof box. All display and response collection was under
the control of an AT-compatible computer system described by
Stoddard and Loftus (1988).

Design and Procedure

Twelve conditions were defined by two ISI levels (0 and 250 ms)
and six exposure durations within each ISI level. The selection of 250
ms as the longest ISI resulted from pilot work which indicated that
digit-recall performance, though improving as ISI was increased from
0 to 250 ms, did not improve further as ISI was increased beyond
250 ms. The exposure-duration values within each ISI level were
selected with the goals of (1) producing roughly equal performance
ranges within each ISI level (which meant that durations within the
0-ms ISI level had to be suitably greater than corresponding durations
within the 250-ms ISI level) and (2) maintaining performance {pro-
portion of correctly recalled digits) within a performance range of
roughly 0.1-0.9 (proportion correct). These goals were accomplished
by trial and error over a great deal of pilot work.

For each observer, the exposure durations were specified by three
experimental parameters. Base was the minimum duration used in
the 250-ms ISI level, ink was the stimulus-duration increment from
each duration level to the next duration level within each ISI level,
and worth was a duration added to each 250-ms ISI duration to
produce a corresponding 0-ms ISI duration.® Table 2 provides an
example of the 12 exposure durations generated by the following
parameter set: base = 30 ms, ink = 40 ms, and worth = 90 ms.

Table 1

Luminances and Contrasts: Stimulus Contrasts for Different
Observers (Represented by Initials) Are Shown for
Experiments 1 and 2

Background Foreground

Stimulus/observer luminance luminance Contrast

Experiments | and 2

Dark background field 0.34 — —

Fixation point 0.46 1.79 0.591

Adapting field 23.73 — —

Mask 67.17 2.35 0.933
Experiment |

JD, CG, GL 33.18 24,72 0.146

PG 36.75 26.46 0.163
Experiment 2

PG, GL 27.51 24.49 0.058

CA, TB, ID, CG, LK 29.40 24.72 0.086

SO 33.18 24.72 0.146

Note. Luminances are in candles/m?.

Table 2
Hlustration of Exposure-Duration Composition (in
Milliseconds) for Experiment 1

Interstimulus interval

Duration 0 ms 250 ms
1 120 30
2 160 70
3 200 110
4 240 150
5 280 190
6 320 230

Note. All durations assume a 30-ms base, 40-ms ink, and a 90-ms
worth.

Finally, a fourth experimental parameter, stimulus contrast, com-
pleted the specification of the experimental configuration for each
observer. The complete configurations for all observers are summa-
rized in Tables 1 and 3.

Each observer participated in 18 blocks of 80 trials per block.
Recall that stimuli were prepared as 3 four-digit rows. On any given
block, only one row (top, middle, or bottom) was the to-be-reported
target.

The event sequence for a given 80-trial block was as follows. First,
a high, medium, or low tone (2000, 1000, or 500 Hz) signaled the
observer that the top, middle, or bottom row would be the target row
for that block (i.e., for the next 80 trials). Next, eight practice trials
were presented. The conditions for these practice trials were selected
randomly and without replacement. Next, 72 experimental trials were
presented. The 12 conditions were randomly intermingled over the
72 trials, with the restriction that each condition occurred exactly
twice within each 24-trial sequence. Stimulus-presentation order was
quasirandom.®

3 A stimulus slide consisted of 3 four-digit rows rather than just 1
for two reasons. The first, less important reason is historical: We had
done some partial report work in our laboratory, and the stimulus
slides that we had used were conveniently hanging around. The
second, more important reason is that we wanted to use the same
slides repeatedly over observers. It was easier to do this (i.e., there
was less inclination to memorize the digit sequences) with three digit
rows per slide because an observer only saw a given row as a target
once every three blocks.

* Note here that we are using “worth” to denote an experimental
rather than a theoretical parameter. The experimental and theoretical
uses of the term are related in that if a given observer’s empirical and
theoretical worths were identical, then horizontally parallel immedi-
ate- and delayed mask performance curves would cover identical
performance ranges for that observer. The experimental value of
worth that we selected for each observer constituted our best guess,
based on pilot work, about what an observer’s theoretical worth
would turn out to be.

> The 80 stimulus slides were fixed in the 80 slots of a carousel
tray. We wanted to preclude the observers’ ability to memorize and
make use of sequential slide-to-slide information (e.g., we did not
want Middle Row 7184 to always follow Middle Row 0072). We
accomplished this goal as follows. On each block, the 72 experimental
stimuli were randomly divided into two 36-stimulus groups (Groups
A and B). The carousel circled twice within each block: On Pass I,
all Group A stimuli were shown, and on Pass 2, all Group B stimuli
were shown. This scheme ensured that stimulus ordering differed
unpredictably from one block to the next.
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Table 3
Experimental Parameters for Experiment 1
Observer Base Ink Worth
GL 40 30 100
PG 80 30 80
JD 70 20 70
CG 30 30 95

The to-be-reported row was changed systematically over blocks (in
a top-middle-bottom~top ... sequence; thus, each row served as
target in 6 of the 18 blocks). Assignment of conditions to trials within
a block was also changed over blocks.

As noted, a block consisted of 80 trials. The event sequence within
each trial was as follows. First, there was a 500-ms fixation point
accompanied by a warning tone. Warning-tone frequency was 2000,
1000, or 500 Hz and reminded the observer which row (top, middle,
or bottom) was the target during the current block. The fixation point
was always positioned in the middle of the upcoming slide, that is,
between the second and third digits of Row 2. Following the fixation
point/warning tone was the stimulus, presented for its appropriate
duration, followed by a dark 0- or 250-ms ISI, followed by the mask,
which was presented for 300 ms. The mask was followed by the
adapting field, which remained present for the rest of the trial. The
observer typed in four responses after mask disappearance, guessing
on a digit if uncertain. Following responding, there was feedback in
the form of four 150-ms beeps. Each beep was 2000 Hz if the
corresponding digit had been correctly reported and 500 Hz if the
corresponding digit had not been correctly reported. Following feed-
back was a 300-ms dark interval prior to the start of the next tnal.

Results

We had two main goals in data analysis. First, we wanted
to determine whether the delayed- and immediate-mask per-
formance curves were horizontally parallel as predicted by
the model. Second, given the model’s confirmation, we
wanted to measure the horizontal difference between the
curves; this distance constitutes an estimate of the icon’s
worth.,

Figure 5 shows —In(1.0 — P) as functions of stimulus
duration for each of the two ISIs.® For each observer the solid
triangles represent delayed-mask conditions, and the open
circles represent immediate-mask conditions. The solid lines
through the data points are the best linear fits constrained to
have equal slopes (and thus equal ¢ values) for the two curves.
(Note that both the duration and performance axes vary across
the 4 observers.) In what follows, we refer both to Figure 5
and to Table 4, which summarizes the Experiment 1 data.

Evaluating the Horizontal-Parallelism Prediction

In Table 4, the two rows under “Separate c¢-value fits”
provide the ¢ values for each of the 4 observers, calculated
independently for the two ISI levels.” The mean values are
virtually identical and are not significantly different from one
another.

Our model predicts horizontally parallel immediate- and
delayed-mask performance curves. Given validity of the linear
fit, horizontally parallel performance curves imply and are

implied by equal ¢ values for the immediate- and delayed-
mask curves, as shown in Appendix C. This prediction can
be embodied as the following null hypothesis,

=-In(1.0 = Py) = (d, — L))/c (1

where j indexes the stimulus-mask ISI level (0 or 250 ms in
this experiment), and / indexes stimulus duration within each
ISI level. Note that separate L;s are allowed for the two ISI
levels, but ¢ remains constant over ISI.

To test Equation 11’s adequacy, we used standard linear
regression procedures to estimate three parameters for each
observer: two lift-offs (L, and L, for immediate- and delayed-
mask curves) and a common slope, ¢. The best fitting param-
eter values are shown in Table 4: Rows 1-3 under “Common
c-value fits.”

The Pearson r? values resulting from this common-c fitting
procedure are shown in Row 5 (“Obtained r?”) under “Com-
mon c-value fits.” Note that each r? is based on 9 degrees of
freedom: 12 data points minus 3 estimated parameters.

The fits are quite good: The lowest r? is .981. To assess the
statistical validity of the model, we carried out a 1,000-
iteration computer simulation for each observer. On each
iteration, we generated the 12 predicted condition means by
using that observer’s best fitting parameters and then per-
turbed the simulated mean for each condition by an amount
drawn randomly from a normal distribution with a mean of
zero and a standard deviation equal to that condition’s stand-
ard error. We computed the r? for each iteration’s data set,
thereby obtaining the r2 distribution given the model’s validity
and the observed error variance. The r? values corresponding
to the upper and lower 5% of these distributions are provided
in Table 4: Rows 4 and 6 under “Common c-value fits.” The
obtained r’s fall within or above this range. In short, the
model is statistically confirmed.®

Individual Differences in the Icon’s Worth

Loftus et al. (1985) estimated the icon’s worth, w, to be
about 100 ms. As noted, this value emerged consistently from
a variety of experimental conditions. However, in all cases, it
was estimated from data that had been averaged over large
numbers of observers. The present data allow us to estimate
the icon’s worth for each individual observer. These estimates
(which are simply the difference between the L values for the

® Recall that P is the proportion of correct digits corrected for
guessing (guessing probability = 10%). The correction formula was P
=(p—0.1)/0.9, where p is the raw proportion, and P is the corrected
proportion.

"The ¢ values are similar for 3 of the 4 observers, but ¢ is
substantially greater for GL. GL, age 42, was the oldest observer; PG,
JD, and CG were in their early 20s. Loftus, Truax, and Nelson (1986)
showed strong age effects on the information-acquisition rate in this
task; however, in that study, 20-year-olds were compared with 70-
year-olds. It appears (alas) that age deterioration may begin earlier.

8 By “the model” we mean the strong version of the model, in
which the function 4 is linear and m is the identity function. Confir-
mation of the stronger version ipso facto confirms the weaker version,
in which /4 and m are less constrained.
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Figure 5. Results of Experiment 1: Performance curves for individual observers. (Closed triangles
represent data from the 250-ms interstimulus interval (ISI) levels, and open circles represent data from
the 0-ms ISI levels. Solid lines are best fitting linear functions constrained such that within each panel

the two curves have the same slope.)

0- and 250-ms ISI levels) are provided in Table 4 under “Icon
worth.” We have also provided standard errors for these
estimated worths, which were obtained from the same com-
puter simulation described earlier. There are clear differences

among the 4 observers; the estimate of w ranges from 68 ms
for JD to 98 ms for GL. It is not our goal to explain these
individual differences here; we merely note them for the
record.

Table 4
Summary Data (in Milliseconds) for Experiment 1
Observer
Fits/icon worth GL PG JD CG M
Separate ¢-value fits
0 ms 154 81 56 86 94
250 ms 125 85 61 94 91
Common c¢ value fits
Common ¢ 139 83 58 90
Lg 112 71 92 82
L, 14 —-12 24 -11
5th percentile r? 977 942 951 966
Obtained r? 981 993 .997 987
95th percentile r? 997 992 .992 .994
Icon worth: Ly — L,
Worth 98 83 67 93
SE 4.7 5.5 3.5 4.4
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Discussion

The conclusions to be drawn from the Experiment 1 results
are straightforward. First, the horizontal-parallelism predic-
tion of our model is confirmed. This replicates the Loftus et
al. findings with a more powerful experimental paradigm and
a more sophisticated statistical-analysis technique. Second, we
have obtained individual estimates of the icon’s worth for 4
observers.

Experiment 2

We had two major goals in Experiment 2. The first was to
assess Equation 10’s validity when many ISIs were used.
Confirmation of the Equation 10 prediction is consistent with
the hypothesis that iconic-decay-function shape is invariant
across d, the stimulus duration.

To anticipate, the Equation 10 prediction was confirmed.
Accordingly, our second goal was to determine the iconic-
decay function’s shape. As described earlier, we must do this
by nominating and evaluating candidate functions. Our null
candidate was exponential decay, which we selected for several
reasons. First, because exponential decay arises from an en-
vironmentally common (independent Poisson) process, many
physical entities decay exponentially (e.g., radioactive decay
is exponential). Second, exponential decay seems to be a
default assumption in the literature for many information-
loss processes (e.g., Bogartz, 1990; Murdock & Cook, 1960),
including iconic decay (e.g., Di Lollo, 1984; Di Lollo & Dixon,
1988; Hawkins & Shulman, 1979).

Method

The Experiment 2 method was similar to the Experiment 1 method
except that we used more than two ISIs. The stimuli, apparatus, task,
and general methodology were identical to Experiment 1. The ob-
servers were 4 original Experiment 1 observers, GL, PG, JD, and CG,
plus 4 new observers, TB, SO, CA, and LK. Table 1 includes stimulus
luminances and contrasts for all observers.

The Experiment 2 design included either six ISIs and six stimulus
durations within each ISI level, for 36 total conditions (original
observers), or seven ISIs and five stimulus durations within each ISI
level, for 35 total conditions (new observers). The old observers had
8 practice trials followed by 72 experimental trials per block, whereas
the new observers had 10 practice trials followed by 70 experimental
trials per block. For all observers, there were two instances of each
condition per block. For reasons to be described later, one of the
original observers (CG) participated in both the 6 X 6 and the 7 X 5
configurations. The number of blocks per observer were 108 (JD and
CG in the 6 X 6 configuration), 73 (GL), 65 (PG), 70 (CA, SO, and
LK), 41 (TB), and 35 (CG, 7 X 5 configuration).

The ISI and stimulus-duration values for a given observer were
generated as follows. The extreme ISIs were 0 and 250 ms as in
Experiment 1. The intermediate [SIs were selected to provide approx-
imately equal icon-worth increments across the ISI levels. This selec-
tion was based on the Experiment 1 data, pilot work, and our guesses
about the iconic-decay function’s shape. As in Experiment 1, stimulus
durations within each ISI were selected with the goal of achieving
approximately equal performance ranges within each ISI level.

Results

The results were similar across the 8 observers. For expo-
sitional simplicity, we first describe the complete data-analysis
process for a single observer and then summarize the findings
for all 8 observers.

Analysis of a Single Observer

Figure 6 shows complete data from 1 observer (JD). As in
Figure 5, the solid triangles and open circles represent the
250-ms and 0-ms ISI levels, respectively. The intermediate
ISI levels are represented, from longer to shorter ISIs, by solid
squares, solid circles, open triangles, and open squares. The
six solid curves for JD’s six ISI levels were obtained by fitting
Equation 11 through standard regression techniques. As in
Experiment |, we constrained c, the curve’s shape parameter,
to be identical for all six curves, and allowed only L, the d-
intercept parameter, to vary. Even with this constraint, JD’s
fit is very good; the overall Pearson r* is .986. The numbers
at the right of the curves indicate the five nonzero ISI dura-
tions (number before the slash) and the horizontal separation
between the corresponding performance curve and the zero-
ISI (rightmost) performance curve (number after the slash).

Evaluation of Equation 11’s adequacy. We assessed Equa-
tion 11’s adequacy by using the same computer-simulation
technique as in Experiment 1. Again, we ran a 1,000-iteration
simulation. On each iteration we generated a simulated data
set by perturbing each of JD’s 36 predicted condition means
by an amount equal to that condition’s observed standard
error. This procedure provided the distribution of Pearson r’s
and the standard error of each partial-worth estimate, given
Equation 11’s validity and the observed error variance in the
data. For JD, the observed r? = 986 fell at the 92nd percentile
of the simulated distribution. This means that we fail to reject
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Figure 6. Results of Experiment 2 for Observer JD: Performance

curves for six interstimulus interval (ISI) levels. (Solid curves are best
fitting linear functions constrained such that all curves have the same
slope. Numbers at the right represent ISI value [number before the
slash] and horizontal distance to the 0-ms ISI [rightmost] curve
[number after the slash].)
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the null hypothesis embodied in Equation 11 at the p = .92
level.

Independence of the iconic-decay function’s shape and stim-
ulus duration. Recall our hypothesis, illustrated in Figure 4,
that the iconic-decay function’s shape is independent of stim-
ulus duration. As we demonstrated earlier (see Equation 10
and accompanying text), this hypothesis predicts performance
curves for different ISIs to be mutually parallel. Accordingly,
our failure to reject horizontal parallelness confirms this hy-
pothesis for JD.

Evaluating the exponential-decay hypothesis. Figure 7a
shows JD’s estimated partial icon worths (i.e., the estimate of
JD’s B[t — d] values) as a function of stimulus-mask ISI. As
indicated, these data points are simply the best fitting hori-
zontal differences between the Figure 6 zero-delay perform-
ance curve and each of the other five curves. As described
earlier, the standard errors resulted from the computer simu-
lation.
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Figure 7. Top panel: Generation of JD’s B(t — d) function. (Partial
icon worth values [obtained from Figure 6] as a function of interstim-
ulus interval. Numbers represent the same thing they did in Figure
6.) Bottom panel: JD’s best fitting exponential-decay function for her
top-panel data.

The exponential-decay hypothesis is denoted by
b(t — d) = e =, (12)

where b is the iconic-decay function, (t — d) is ISI, and w is
the total area under the iconic-decay curve (the icon’s worth).
Integrating b(¢t — d) from 0 to (¢ — d),

B(t — d) = w, = w[1.0 — e =9/¥], (13)

where w, is the icon’s partial worth at time a = (¢ — d) ms
following stimulus offset.

We fit Equation 13 to the Figure 7 data, allowing one free
parameter, w. The best fitting exponential-decay prediction is
shown as the solid line in Figure 7b. The prediction is system-
atically discordant with the data. The root-mean-square error
(RMSE) is 5.1 ms, and the exponential fit can be statistically
rejected, F(4, «) = 2.86. JD’s iconic-decay function, in short,
is not exponential.

Analysis of All 8 Observers

Table 5, which provides summary data for all 8 Experiment
2 observers, is organized as follows. The 4 male observers are
shown first, followed by the 4 female observers. As noted,
CG, a female observer, participated in both the 6 (ISIs) X 6
(durations) experimental configuration and the 7 X 5 config-
uration. The data from these two configurations are referred
to as old and new.

Evaluation of Equation 11°s adequacy. The first two rows
under “Equation 11 fit” in Table 5 show the (common) ¢
value along with the L value for the 0-ms ISI level.

Row 4 under “Equation 11 fit” shows the observed Pearson
r* (based on 29 and 27 degrees of freedom for the 6 X 6 and
7 x 5 configurations). Rows 3 and 5 show the 5th and 95th
percentiles of the r* distribution obtained from the computer
simulations. Seven of the observed r2s fall within the 5%-
95% range. The two r’s that are slightly less than the 5th
percentile are still high (.980 and .966). In short, the fits are
good.

Estimation of partial worths. The first six rows under “ISI/
icon worth” in Table 5 show partial icon worths for the five
or six nonzero ISIs. All cells in this table have two entries:
The number preceding the slash is the stimulus-mask ISI, and
the number following the slash is the estimated partial icon
worth. The seventh row shows the standard error of the
estimated partial worths obtained from the computer simu-
lations.

Evaluation of the exponential-decay hypothesis. The three
rows under “Exponential-decay function fits” in Table 5 show
the best fitting w value (Row 1), and RMSE (Row 2), and the
F ratio (Row 3). Note that exponential decay can be rejected
for 6 of the 8 observers. One observer (CA) had a fairly large
RMSE, however; her partial-worth estimates were too noisy
(SE = 6.5 ms) to be able to reject the exponential-decay
hypothesis (or any other reasonable hypothesis).

Figure 8 provides a graphical representation of the expo-
nential fit for all observers. To prepare Figure 8, we normal-
ized each observer’s data as follows. We chose an (arbitrary)
value of 100 ms for w, the icon’s worth (also known as the
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Table 5
Summary Data for Experiment 2 and Gamma-Decay Constraining in Values (in Milliseconds)
Observer
Male Female
Fits/icon worths GL PG SO TB JjD LK CA CG (old) CG (new)
Summary data
Equation 11
c 116 211 76 75 51 97 72 72 88
Ly 11 142 36 143 111 150 125 98 104
5th percentile r? .980 973 .940 .966 965 982 957 983 .960
Obtained r? 985 .966 .964 .970 .986 983 987 .980 .966
95th percentile 72 992 .990 978 988 .988 994 991 994 .989
ISI/icon worth )
Worth 1 22/21 18/8 14/13 15/14 16/11 13/9 15/11 21/12 16/13
Worth 2 51/50 41/38 29/35 31/27 36/27 26/22 31/28 49/38 33/27
Worth 3 92/74 73/63 46/41 48/44 64/51 40/37 48/43 87/58 51/35
Worth 4 161/97 129/78 66/52 69/62 113/62 58/49 69/51 153/72 73/52
Worth 5 250/102  250/87 94/63 99/75  250/69 83/59 99/66 250/80 105/63
Worth 6 — — 250/75  250/92 — 250/77  250/80 — 250/75
SE 3.5 43 4.8 5.2 3.0 33 6.5 33 3.7
Exponential-decay function
w 126 105 84 109 73 85 89 86 81
RMSE 8.6 10.3 7.8 8.4 5.1 5.7 5.2 44 35
F ratio 6.09 5.66 2.61 2.59 2.86 3.06 0.62 1.80 0.90
Gamma-decay constraining » values
n=2
RMSE 3.4 6.6 42 3.7 3.5 2.6 2.5 5.6 43
F ratio 0.95 2.30 0.75 0.50 1.37 0.60 0.14 2.97 1.42
n=3
RMSE 1.8 5.5 3.8 2.1 4.3 3.0 3.7 7.2 6.2
F ratio 0.26 1.63 0.62 0.16 2.09 0.83 0.32 493 2.88
n=4
RMSE 2.3 5.4 4.2 2.3 5.1 3.9 4.8 8.3 7.3
F ratio 0.45 1.54 0.75 0.20 2.84 1.43 0.54 4.02 6.59
n=75
RMSE 3.0 4.3 4.7 2.9 5.7 4.6 5.6 9.0 8.1
F ratio 3.57 1.76 0.97 0.31 3.57 1.97 0.74 7.69 497

Note.

Observers GL, PG, and JD are original observers (six interstimulus intervals [ISIs]). Observers SO, TB, LK, and CA are new observers

(seven ISIs). Observer CG served as both an original and a new observer. For the ISI/icon-worth data, the number to the left of the slash is
stimulus-mask ISI; the number to the right of the slash is estimated icon worth. SEs apply to estimated icon worths. RMSE denotes root-mean-

square €rror,

exponential iconic-decay constant; cf. Equation 13). We then
computed a normalization factor equal to 100/w;, where w;
is the best fitting estimate of the ith observer’s decay constant.
For observer i, we then multiplied ISIs, observed partial
worths, and standard errors by w;, thereby rendering all
observers’ functions comparable. The results of this analysis
are summarized in Figure 8, wherein all normalized partial
worths are plotted as a function of normalized ISI. The best
fitting exponential function departs systematically and signif-
icantly from the observed function.

Observer CG

As indicated in Table 5, CG was the only observer for
whom the exponential-decay function fit adequately. It was
to verify this finding that CG ran through a second set of
blocks in the 7 X 5 configuration. CG’s data are consistent
with exponential decay in both configurations.

Discussion

We first discuss our implications of the good Equation 11
fit to the data, and second we discuss our rejection of expo-
nential iconic decay.

Equation 11’s Fit to Performance Curves

All observers showed a good fit to the Equation 11 perform-
ance-curve descriptions. This finding has two implications.
First, Equation 11’s fitting correctly confirms that perform-
ance curves from all ISI levels are horizontally parallel to one
another. This finding allows the conclusion that the iconic-
decay function’s shape is independent of physical-stimulus
duration; such a conclusion is in accordance with the theory
and data of Di Lollo and Dixon (1988), Irwin and Yeomans
(1986), and Yeomans and Irwin (1985).
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Figure 8. Best fitting exponential-decay function for 8 observers.
(Observers' data have been scaled [as described in the text] to be
mutually comparable.)

We must point out, however, that although necessary for
concluding such shape invariance, this finding is not, of
course, sufficient. Later, we suggest an alternative model that
explicitly incorporates dependence of iconic-decay shape on
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stimulus duration, and we show that this model’s prediction
is essentially indistinguishable from horizontal parallelism.

Equation 11’s fitting correctly is consistent with a strong
version of the relatively weak model that we presented earlier
in this article. Recall that the only constraints placed on the
function A(I) were that it be nonnegative, that it be equal to
1.0 when 1(¢) = 0, and that it approach O as I(t) approaches
1.0. Similarly, the only constraint placed on the function m([)
was that it be monotonically increasing. Equation 11, how-
ever, is a consequence of stronger forms of A(J) and m(I).
that A(I) = 1.0 — I and that m(I) = I.

Iconic Decay Is Not Generally Exponential

We noted at the onset of this article that iconic decay has
often been assumed, either implicitly or explicitly, to be
exponential. We have shown, however, that the exponential-
decay hypothesis fails for at least 6 of the 8 observers in our
experiment. We note that in addition to being interesting in
and of itself, rejection of exponential decay is methodologi-
cally significant, as it indicates that our data are sufficiently
powerful to reject a reasonable model.

GENERAL DISCUSSION

Let us summarize the general conclusions that we can make
thus far.
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(new data) .
60 ]
40 1
=1
20 1 w=81ms
RMSE=3.5ms
F=0.90n.s.
0 T T Y T T
0 50 100 150 200 250
Observer CA
80 -
60 -+
40 -
n=2
w=81ms
20 1 RMSE = 2.5 ms
F=0.14n.s.
o T T T T T
0 50 100 150 200 250
Stimulus-Mask 1S} (ms)

Figure 9. Best fitting gamma functions for female observers (JD, CG, LK, and CA).
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Figure 10. Best fitting gamma functions for male observers (GL, PG, SO, and TB).

First, in Experiment 1, we replicated the Loftus et al. (1985)
data with a number of improvements. The data have more
statistical power; we have assessed the null hypothesis of
horizontally parallel immediate- and delayed-mask perform-
ance curves through standard statistical procedures, and we
determined icon worths for individual observers. Second, in
Experiment 2, we found families of horizontally parallel per-
formance curves for a range of stimulus-mask ISI values. This
finding confirms the prediction embodied in Equations 10
and 11 and is consistent with the proposition that the iconic-
decay function’s shape is invariant over stimulus duration.
Third, we have rejected the hypothesis that iconic decay is
exponential for 6 of 8 observers.

In the remainder of this section, we address two issues.
First, we suggest a more general candidate decay function,
gamma decay, that accounts for the present data. Then we
consider more general models that are designed to account
for the entire time course of the kind of a(¢) function shown
in Figure 1.

Gamma Decay

A generalization of exponential decay is gamma decay.
Gamma decay incorporates the notion of a series of stages:
The output of each stage constitutes the input to the next one,
and decay from each stage is exponential (see McClelland,
1979; McGill, 1963; McGill & Gibbon, 1965; Sperling, 1964;

Watson, 1986). Decay from the nth stage, which we term
bt — d), is b(t — d) = e~ F[(1/7)'/i!] where 7 is a scaling
parameter, and the sum is from i =0to i = (n — 1);thus n is
a parameter restricted to integer values of 1 or greater. '°
Note that when n = 1, gamma decay reduces to exponential
decay.

Fit of Gamma Decay

For each of the 8 observers, we found the best fitting values
of 7 and n. The data (partial-worth curves) for each of the
observers, along with the best fitting gamma-decay predic-
tions, are shown in Figure 9 and 10. The best fitting param-
eters are expressed as n and w. The latter, which is equal to
nr, is an estimate of the total area under b(r — d), and as
before is interpreted as the icon’s total worth.

° Actually, this is one version of a gamma distribution called an
Erlang distribution. In an Erlang distribution, the parameter n is
restricted to integer values.

'0 There is a small terminological difficulty here. The equation that
we have described is technically a gamma survival function, which is
one minus a cumulative gamma distribution. The term gamma
function is reserved for a particular mathematical function that ap-
pears in a variety of places. We use the terms gamma decay function
and gamma function informally to refer to a gamma survival func-
tion.
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Top panels: Iconic-decay (b[t — d]) functions for Observers CG and PG. Bottom panels:

Derivative of the iconic-decay functions, which are interpreted as information-loss-rate functions.

All of the fits are statistically nonsignificant. The best fitting
n values range from 1.0 for CG to 4.0 for PG. All four »
values for the female observers are either 1 or 2, whereas all
four n values for the male observers are either 3 or 4. Figure
11 shows additional fit information for the two extreme
observers: CG and PG. For both, Figure 11 shows the best
fitting decay function (b[¢ — d], the derivative of the best
fitting B[t — d]) along with the derivative of the decay func-
tion, which represents information /oss rate as a function of
time since stimulus offset. Modal information loss rate occurs
immediately for CG (whose decay is exponential), whereas
modal information loss rate is delayed by about 60 ms follow-
ing stimulus offset for PG.

Individual Differences

If taken literaily, the implications of the gamma-decay fits
are odd. Recall that within a gamma-decay model, the param-
eter n represents the number of exponential-decay stages that
a representation undergoes prior to the available-information
stage. Yet, the estimates of # vary from 1 to 4 across the 8
observers. It seems curious that such a presumably fundamen-
tal set of cognitive components would be built differently in
different people.

Weichselgartner and Sperling (1985) reached similar con-
clusions about individual differences. They measured the

apparent brightness of a briefly presented (31-ms) square-
wave grating by having observers match stimulus brightness
to an adjustable-luminance reference stimulus at various
times before, during, and after stimulus onset. They found
that the decay portions of what they referred to as the tem-
poral-brightness-response (TBR) functions were quite variable
across 3 observers and concluded that “these very significant
individual differences are not adequately characterized by a
single duration parameter, such as the decay constant of an
exponential decay function. In fact, the TBRs do not seem to
derive from any generic function. To describe visible persist-
ence requires specification of a function, the TBR” (p. 720).

Constraining the Value of n Across Observers

There is a possible resclution to the puzzle of different
observers apparently having different numbers of exponential-
decay stages. We have noted that the best fitting values of n
vary from | to 4 across the 4 observers. It is possible, however,
that these differences are due to statistical variation and that
all observers’ data could be adequately accounted for with a
single n value.'!

"' We thank Dave Irwin for this suggestion.
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We have already seen that this cannot be accomplished
with n = 1 (simple exponential decay). We found the best
fitting gamma-decay functions constraining » to be constant
across observers for # values of 2-5. The results are shown in
Table 5, which provides RMSEs and F values for all observers
for each of these n values.

For no » value are the fits nonsignificant for all observers.
However, for n = 2, the only significant deviation is one of
CG’s two data sets. For n = 3, both of CG’s data sets deviate
significantly. For n = 4 and n = 5, additional data sets deviated
significantly. Accordingly, the conclusions are ambiguous. It
is possible that gamma decay with n = 2 exponentially decay-
ing stages fits adequately and that CG’s one significant devia-
tion is a statistical aberration.

An additional view of the n = 2 gamma-decay fit is provided
in Figure 12. Figure 12, which is analogous to Figure §, shows
normalized individual observer data fit to gamma decay with
n = 2. It is evident that (unlike the case of exponential decay)
there is no systematic deviation between data and model.
Moreover, the overall fit is statistically nonsignificant, F < 1.

Accounting for the Entire a(¢) Function

As noted earlier, Weichselgartner and Sperling (1985) found
individual differences in the decay portion of the TBR func-
tions. These researchers also found substantial rise-time dif-
ferences. Available-information rise time, depicted in the left
portion of our Figure 1 a(¢) function, has been given short
shrift in our (and the literature’s) accounts of available infor-
mation; iconic decay has customarily stolen the focus when
available-information functions are considered. In this sec-
tion, we discuss the shortcomings of the Figure 1 a(¢) repre-
sentation, and we then consider an alternative model that
provides a unified account of the entire a(¢) function.

Eight Observers (Scaled to 100-ms worth)
Best Fit: Gamma Decay, n =2

1007
(é) 4
£ 807 o
s D5
= 60 . §§
o .
.E 40 . sé
E 4 ~—= Theory
=3 4
§ 20 | RMSE = 5.1 ms
F (41, 00) = 0.90, n.s.
0 L} T T 1
0 100 200 300 400
Stimulus-Mask ISI (ms)

Figure 12. Best fitting gamma-decay function (constrained to n =
2) for 8 observers. (Observers’ data have been scaled [as described in
the text] to be mutually comparable.)

A Preliminary Remark

Before discussing our a(t) representation, we wish to make
a remark in defense of the general model that we proposed
earlier. The model can be construed as having two compo-
nents: first, the original available-information a(z) function
and second, everything else—the information-acquisition
function, stored information, and the relation of stored infor-
mation to memory performance. The two parts are modular
in that they do not depend on each other; in particular, the
post-a(z) processes simply accept a(¢), whatever it is, and
operate on it. Accordingly, alternative models can be proposed
for generating a(¢) without disturbing the rest of the model.

Arbitrary a(t) Functions

Description of at least part of the a(¢) function—the iconic-
decay part—has been a major purpose of the research de-
scribed in this article. Although we have succeeded in deriving
an empirically valid description of this function (see top
panels of Figure 11), we have arrived at it in kind of a
bootstrapping manner. We began with a made-up form of
a(t), depicted in Figure 1, that seemed reasonable on the basis
of common sense, past data, and conventional wisdom. The
critical features of this form were that (1) all information
becomes available to the subsequent information-acquisition
process fairly quickly following stimulus onset, and (2) there
is only a single iconic-decay function that is tacked onto the
end of the stimulus-present function, independent of stimulus
duration (see Figure 4). Given this starting point, our Exper-
iment 2 data allowed us to estimate the shape of the curve’s
iconic-decay portion.

However reasonable it may seem, though, and however
good the data fit that emerges from it, the function depicted
in Figure 1 is unsatisfyingly arbitrary in several ways. First,
the genesis of the rising (left) portion of the curve is entirely
unspecified. Second, the rising portion of the curve is in no
way related to the decaying (right) portion of the curve. Third,
no part of the curve issues from any more fundamental
principles. It is a consequence of these deficiencies that our
candidate iconic-decay functions were somewhat arbitrary.

A Linear-Systems Approach

There is a different way of arriving at an a(¢) function that
is less arbitrary. This approach, which is based on linear-
systems theory, is used to account for relatively low-level
visual phenomena, such as Bloch’s law and critical flicker
frequency (for detailed accounts, see Sperling, 1964; Watson,
1986).

The Impulse-Response Function and Linearity

The linear-systems approach, whose goal is to describe the
system response (e.g., Figure 1b) to some arbitrary input
function (Figure 1a), is embodied in two principal assump-
tions. First, an instantaneous flash of light (an “impulse™) is
assumed to cause a nervous-system response, some facet of
which is available to the subsequent processes that are respon-
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Figure 13. A gamma impulse-response function. (Vertical line at
left represents the impulse, which occurs at time ¢ = 0.)

sible for making a detection or a judgment. The system
response is temporally blurred, as shown in Figure 13. The
form of this impulse-response function is not entirely agreed
on, but it is often assumed to be a gamma function (which is
what is shown in Figure 13).

The second assumption is that the system is /inear. This
means that any input function can be decomposed into a

series of scaled impulses and that the system response is the
sum of correspondingly scaled impulse-response functions.
More concisely, the system response is the convolution of the
input function with the impulse-response function.

Letting a(¢) be a linear-system response function constitutes
a simple way of generating the entire range of a(r) from
simple, plausible, and well-understood principles. Will it ac-
count for our data?

Application to the Present Paradigm

In the present experiments, the input function is very
simple; it is the step function shown in Figure 1a. The response
function is correspondingly simple:

= R(2) fort=d
4O _ Rty - R(t = d) for 1> d, (14)
where R(t) is the integral of the impulse-response function.
Figure 14 shows the a(?) functions that issue from Equation
14 for six duration values that are typical of those used in the
present experiments. We used a gamma impulse-response
function with n = 3 and 7 = 33. It is apparent that the
resulting a(t) curves differ in two ways from what we have
been assuming (cf. Figures 1 and 4). First, each Figure 14
curve’s rise time is approximately equal to its decay time.
This is a fundamental characteristic of the system; it can be
seen in Equation 14, in which the rise, embodied in R(¢), and
decay, embodied in R(¢t — d), are mirror images. Second, the
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Figure 14. System responses to six step-input functions varying in duration from d = 40 to d = 240
ms. (Vertical line for each function denotes stimulus-offset time. Note that the iconic “decay” functions

are not independent of stimulus duration.)
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Figure 15. Prediction of the linear-systems model for the Experi-
ment 2 data (compare with the real data in Figure 6).

shape of the iconic-decay portion of the curve is highly
dependent on stimulus duration.'?

Figure 15 shows the predicted data points generated by this
model for the Experiment 2 paradigm along with the best
linear fits. Superficially, at least, the linear model appears to
do a very good job accounting for the data (cf. Figure 15 with
Figure 6, which shows real Experiment 2 data for Observer
JD).

However, this good fit is illusory. The problem can be
unveiled by a careful comparison of Figures 6 and 15. It is
apparent in Figure 6 that JD’s lift-off (d intercept) value for
her 250-ms ISI curve is about 65 ms. It is similarly apparent
in Figure 15 that the model’s corresponding curve passes
through the origin. This latter characteristic—a zero-ms lift-
off for a long-ISI performance curve—is a fundamental pre-
diction of the linear-systems model that does not change with
different parameter values. Accordingly, it is impossible for
this simple version of the model to account for the present
data.

Linear-Systems Variations

Other results from our laboratory more directly rule out a
simple linear-systems account of data from the present para-
digm. To illustrate, the linear-systems model predicts per-
formance following a single, unmasked, 100-ms stimulus
presentation to be the same as performance following two
identical 50-ms presentations separated by a 100-ms ISI. In
as-yet-unpublished data, we have disconfirmed this prediction
(and other analogous predictions); performance following the
single 100-ms presentation is superior.

Nonetheless, the Figure 15 prediction is tantalizingly close
to being correct, and a linear-systems account of data from
the present paradigm would have the advantages of (1) being
tied to a model that is commonly used to account for low-
level visual phenomena and (2) generating the a(¢) function
from more fundamental principles. Accordingly, it seems

fruitful to seek variations of the model that might work. One
potentially profitable class of modifications incorporates the
presumption that information acquisition does not begin until
the system response has reached some criterion value, or until
some criterion time has elapsed. We are currently evaluating
these possibilities.

'2 One remark is in order here. Both differences we have just noted
can almost be made to vanish by increasing the value of parameter n
in the gamma function. The decay portion of the curve described by
Equation 14, however, is essentially identical to the gamma functions
that we fit to our data. Accordingly, the parameter values are con-
strained to those listed in Figure 11; a value of n = 9, for example,
would produce an unacceptable fit of the decay portion of the curve
to the data.
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Appendix A

Proof That If A(J) = (1.0 — I') and M(I) = I, Then Equation 3 Follows

Suppose that the function A(I) is a linear function of I; A(J) =
(1.0 = I), and thus r(¢) = df/dt = [a(t)(1.0 — D))/c, or

dr/(1.0 — I) = a(t)dt/c. (AD)

Integrating both sides of Equation (Al), ~In(1.0 — I} = k; + A(¢)/c,
where k, is a constant of integration and A(¢) is the integral of a(z).
Because m is the identity function, P = /. Thus,

1.0 — P = glrtlawid, (A2)

Note that A(7) can be decomposed into three areas (see Figure 1):
the area to the left of time 1 = M (which we term k), the area to the
right of d (which for a given stimulus-mask ISI is a constant that
we term k3), and the area in the middle (which is d — M).
Making the substitution, L = —(ck; + k; + ks — M), it follows
that 1.0 — P = ¢4 0/ or P = 1.0 — ¢"“ 1/ This completes the
proof.

Appendix B

Derivations of the Equations for Acquired Information

Rate is the derivative of information with respect to time. There-
fore, by Equation S, r(¢) = dI/dt = [a(t)h(])]/c, or cdI/h(I) = a(t)dt.
Integrating both sides,

H) =k + A1), (BI)

where H([) is the integral of ¢/h(I), A(?) is the integral of a(), and
ki is a constant of integration. Note that because 4() is greater than
zero, ¢/h(I), is both finite and also greater than zero. This in turn
means that the integral of 1/A(J), H(I), is monotonically increasing
and, accordingly, has an inverse, H~!'(/) (which, of course, is also
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monotonic). Applying this inverse to both sides of Equation (B1),
I = H Tk, + A(1)). (B2)

Note that A(f) can be decomposed into three parts: the area to the
left of 1 = M (which we term k), the area to the right of d, which is
B(t — d), the integral of the iconic-decay function, b(t — d), and the
area between M and d, which is (d — M). Thus, Equation B2 may be
rewritten as

I=H' ki +k +d—- M+ Bt - d)l. (B3)

Letting k = k; + k; — M, Equation B3 may be written as
I=H'lk+d+ Bt — d)] (B4)
In the case where ¢t = d, B(t — d) = 0, and
I=H'lk +d] (B3)

Equations B3 and BS5 thus constitute the model’s equations for
acquired information.

Appendix C

Proof That Horizontally Parallel Performance Curves Imply Equal ¢ Values

Consider Equation 3. Suppose that any two performance curves (1
and 2) have equal ¢ values but different L values. Thus,

Curve : P, =10 — ¢4~ v (98]
and

Curve 2: P, =10 — ¢~ 19, (C2)
Determine the durations, d; and d&,, at which P, and P, are equal by
setting Equations (C1) and (C2) to be equal: 4, — L, = d, — L, and
d, — d, = L, — L,. The duration difference (d; — d>) that corresponds
to equal performance is a constant (L, — L), which means the curves
are horizontally parallel. Thus, equal ¢ values imply horizontally

parallel curves.
Now drop the constraint that the ¢ values be equal. Thus,

Curve 1: P, =10 — ¢4~ Lo (C3)
and

Curve 2: P, = 1.0 — e~ = 1), (C4)
From Equations C3 and C4, determine the relation between durations
d, and d, that produces equal P, and P, values: ¢(d, — L)) =
¢(d> — Ly), or

d2 =L, + [C](d; hd L])/CZ]. (CS)

The derivatives of P, and P, with respect to d are

dP,/dd = cie™@ ~ D) (C6)
and

dP,/dd = cre™2% ~ 12, (CT)

Parallel curves imply equal values of the derivatives when perform-
ance is equal. Accordingly, we let Equations C6 and C7 be equal
when the relation expressed in Equation C5 holds. Thus,

cle*q(dx - Ly = cze—fz(dz - Ly}
or
—ef{dy — Ly) — —cofLy + dy — L - L
ce ei{d 1) = e cfLy + leytd; 1)/fea] zl’
which can be reduced to
Cle‘q(d; - LY = Czefchz — cfdy — L) + cala

or
Cle—fl(dl - L) = Cze—q(d; - L,)’

which implies that ¢; = ¢,. This completes the proof that horizontally
parallel curves imply equal ¢ values.
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