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Our major goal is to account for some simple digit-recall data with a theory that integrates
two models from two scientific traditions. The random-sampling model, founded in the memory
and attention literature, holds that (1) stimulus features are randomly sampled throughoutthe
course of stimulus presence and (2) proportion correct recall is equal to the ratio of sampled fea-
tures to total features. The linear-filter model, founded in the vision and sensation literature,
holds that the initial stages of the visual system act as a low-pass temporal filter on the input
stimulus, resulting in a time-varying sensory response in the nervous system. We report two ex-
periments inwhich a variable-duration, masked, four-digit string had to be immediately recalled.
Experiment 1 was designed principally to replicate past data confirming the basic random-
sampling model. Like others, we were able to confirm the model only by endowing it with an
additional processing-delay assumption: that feature sampling does notbegin until the stimulus
has been physically present for some minimal duration. Experiment 2 was an extension of Ex-
periment 1 in which the target stimulus was preceded, 250 msec prior to its onset, by a 50-msec
pre-presentation ofthe same stimulus called a prime. The Experiment 2 results allowed the fol-
lowing conclusions. First, the initial processing delay found in Experiment 1 is immutably tied
tostimulus onset; that is, if there are two stimulus onsets, separated even briefly in time, there
are two associated processing delays. Second, processing rate is essentially unaffected by the
prime’s presentation. Third, being presented with a 50-msec prime is equivalent, in terms ofmem-
ory performance, to increasing unprimed stimulus duration by approximately 30 msec; the prime
can thus said to be worth 30 msec of additional exposure duration. This third conclusion seems
superficially paradoxical, in the sense that one would expect that having seen a 50-msec prime
would be equivalent to increasing exposure duration by at least the same 50 msec. However, both
the initial processing delays and the 30-msec prime’s worth are natural consequences of our the-
ory that conjoins the random-sampling model with the linear-filter model.

Two fundamental questions in perception are, What is
the nature of information acquisition that follows the onset
of a stimulus, and how is such information acquisition in-
fluenced by other priming stimuli presented prior to the
stimulus? In this article, we report two experiments that
bear on both of these questions as they apply to a digit-
recall task in which a four-digit string is presented for
varying durations to an observer who must immediately
recall as many of the digits as possible.

Such tasks haveoften been accounted for by one form
or another of a random-sampling model. Variants of
random-sampling models have long enjoyed popularity,
both in the learning literature (e.g., Neimark & Estes,
1967) and in the attention and perception literature (e.g.,
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Kowler & Sperling, 1980; Loftus & Kailman, 1979; Mas-
saro, 1970; Rumelhart, 1970; Shibuya & Bundesen 1988;
Townsend, 1981). By what we will refer to as the basic
random-sampling model, a stimulus is composed of a set
of relatively homogeneous features. An observer ran-
domly samples and acquires these features, both while the
stimulus is physically present and, if the stimulus is un-
masked, for a brief time following stimulus offset. The
probability of a correct response is equal to the propor-
tion of acquired features.

In investigations of attention, the basic random-sampling
model has been used as a tool to address various ques-
tions such as the following: How is attention distributed
over the array items? Is processing capacity limited or
unlimited? Does information acquisition occur serially or
in parallel? To what degree are there interitem dependen-
cies? How are to-be-reported targets in the display dis-
tinguished from not-to-be-reported distractors? Different
random-sampling models make different additional as-
sumptions (e.g., assumptions about attention distribution
over different members of the array) to address these
questions.
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In contrast to the profluence and precision of such at-
tentional assumptions, there has been a relative paucity
of assumptions about the nature of the sensory processes
that underlie the presumed sampling. Either implicit or
explicit in the various sampling models are the assump-
tions that (1) there is some unidimensional sensory rep-
resentation of the stimulus that materializes full-blown
either at the instant of stimulus onset or shortly thereafter;
(2) that in the absence of a mask, the representation de-
cays, eventually to zero, withdecay beginning at stimulus
offset; and (3) that the magnitude of this sensory repre-
sentation is constant during stimulus presence and in-
dependent of stimulus duration. Although this viewpoint
is simple and mathematically convenient, it is at odds with
a greatdeal of sensory literature which implies that (1) the
sensory representation rises gradually, not abruptly, fol-
lowing stimulusonset; (2) the peak strength of the repre-
sentation—and hence the onset of decay—occurs sometime
after stimulus offset; and (3) the sensory representation’s
peak magnitude is positively related to stimulus duration
(e.g., deLange, 1952; Ives, 1922; Kelly, 1961; seeCorn-
sweet, 1971, pp. 384—418, and Watson, 1986, for thor-
ough discussions of this literature).

Our principal goal in this article is to supplement the
basic random-sampling model by conjoining it with a
linear-filter model, developed primarily in the vision liter-
ature, which generates the kind of sensory representation
that we have just described. The supplemented random-
sampling model that results from this marriage can ac-
count for several phenomena that are not predicted by any
kind of random-sampling model in isolation.

The remainder of this article will be organized as fol-
lows. After describing our experimental task and the ra-
tionale for using it, we will detail the logic and the pre-
dictions of the basic random-sampling model. We will
then present some data from the literature, along with sev-
eral new experiments performed witha digit-recall para-
digm, and we will report two phenomena that are not pre-
dicted by the random-sampling model. Finally, we will
describe how the linear-filter model canbe gracefully con-
joined with the random-sampling model and show how
these previously unpredicted phenomena come about as
natural consequences of this conjunction.

To forestall confusion, we must emphasizethat, through-
out this article, we will be considering two random-
sampling models. The basic model, which has appeared
frequently in the literature, makes quite specific predic-
tions about our digit-recall task; in particular, it implies
a linear relation between stimulus duration and our per-
formance measure. The supplemented model results from
conjoining the linear-filter model with the basic random-
sampling model. The supplemented model makes predic-
tions that are similar, but not identical to, those of the
basic model. When we present data graphically, the pre-
dictions of both models will be provided; predictions of
the basic model will be indicated by dashed lines, and
those of the supplemented model, by solid lines.

Digit-Recall Task
Because we were primarily interested in investigating

the relation between sensory and cognitive processes, we
sought a task complex enough so that the fundamental per-
ceptual/cognitive processes of attention, pattern recogni-
tion, and transfer of information to short-term storage
would be required for it to be carried out. At the same
time, however, we wanted the task to be simple enough
so that the basic random-sampling model would not need
to be burdened with extraneous assumptions in order to
account for task performance.

A task that meets these requirements is as follows. A
four-digit string is presented to an observer who must then
immediately report as many of the digits as possible, in
their correct positions. The stimulus’ exposure duration
is varied, and the stimulus is always followed immedi-
ately by a noise mask. The mask’s luminance is such that
it completely obliterates all stimulus features during simul-
taneous stimulus-and-mask presentation. We assumed that
a mask immediately halted perceptual processing (cf. Erik-
sen, 1980; Sperling, 19Mb).’

This task fulfills the desiderata listed above. Unlike,
say, a simple threshold-detection task, digit recall is com-
plex enough to require the fundamental processes enumer-
ated above. At the same time, the task involves a stimulus
that should not exceed short-term memory capacity and
thus does not require assumptions about subjects’ strate-
gies about what to transfer to short-term memory (see,
e.g., Rundus, 1971); involves a stimulus that is immedi-
ately masked, so that it does not require assumptions about
iconic decay (see, e.g., Averbach & Sperling, 1961); in-
volves items of relatively homogeneous difficulty, so that
it does not require corrections for averaging artifacts (see,
e.g., Kowler & Sperling, 1980); and does not involve par-
tial report, so that it does not require assumptions about
probe detection and utilization (see, e.g., Sperling, 1960).

Predictions of the Basic
Random-Sampling Model

Data in this digit-recall paradigm can be conveniently
presented in the form of a performance curve that relates
the proportion of digits recalled to the stimulus duration.
To derive the basic random-samplingmodel’s predictions
for the performance curve’s shape, we reason as follows.
Stimulus features are assumed to be randomly sampled
with replacement at a rate (expressed as proportion total
features/millisecond) that is invariant throughout the stim-
ulus’ physical presence.2 We refer to this invariant rate
as the raw feature-sampling rate. A sampled feature is
always acquired; that is, it is stored in short-term mem-
ory, where it subsequently forms part of the basis for stim-
ulus recall. The nature of a random-samplingprocess dic-
tates that new features—those that have not been sampled
previously—are sampled at a lower rate; the more the fea-
tures that are acquired and the fewer the new features that
are left in the stimulus, the lower the rate becomes. More
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precisely, the rate of acquiring new features is propor-
tional to the proportion of new features remaining in the
stimulus. If 1(t) is the proportion of already acquired stim-
ulus features at time t following stimulus onset, then 1.0
— 1(t) is the proportion of new features remaining to be
acquired, and r(t), the rate of new-feature acquisition,
must be

1.0—1(t)
r(t)=

where c is a constant that has units of time (milliseconds,
in the present treatment). This logic is summarized in Ap-
pendix A, which shows that if the stimulus remains present
for a duration of d msec, then the proportion of acquired
features, 1(d), is

1(d) = 1.0_e_0’~~’c (2)

Finally, assuming that proportion correct,3 p, is equal to

proportion acquired features, Equation 2 becomes

p = l.0_e_~~~’c, (3)

which indicates that, in terms of p, the model predicts

performance curves to be exponential.

Interpretation of 1/c as Sampling Rate

As noted in Appendix A, the interpretation of the pa-
rameter c in Equations 1-3 is that c’s reciprocal is the
raw sampling rate measured in proportion total features
per millisecond. So, for instance, a typical value of c is
100 msec. This value would be interpreted to mean that
features are sampled at a constant rate of 1 / 100 = 0.01,
or 1 %/msec. It is important to reemphasizehere that this
is the raw sampling rate, which is assumed to remain con-
stant throughout stimuluspresence. Sampling of new fea-
tures declines over time, as indicated in Equation 1.

Asymptotic Performance

At this point, we introduce what, for the model, is an
annoyance. Part of our digit-recallparadigm’s presumed
simplicity is that a four-digit stimulus is within short-term
memory capacity. Accordingly, we assumed that ob-
servers were always capable of reporting all four digits—
that is, of being perfect in the task—given sufficient stim-
ulus duration. Given this assumption, performance curves
should, in principle, asymptote at a value of 1.0, as they
did for all observers in experiments reported by Loftus,
Duncan, and Gehrig (1992), who used the same paradigm.
To check the validity of this assumption, we collected
some control data in which observers were allowed un-
limited time to see the stimuli. Performance under such
circumstances was essentially perfect.4

In contrast to their behavior in this control procedure,
however, observers in the actual experiments were ap-
parently not as vigilant as they might havebeen: they made
occasional keypress errors, attention lapses, and the like
(which we call careless errors, to be distinguished from
errors based on lack of stimulus information). Because

of these errors, the actual asymptotic value was some-
times less than 1.0. So the model is forced to take this
into account. If we assume that such careless errors are
independent of stimulus duration, Equation 3 must be
modified to become

p = A(1.0—e~~), (4)

where A is the asymptotic value—that is, 1.0 minus the
(1) proportion of careless-error trials. We can rewrite the per-

formance curve prediction as

= 1.0—e_~. (5)

Figure 1 illustrates the shape of performance curves
generated by Equation 5. This figure actually embodies
two separate predictions: first, there should be some
asymptotic value, A, such that p/A is exponentially re-
lated to duration, d, and second, the curve should pass
through the origin (i.e., no matter how small d is, p/A,
and thus p. should be greater than zero).

Transformation to Linear Performance Curves

For convenience, we define a new performance mea-
sure, P, as follows:

P = —ln 1.0—~.
A

Writing Equation ~ in terms ofP rather than p implies that

(6)
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Figure 1. An example of an exponential performance curve. Be-
cause performance, p, is corrected for asymptotic value, the curve
asymptotes at 1.0.

A
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That is, P is predicted by the basic random-sampling
model to be a linear function of d with a slope of 1/c and
a zero intercept. Note that P is conceptualized as the log-
arithm of proportion error’s reciprocal: accordingly,
larger P values, like larger p values, correspond to bet-
ter performance.

On the Limits of the Basic Model
The basic random-sampling model is quite simple. It

makes concomitantly simple predictions. The model is
sufficiently rooted in the literature, and it accounts suffi-
ciently well for a variety of extant data that it is useful
to begin exploring where it fails. In the sections that fol-
low, we will show that the basic model indeed fails in
two related ways that are entirely consistent with the front-
end sensory model that we will eventually describe.

The first way inwhich the model fails—demonstrated by
previous data, and by our Experiment I data—is that the
performance curve, while linear, does not pass through
the origin as dictated by Equation 6. Instead, it intersects
the duration axis at values ranging from 13 to 102 msec.

The secondway in which the basic model fails is more
subtle. In our Experiment 2, we use what we refer to as
a priming technique, in which the variable-duration stim-
ulus is in some conditions preceded, 250 msec prior to
its onset, by a 50-msec “pre-presentation” of the exact
same stimulus called a prime. It will turn out that an ap-
parent paradox emerges from a comparison of perfor-
mance for such primed stimuli withperformance for their
normal, or unprimed counterparts. In particular, a d-msec
primed stimulus leads to the same performance level as

a-
c

a-

does a (d+30)-msec unprimed stimulus. We will dem-
onstrate that this is inconsistent with a general prediction
of the basic model, which is that if a d-msec primed stim-
ulus leads to the same performance as a (d+x)-msec un-
primed stimulus, then x must be at least the physical du-
ration of the prime, which, as noted, was 50 msec.

Shibuya and Bundesen’s Data:
The “Processing Delay”

The prediction embodied in Equation 6—that perfor-
mance, P, is proportional to stimulus duration, d—can
be evaluated by using previously published data. Shibuya
and Bundesen (1988) reported an experiment in which an
array of mixed digits and letters were displayed. The ob-
server’s task was to report the digits only, ignoring the
letters. Exposure duration varied from 10 to 200 msec,
and the displays were followed by a mask at offset. The
displays differed both in the number of digits and in the
number of letters.

In two of the conditions, there were no letters, and the
number of digits was either 2 or 4. These two conditions
provide the simple task we seek; accordingly we use them
as an initial test of Equation 6.~Foreach condition of each
of Shibuya and Bundesen‘5 (1988) 2 observers, we de-
termined the asymptote value (A) that maximized the Pear-
son r2 value between d and P. In carrying out this linear
regression, we allowed both the slope and the intercept
to vary; thus, Equation 6 predicts that expectation of the
intercept is zero. The resulting fits are shown in Figure 2;
here the symbols represent the data points, the dashed lines
represent the best linear-regression fits, and the solid lines

Figure 2. Performance curves from two of Shibuya and Bundesen’s (198S) conditions. Different panels represent different ob-
servers. Dashed lines represent best basic-model (linear regression) fits; solid lines represent best supplemented-model fits. Parenthe-
sized numbers in each panel’s legend refer to the number of parametersrequired to fit each model to all data points in the panel.

0 50 100 150 200 0 50 100 150 200
d = Exposure Duration (ms) d = Exposure Duration (ms)
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represent the best fitsof the to-be-described supplemented
model. The parenthesized numbers in the legend after
“Basic Model” (6) and “Suppi. Model” (6) refer to the
number of parameters required to fit each model. Thus,
six parameters were required for the basic model’s linear-
regression fit to the data within each panel: an asymptote,
a slope, and an intercept for each curve. (As it happens,
six parameters were also required for the supplemented
model; these will be discussed later in this article.)

Table 1 provides the best-fitting regression parameters—
the inverse slope, c; the duration-axis intercept, L; and
the asymptote, A—along with the Pearson r2s. Several re-
sults are immediately obvious.

Linearity
First, in accord with Equation 6, the curves for T = 4

are highly linear (r2
> .99 for both observers). Second,

the curves for T = 2 are similarly linear up to an exposure
duration of about 150 msec and then level off. We suggest
that there is a possible ceiling effect for the 200-msec data;
in particular, for both the l50-msec and the 200-mseccon-
ditions, proportion correct (p) for T = 2 is .950 for M.P.
and .975 for H.V. In principle, Equation 6 should be im-
pervious to ceiling effects: as d increases and p becomes
progressively closer to 1.0, P simply continues to rise.
However, thereare technical reasons for expecting ceiling-
effect difficulties. Forexample, a single incorrect keypress,
leading to a 1 % reduction in p. would make little differ-
ence in P if the reduction were, say, from 50% to 49%
(in fact, a difference of .020) but would make an enor-
mous difference if the reduction were from 98% to 97 %
(a difference of .405). In other words, unless the close-
to-ceiling probabilities are based on a very large number
of data points, relatively rare errors would lead to the kind
of leveling off that is observed. In short, we believe that
linearity adequately describes the Figure 2 curves.

Slope Differences
We note for the record that the performance curves are

considerably shallower (i.e., c is greater) for the T = 4
than the T = 2 condition. Shibuya and Bundesen (1988)
discuss this and other between-condition differences ex-
tensively: the relations among the different number-of-
target and number-of-distractor conditions was of prin-
cipal concern to them in the attentional models that they
were evaluating. However, these differences are not of
direct concern to us.

Above-Zero Intercepts
Finally, and of considerable interest to us, is that the

curves do not pass through the origin. Instead, they in-
tersect the duration axis at values ranging from 13 to
21 msec. This means that the basic model embodied in
Equation 6 is incorrect: in order to adequately describe
the data, Equation 6 must be modified to include this in-
tercept. In particular, if L (a mnemonic for liftoff) is the
point at which a curve intercepts the duration axis, then
the correct descriptive equation is

Observer Condition c L A r’

M.P. T=2 29 19 .954 .955
M.P. T—4 57 19 .865 .997
H.V. T—2 25 21 .977 .952
H.V. T=4 87 13 .873 .992

for d < L
(l/c)d — (L/c) for d L

We are not the first to point out the existence of this
above-zero intercept (hereafter, for ease of reference,
above-zero liftoff). Rumeihart (1970) noted that “there
is probably some rise time or latency associated with the
onset of processing following the onset of the display”
(p. 193). (Rumelhart did not, however, formally include
such above-zero liftoff time in his model.) Both Shibuya
and Bundesen (1988) and Townsend (1981) explicitly al-
lowed for above-zero liftoff time in their models by in-
cluding it as a parameter in their exponential equations.

We wish to emphasize that in previous models, this
above-zero liftoff time has been incorporated as an ad hoc
assumption whose only purpose was to account for the
data; that is, its existence has not derived from more fun-
damental principles. Within the context of the supple-
mented random-sampling model described later in this ar-
ticle, however, an above-zero liftoff does derive from
more fundamental principles.

The Experiments

In the presentpaper, we report two experiments. In Ex-
periment 1, we replicated a subset of the basic digit-recall
data reported by Shibuya and Bundesen (1988) and per-
formed some additional analyses on it. In Experiment 2,
we introduced a modification of the digit-recall task in
which the stimulus was presented twice on a trial, with
a separation of 250 msec of blank time.

EXPERIMENT 1

The Shibuya and Bundesen (1988) data shown in Fig-
ure 2 provide reasonable support for Equation 7’s valid-
ity. However, these data came from a relatively small
sample of observers, and from two conditions embedded
in a much larger experiment. Experiment 1 was designed
in part to replicate the Figure 2 data, and to verify the
Equation 7 prediction in a purer, simpler context.

Method
The basic procedure was simple: four-digit arrays were presented

for varying durations and followed by a noise mask. The observers’
task was to report as many of the four digits as possible in their
correct positions.

Observers
Four observers participated in Experiment 1: the first author

(T.B.), a female graduate student (E.F.), a female undergraduate
(S.S.), and a male undergraduate (ST.). All observers except ST.

Table 1
Summary Statistics for Two Conditions

Reported by Shibuya and Bundesen (1988)

P=0 (7)
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were highly practiced, having participated in a minimum of 2,000
trials prior to beginning this experiment. Observer ST. was en-
tirely unpracticed.

Stimuli and Apparatus
The observers viewed stimuli and a random-noisemask, all pre-

pared as 35-mm slides. Each stimulus slide consisted of a 4
(columns) x 3 (rows) array of black digits on a white background.
On each experimental trial, one digit row of one slide served as
the to-be-remembered stimulus. Eighty slides were prepared and
used repeatedly. The 4 x 3 X 80 = 960 digits were selected ran-
domly, with the restrictions that (1) each digit appear 96 times over
the 960 total digits and (2) no digit appear more than twice in a
given row of a slide. Each digit subtended a visual angle of 0.68°
vertically and 0.35° horizontally. Digits were separated by 0.27°
vertically and 0.76° horizontally.

On a given experimental trial, either the top or the bottom four-
digit row of one stimulus was the to-be-reported target. Target row
was blocked over trials; accordingly, an observer always knew far
in advance which row was the target.

The noise mask consisted of black visual noise on a white
background.

Stimulus contrast was substantially reduced, to avoid ceilingper-
formance. Contrast reduction was accomplished by superimposing
a uniform adapting field over the stimuli and reducing stimulus lu-
minance with the use of neutral-density filters (note that contrast
varied by this procedure because the stimulus luminance changed
while adapting-field luminance did not). Stimulus contrast varied
from observer to observer. A summary of luminances andcontrasts
for both Experiment I and Experiment 2 is provided in Table 2.

All stimuli were displayed via Kodak projectors equipped with
Gerbrands tachistoscopic shutters. A random-access projector was
used to display the stimuli, while standard Carousel projectors were
used to present the noise mask and a contrast-reducing uniform light
field. Responses were made on a numeric keypad. All display equip-
ment was enclosed in a soundproof box. All display and response
collection was under the control of an AT-compatible computer sys-
tem described by Stoddard and Loftus (1988).

Design and Procedure
There were eight stimulus exposure durations. For all observers

except ST., the unpracticed observer, duration ranged from 40 to
200 msec in logarithmically equal steps. For S.T., the durations
ranged from 20 to 300 msec in logarithmically equal steps.

For each observer, the experiment was arranged in blocks of 80
trials. Recall that the stimuli were preparedas three four-digit rows.
On any given block, only one row (top or bottom) was the to-be-
reported target.

Events during an 80-trial block. The sequence of events for a
given 80-trial block was as follows. First, a high or low tone (2000
or 500 Hz) signaled the observer that the top or bottom row would

Table 2
Luminances (Candles/Meter

2
) and Contrasts

Luminance

ContrastBackground Foreground

Adapting field
Fixation point
Mask

16.58
31.07 17.00
67.17 2.35

.293

.933

Experiment 1 Stimuli

Observers:
TB., E.F., S.S.
ST.

19.73 18.47
28.75 20.36

.033

.171

Experiment 2 Stimuli

All observers 19.73 18.47 .033

be the target row for that block (i.e., for the next 80 trials). Next,
eight practice trials were presented. The exposure durations for these
practice trials were selected randomly, and without replacement.
Next, 72 experimental trials were presented. The eight durations
were randomly intermingled over the 72 trials, with the restriction
that each duration occur exactly three times within each 24-trial
sequence. Stimulus-presentation order was quasirandom.

6

The to-be-reported row was changed in an alternating sequence
over blocks. Assignment of conditions to trials within a block was
also changed over blocks.

Events during a single trial. As noted, a block consisted of 80
trials. The sequence of events within each trial was as follows. First,
there was a 500-msec tone, which warned the observer to look at
a small fixation point positioned such that it would be in the mid-
dle of the upcoming stimulus (i.e., between the second and third
digits of the middle row). The warning-tone frequency of either
2000 or 500 Hz reminded the observer which row (top or bottom)
was the target during the current block. Following the warning tone,
the stimulus, superimposed on the adapting field, was presented
for its appropriate duration. The noise mask, which immediately
followed the stimulus, was presented for 300 msec. The mask was
followed by the adapting field, which remained present for the rest
ofthe trial. The observer typed in four responses after mask disap-
pearance, guessing on a digit if uncertain. Following responding,
there was feedback in the form of four 150-msec beeps. Each beep
was 2000 Hz if the corresponding digit had been correctly reported,
and 500 Hz if the corresponding digit had not been correctly re-
ported. Following feedback, there was a 300-msec adapting-field-
only interval prior to the start of the next trial. The adapting field
was thus on constantly, except during mask presentation.

Note that there were nine instances of each duration per block.
The numbers of blocks per observer were one (ST.), four (E.F.),
and six (S.S. and T.B.).

Results and Discussion

Figure 3 shows the performance curves (P as a func-
tion of d) for the 4 observers. As in Figure 2, the sym-
bols represent the data points, the dashed lines represent
the best linear fits, and the solid lines represent the best
fit of the supplemented random-sampling model. Table 3
provides the best-fittinglinear-regression parametervalues
and Pearson r2s for the 4 observers. The r2 values are
quite high, ranging from .979 to 1.000 for the individual
subjects. This indicates that the basic random-sampling
model, whose prediction is embodied in Equation 7, fits
our data quite well.

Liftoff Values
The liftoff values range from 58 to 102 msec across the

4 observers. This finding replicates the Shibuya and Bun-
desen (1988) data, again disconfirming the basic model
embodied inEquation 6. Recall that Shibuya and Bunde-
sen’s liftoff values were smaller, ranging from 13 to
21 msec (see Figure 1). Briefly, we believe that the dif-
ference occurs because the stimulus contrast was much
lower (.033) in the present experiments than in Shibuya
and Bundesen’s experiments (where it was approximately
.97). We will address this issue in more detail when we
describe the supplemented model.

Serial-Position Effects
The Figure 3 data are collapsed across the four serial

positions. There are various reasons to expect that per-
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Figure 3. Experiment 1, performance curves for 4 observers.
Dashed lines represent best basic-model (linear regression) fits while
solid lines represent best supplemented-model fits. Errorbars rep-
resent standard errors. Parenthesized numbers in the legend refer
to the number of parameters required to fit each model to all data
points.

Table 3
Fit of the Basic Random-Sampling Model

for 4 Observers in Experiment 1
Observer L c A r

2

S.S. 80 101 .978 .999
E.F. 58 35 .992 .979
TB. 102 41 .706 .982
ST. 84 76 .865 1.000

formance may vary across serial position—for example,
scanning-order biases (see Townsend, 1981) or lateral
masking (e.g., Wolford, 1975; Wolford & Chambers,
1984). Figure 4 shows performance curves for the four
individual serial positions (averaged over Observers E.F.,
S.S., and T.B., who had the same exposure durations).
Again, dashed and solid lines represent best basic-model
fits and best supplemented-model fits. Table 4 provides
corresponding summary data: the values of c, L, and r2

for the four serial positions. We estimated a common
asymptotic performance for the four performance curves,
which was .958.

The curves are highly linear (all r2s > .97), and the
liftoff durations are within 5 msec of one another. This
provides evidence that (1) the linearity of the Figure 3
data does not issue from over-serial-position-averaging
artifacts, and (2) whatever the sensory or perceptual
mechanism that underlies the above-zero liftoff, it oper-
ates in the same manner across serial position.

The four curves have different slopes. As noted, there
are various possible reasons for these differences; distin-
guishing among them is not of principal concern here,

however. We subsume the possible reasons under the gen-
eral assertion that, for one reason or another, informa-
tion is acquired from the different serial positions at dif-
ferent rates.

EXPERIMENT 2

In Experiment 1, we found strong support for the prop-
osition that once it begins, information acquisition from
our digit stimuli can be described well by a random-
sampling model along with the extraassumption of an ini-
tial processing delay (liftoff). In Experiment 2, we ask
how the putative sampling process is affected by what we
call apriming stimulus, which occurs just priorto the stim-
ulus itself. Traditional priming stimuli are related to one
degree or another to the to-be-remembered stimulus. Our
priming stimulus takes such relatedness to an extreme:
the prime is the to-be-remembered stimulus itself.

Experiment 2 incorporated three priming conditions.
A trial in theprimed condition consisted of a 50-msecpre-
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d = Exposure Duration (ms)

Figure 4. Experiment 1, data for four serial positions, averaged
over the 3 practiced observers. Dashed lines represent best basic-
model (linear regression) fits; solid lines represent best supplemented-
model fits. Error bars represent standard errors. Parenthesized
numbers in the legend refer to the number of parameters required
to fit each model to all data points.

Table 4
Fit of the Basic Random-Sampling Model for Four Serial
Positions in Experiment 1 (Collapsed Over 3 Observers)

Serial Position L c r
2

1 77 49 .991
2 76 49 .974
3 72 89 .978
4 76 178 .991

Note—Common asymptote: 0.958.

Experiment 1: Four Observers

• Basic Model (12) EF
~

ss

Chance Performance

0.0
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sentation of the to-be-remembered digit string (called the
prime), followed by a 250-msec blank interval, followed
by a second, variable-duration primed-stimulus presen-
tation, followed by a mask. This primed condition was
compared with two control conditions. The prime-only
condition consisted of a single, unmasked, 50-msec stim-
ulus presentation, which was followed by a 250-msec inter-
stimulus interval (ISI), a variable-duration additional blank
time, and finally the mask. The unprimed condition con-
sistedof a single, variable-duration, immediately masked
stimulus presentation (as in Experiment 1).

Possible Prime Effects
A prime of any sort generally improves performance

in almost any task. But it could do so in any of several
ways. Here, we will consider four possibilities, the pre-
dictions of which are shown in Figure 5.

Each Figure 5 panel shows threecurves. The unprimed-
stimulus performance curve is represented by the trian-
gles, the primed-stimulus curve is represented by circles,
and the prime-only curve is represented by diamonds.
Note that the “duration” associated with the prime-only

condition is the additional blank duration that follows the
initial 250-msec delay after prime offset but prior to mask
occurrence. All predicted prime-only curves are flat,
reflecting our expectation, on the basis of past data, that
no information would be acquired from the prime after
250 msec following stimulus offset.

Default Prediction of the Basic Model
The random-sampling model offers a straightforward

and natural prediction about the prime’s effect. This is
that the sampling processsimply carries on following the
secondpresentation’s onset as if there had been no inter-
ruption. The primed-stimulus performance curve implied
by this prediction is shown in Figure 5A. With zero du-
ration, performance is based only on information acquired
from the prime; thus, it equals prime-only performance.
With additional duration, the primed curve rises.

Note that, according to the basic model, performance
is equal to proportion of acquired features. This means
that performance and acquired features may be discussed
interchangeably. Consider the proportion of acquired fea-
tures in the prime-only condition. It must logically be the

(A) Random Sampling Model:
6.0 Basic Prediction

5.0

q
30

II 2.0
a-

q
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(B) Random Sampling Model:
Modified Prediction

(Additional Liftoff Required)
—°- Primed Stimulus
~-O--Prime Only

4.0 z~Unpnmed Stimulus

ReL =0

-o- Primed Stimulus
—c-- Prime Only
—~-- Unprimed Stimulus
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d = Stimulus Exposure Duration (ms)
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d = Stimulus Exposure Duration (ms)

Figure 5. Performance curve predictions for Experiment 2 made by several models.
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case that the same proportion of features has been acquired
at duration zero in the primed condition. Also, accord-
ing to the model, the same proportion of features has been
acquired following some unprimed duration, which we
have labeled d~inFigure 5A; note that d~is the unprimed
stimulus duration that produces performance equal to that
in the prime-only condition. Because from the model’s
perspective the memory representation is completely de-
termined by the proportion of acquired features, the mem-
ory representation following a d-msec primed presentation
must be the same as the memory representation following
a (d+d~)-msecunprimed presentation; accordingly, the
primed and unprimed performance curves must be hori-
zontally parallel,7 separated by d~msec. (The note ReL =

0 at the lower left of Figure 5A is explained below.)
By this reasoning, the observed horizontal separation

between the primed and unprimed curves provides a mea-
sure of the prime’s effect. In particular, the experience
of having just seen the prime can be said to be equivalent
to, or worth, d0-msec of physical exposure duration rela-
tive to not having just seen the prime. The reasoningem-
bodied in this assertion is reminiscent of that offered by
Loftus, Johnson, and Shimamura (1985). In their experi-
ments, visual stimuli, shown for varying durations, were
followed either by an immediate mask (assumed to de-
stroy any iconic image) or by a mask that was delayed
by 300 msec (assumed to allow an iconic image). The
finding was that performance following a d-msecdelayed-
mask stimulus was equal to performance followed by a
(d+ w)-msec immediate-masked stimulus for all values of
d; thus the icon that presumably followed the delayed-
mask stimuli was said to be worth an additional w msec
of physical exposure duration. Loftus et al. have shown
that one would expect this result, given the assumption
that random-feature sampling proceeded in a uniform
manner whether it was operating on a physical stimulus
or on an iconic image. Thus, in a real sense, the icon can
be viewed as equivalent to an additional physical stimu-
lus that is added to the end of the physical stimulus. Analo-
gously, by the reasoning that we have just described, the
prime canbe viewed as equivalent to a physical duration
added to the beginning of the physical stimulus.

We acknowledge that on its face this last statement
seems logically indisputable: the prime is a physical stim-
ulus added to the beginning of the stimulus. The key here
is that this is presumed to be the prime’s only effect, and
it is entirely plausible that such is not the case. Our next
three predictions incorporate some form ofsuch a notion.

Modified Prediction of the Basic Model
We have noted that, in order to fit the basic random-

sampling model to extant data (both the data from Shibuya
& Bundesen, 1988, and the data from Experiment 1), we
had to assume a processing delay ofL msec before infor-
mation acquisition began to occur. The defaultprediction
just described incorporates the assumption that whatever
caused this Experiment 1 processing delay occurs only

once—during the prime—in a primed trial, and will not
occur again during the primed stimulus.

This assumption seems reasonable, in that one can easily
imagine ways in which it could be correct. Suppose, for
instance, that the observers generally fail to look at the
fixation point prior to trial onset, and that it requires some
time to fixate the correct location once the stimulus ap-
pears. This timewould decrease the effective stimulus du-
ration on a normal (unprimed) trial. It would not do so
on a primed trial, however, since the presumed fixation
adjustment would have occurred 300 msec earlier at the
start of the prime’s presentation. Thus the d~-msecbene-
fit enjoyed by a primed relative to an unprimed stimulus
would accrue both from the prime itself and from the
elimination of the L-msec processing delay that is no
longer required.

An alternative possibility, however, is that the assump-
tion is incorrect, and that the processing delay is caused
by some basic sensory phenomenon that is inexorably trig-
gered by stimulus onset. The prediction ensuing from this
possibility is illustrated in Figure SB. Even in the primed
trial, an L-msec processing delay occurs before any infor-
mation is acquired from the primed stimulus. Accordingly,
primed performance would remain at baseline (prime-
only) performance for L msec before beginning to rise.

It is useful to introduce a new piece of notation here.
Just as L designates the liftoff duration, at which the un-
primed performance curve departs from zero, ReL desig-
nates the rehftoffduration at which primed performance
departs from baseline prime-only performance. Both L and
ReL are indicated in Figures 5A and SB. It is evident that
by the default prediction (Figure 5A) ReL = 0 < L,
whereas for the modified prediction (Figure SB), ReL = L.

Above, we discussed the concept of the prime’s worth,
which is the additional duration that must be added to an
unprimed stimulus’s duration in order to raise its perfor-
mance level to that of a primed stimulus. As we have
noted, the prime’s worth is estimated by the horizontal
separation between the unprimed and primed performance
curves. Given either of the two models whose predictions
we have just described, the prime’s worth is estimated
to be (d~—ReL) msec.

Does the Prime Affect Feature-Sampling Rate?
We have considered two variants of the basic model.

A critical commonality is the assumption that once sam-
pling has begun, it proceeds at the same raw sampling
rate [of (1 /c)/msec], whether a stimulus has been primed
or not. The equal slopes of the primed and unprimed per-
formance curves in Figures 5A and SB are implied by this
common assumption.

This assumption could, however, be false. Reinitz,
Wright, and Loftus (1989) showed subjects pictures of
single objects either preceded or not preceded by the ob-
ject’s category name (their primed and unprimed condi-
tions, respectively). Translating into terms of the present
model, Reinitz et al. found that raw sampling rate in-
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creased in the primed relative to the unprimed condition.
Such a prime effect in the present paradigm would be
reflected in a performance-curve slope increase in the
primed relative to the unprimed condition. This possibil-
ity is shown in Figure SC.8

Nonrandom Sampling
A defining quality of random sampling is that there is

no preferred feature-sampling order. A converse possi-
bility—which would embody a failure of the basic model—
is that there is a preferred sampling order.

To see what such a model would predict for the Exper-
iment 2 results, consider an extreme possibility: that there
is a fixed order in which features are sampled, and that
this fixed sampling order is triggered by any stimulus on-
set. In this case, an observer would begin processing a
primed stimulus by redundantly resampling all the fea-
tures that had been sampled during the prime’s presenta-
tion. This means that performance following any given
duration in the primed condition would be equal to the
maximum of either prime-only performance or unprimed
performance at the same duration. This possibility is il-
lustrated in Figure SD, in which primed and unprimed
curves overlap.

It is unlikely that such an extreme nonrandom sampling
model is correct; for instance, it does not imply the linear
performance curves that we and others have obtained.
However, even a small degree of nonrandom sampling
would imply that some features sampled during the prime
would then be systematically resampled during the primed
stimulus. This would drive the performance curve right-
ward from the random-sampling prediction (Figure SB)
toward the fixed-sampling prediction (Figure SD). In
other words, the prediction of any nonrandom sampling
model is that ReL > L.

Method
The methodology was very similar to that ofExperiment 1. The

main change was that the single-presentation condition of Experi-
ment 1 was compared with a new, double-presentation condition.
As just described, there were 3 priming conditions and 6 durations
within each priming condition, for 18 conditions in all.

Observers
Four observers participated: the first and second authors (G.L.

and T.B.), and 2 female undergraduate students (S.S. from Exper-
iment 1, and T.J.B.). All observers were highly practiced, having
participated in a minimum of 1,700 trials before beginning this
experiment.

Stimuli and Apparatus
Stimulus presentation was the same as in Experiment 1, except

for two differences. First, during the initial warning tone for each
trial, a fixation point appeared over the permanent fixation point.
The fixation point consisted of a white square superimposed over
the adapting field. Fixation-point luminance and contrast are pro-
vided as part of Table 1. Second, all three rows in each stimulus
array (rather than just the top and bottom as in Experiment 1) were
used as targets.

Design
The three priming conditions, along with the durations associated

with them, are schematized in Figure 6.
Unprimed-stimulus condition. In the unprimed-stimulus con-

dition, the stimulus was presented alone for a duration ranging from
80 to 280 msec. The stimulus was preceded by a 300-msec adapting-
field-only pause and was immediately followed by the mask. The
unprimed stimulus condition provided a performance curve simi-
lar to that generated in Experiment 1.

Prime-only condition. In the prime-only condition, the 50-msec
prime was presented alone, followed by a variable-duration adapting-
field-only pause. The pause’sduration ranged from 250 to 450 msec
and was terminated by the mask. From pilot work we assumed that
a 250-msec stimulus—mask ISI following stimulus offset would be
sufficient for all perceptual stimulus processing to be completed
and, accordingly, that prime-only performance would not vary as
a function of pause duration. This prime-only condition provides
a baseline performance level.

Primed-stimulus condition. In the primed-stimulus condition,
the stimulus was presented for 50 msec, followed by a 250-msec
adapting-field-only pause, followed by a second presentation of the
same stimulus. The second presentation ranged in duration from
40 to 240 msec and was followed immediately by the mask. As
noted earlier, we call the first stimulus presentation the prime, and
the second presentation the primed stimulus.

As can be seen in Figure 6, the primed-stimulus condition is the
combination of the prime-only and unprimed-stimulus conditions.

Procedure
Each observer participated in twenty-four 72-trial blocks. Within

each block, the 18 stimulus conditions were randomly intermin-
gled over the 72 trials. The sequence of events both within a block
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Figure 6. Conditions for Experiment 2. (See text for explanation.)
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and within a trial were the same as in Experiment 1, except for
the minor changes described earlier. As in Experiment 1, the adapt-
ing field was on continuously, except during mask presentation.

Results and Discussion
Figure 7 shows the data averaged across the 4 ob-

servers. Figure 7 is organized just as each panel of Fig-
ure 5. Again, the dashed lines through the data points rep-
resent the basic model’s best fit, and the solid lines
represent the to-be-described supplemented model’s best
fit. The flat dashed line through the prime-only data points
is the mean of the six prime-only duration conditions.

Table S provides a variety of summary statistics for both
the data averaged across observers (bottom row) and in-
dividual observers’ data. Table S is organized as follows.
Columns 2-4 provide performance curve information (es-
timates of c and L, plus the Pearson r2) for the unprimed
condition; similarly, columns5-7 provide this information
for the primed condition. (Recall that for the primed con-
dition, ReL is the reliftoff time from prime-only baseline
performance.) Column 8 provides the common asymptote
estimated for both conditions. Column 9 provides the mean
performance in the prime-only condition. Column 10 pro-
vides the prime’s worth, definedto be (d~—ReL) (see dis-
cussion above). Finally, for comparison with data reported
by Loftus et al. (1985) and Loftus et al. (1992), colunm 11,
the rightmost column, provides our estimate of the worth
of the icon that followed the prime (recall that the prime
was unmasked). The icon’s worth was computed as d~,
the duration needed by an unprimed (masked) stimulus
to reach prime-only performance level, minus 50 msec,
the physical duration of the prime. For instance, Ob-
server T.B. required 112 msec in the (immediate-masked)
unprimed condition to reach the (delayed-masked) prime-
only performance level of 0.205. Because the prime itself
lasted 50 msec, the prime’s icon was equivalent to hav-
ing (i.e., was worth) an additional 112—50 = 62 msec
of physical exposure duration.

Averaged Data
As anticipated, the prime-only curve was flat, indicat-

ing that prime perceptual processing was completed within
250 msec following prime offset. The Pearson r2 values
were .992 for both the primed-stimulus and the unprimed-
stimulus performance curves. The c values were estimated
to be identical (97 msec) in the primed and unprimed con-

0.0
0 50 100 150 200 250 300

d = Exposure Duration (ms)

Figure 7. Experiment 2, performance curves averaged over 4 ob-
servers. Dashed lines represent bestbasic-model (linear regression)
fits; solid lines represent best supplemented-model fits. Error bars
represent standard errors. Parenthesized numbers in the legend refer
to the number of parameters required to fit each model to all data
points.

ditions. The primed reliftoff (84 msec) was slightly longer
than the unprimed liftoff (70 msec). Both the performance
curve linearity and the equality of the primed and un-
primed performance curve slopes conform well to the
modified prediction of the random-sampling model (Fig-
ure SB), although the slightly increased reliftoff relative
to liftoff is consistent with (although does not of course
imply) the idea that there is some systematic feature
resampling during a primed presentation (cf. Figure SD).

Icon’s worth. As indicated in Table S (rightmost col-
umn), the mean icon’s worth is estimated to be 63 msec.
This is in the same general range as the corresponding
values estimated by Loftus et al. (1992), which ranged
from 59 to 102 msec over 7 observers.

Prime’s worth. The mean prime’s worth (second
column from the right) is estimated to be 30 msec: this
means that a d-msec stimulus preceded by a S0-msec
prime produces the same performance as a (d+30)-msec

Table 5
Summary Data and Fit of the Basic Random-Sampling Model
for 4 Observers and for the Averaged Data in Experiment 2

Observer

Unprimed

c L r
2

Primed

c ReL r
2 Asymptote

A
Prime Only

P
Prime’s
Worth

Icon’s
Worth

TB. 77 96 .988 77 98 .891 .769 .205 14 62
G.L. 132 54 .968 155 88 .919 .993 .559 40 78
S.S. 99 69 .984 92 81 .948 .759 .457 33 64
T.J.B. 77 67 .981 62 85 .990 .915 .540 24 59
Mean 97 70 .992 9784 .992 .857 .440 30 63

Note—Prime‘s worth and icon’s worth are given in milliseconds.
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stimulus not preceded by a prime. At first blush, it seems
odd that a prime’s worth, in terms of additional physical
exposure duration (30 msec), is not even as great as the
prime’s actual physical duration (SO msec). We discuss
this issue at greater length below.

Individual Observers
As Table 3 indicates, individual-observer data were

somewhat noisy, with r2 values ranging from .891 to .990.
However, no observer showed consistent departures from
linearity.

Primed and unprimed C values. For T.B. and S.S.,
the estimated c values were quite similar for the primed
and unprimed curves. For G.L. and T.J.B., the c values
are somewhat different for the two curves. For T.J.B.,
it appears possible that the prime increases sampling rate.
However, if we accept this conclusion, we are forced to
similarly admit that for G.L., the prime decreases the
sampling rate, contrary to any prediction. We will con-
sider this issue at greater length in conjunction with the
supplemented model that we describe below.

Liftoff and reliftoff. For all observers, the estimated
primed liftoff (reliftoff) was longer than the estimated Un-
primed liftoff.

Icon’s worth. The estimated icon’s worth ranged from
59 to 78 msec over the 4 observers. As noted, this is
within the general range of past estimates.

Prime’s worth. The prime’s worth ranged from 14 to
40 msec across observers.

The Prime’s Worth Paradox
The mean prime’s worth was 30 msec, which is less

than the prime’s physical duration of SO msec. As we have
just noted, the prime’s worth was less than the prime’s
duration for all 4 observers.

This finding seems paradoxical, and it is not predicted
by the basic random-sampling model. To understand these
assertions, recall first that the ISI between prime offset
and primed-stimulus onset was 250 msec. Suppose, for
a moment, that the ISI had actually been0 msec. Because
the prime itself lasted 50 msec, a d-msec “primed stim-
ulus” would, in that case, be physically identical to a
(d+ S0)-msec “unprimed stimulus.” This, of course,
would unambiguously imply that performance following
a d-msec primed stimulus would be identical to perfor-
mance following a (d+S0)-msecunprimed stimulus; thus,
the prime would be worth 50 msec.

One might expect that with the actual 151 of 250 msec,
the prime would be followed by an iconic image from
which information could be acquired that would increase
the prime’s worth. Instead, the prime’s worth shrank, to
a mean of 30 msec. We will see below that this “prime’s
worth paradox” becomes resolved within the context of
the supplemented random-sampling model.

GENERAL DISCUSSION

Let us first consider the prime’s effect on processing
of the primed stimulus. Recall that we offered several can-

didates (see Figure 5). Clearly we can reject the hypoth-
esis embodied inFigure SA; reliftoff is nowhere near zero
for any observer. Accordingly, we rule out the possibil-
ity that whatever the processes that are responsible for
the information-processing delay (liftoff), they needonly
be carried out once during a brief presentation. Appar-
ently such processes are intimately and automatically tied
to stimulus onset.

The data are close to the prediction embodied in Fig-
ure SB. However, there is marginal support for the models
indicated in Figures SC and SD that, in some fashion, are
contrary to a pure random-sampling model.

First, the finding that reliftoff is slightly higher than
liftoff is consistent with various possibilities. One that
strikes us as reasonable is that there is some slight pre-
ferred order for feature sampling, and that this order is
tied to stimulus onset. Given that some features upon
which performance is based are systematically acquired
early in the process, they would be sampled first during
the prime and again, redundantly, during the primed stim-
ulus. Thus, the prime itself is not quite as useful as it
would be if sampling were completely random. Second,
Observers T.J.B. and G.L. provide some evidence that
the prime can affect the sampling rate during the primed-
stimulus presentation.

THE SUPPLEMENTED MODEL

Two highly robust findings are not predicted by the
basic model. The first is the initial processing delay re-
flected both in the above-zero liftoff and in the above-zero
reliftoff. The second is the prime’s worth paradox: a SO-
msec prime preceding a primed stimulus is worth less in
terms of additional physical exposure than the physical
duration of the prime itself. We now describe a supple-
ment to the random-sampling model that implies both
these findings.

The Time Course of a
Hypothetical Sensory Response

We (and others) have informally characterized infor-
mation as “acquired from the stimulus.” This is not, of
course, what actually happens. Rather, information is ac-
quired on the basis of some perceptual representation that
the stimulus engenders. Let us call such a representation
a “sensory response.” Loftus et al. (1992), Loftus and
Ruthruff (in press), and Busey and Loftus (in press) have
formalized the idea of a sensory response and shown how
it accounts for several different phenomena, including the
icon’s worth, certain duration-intensity tradeoffs, and
binocular combination ofinformation. We now show how
it accounts for the present data.

The Linear-Filter Assumption
The model’s basic assumption is, as suggested by many

past investigators, that the initial stages of the visual sys-
tem act as a linear, low-pass temporal filter that operates
on the physical stimulus (see, e.g., Sperling, 1964a, and
Watson, 1986). The output of this filter is a sensory-
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response function, a (t), that relates the magnitude of what-
ever neural activity represents stimulus presence to t, the
time since stimulusonset. Examples of such functions are
shown in Figure 8 for stimuli of four durations, ranging
from 25 to 200 msec. The vertical lines represent stimu-
lus offset for each of the indicated functions; for most
stimuli in our experiments, a mask occurs at this time.

Detailed derivations of these functions are presented
elsewhere(e.g., Loftus et al., 1992, pp. 545-547). Briefly,
the equation that generates them is

i~G(t) fort d
a(t) — ~[G(t) — G(t—d)] for t > d

where 4 is stimulus contrast and G(x) is the integral from
0 to x of the impulse-response function.9 The impulse-
response function is an Erlang function of the form

(x/r)” — ‘e — XII
g(x)=

t(n — 1)!

Note that Equation 9 has two parameters: n is an integer
(n 1) and r is a real number (r > 0).

As is evident in Figure 8, a sensory-response function
is temporally blurred relative to the physical stimulus that
has generated it, and it lags behind that stimulus. Also,
peak magnitude increases with stimulus duration.

The Sensory-Threshold Assumption
Again, as other investigators (see Watson, 1986), we

assume that information acquisition begins when the re-
sponse function exceeds some sensory threshold; such a
threshold is indicated by the horizontal line above the ab-
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scissa in Figure 8. Our key assumption that links the
linear-filter model to the basic random-sampling model
is that the raw sampling rate at time t is proportional to
the magnitude by which the sensory response exceeds
threshold at time t. In Appendix B, we show that, given
this and the random-sampling assumptions, our perfor-
mance measure, P, is proportional to the area under the
sensory-response function that lies above threshold and
prior to mask onset (exemplified for the 100-msec stimu-
lus by the cross-hatched area). We refer to this area as
the performance-relevant area.

(8) One note is in order at this point. It may appear at first
glance that our supplemented model essentially entails the
mere replacement of the original ad hoc assumption (the
above-zero liftoff) by anotherad hoc assumption (the sen-
sory threshold). There are three answers to this complaint.
First, the assumption of a sensory threshold is firmly en-

(9) trenched in the sensory literature, both because it explains
a variety of phenomena and because it is consistent with
much physiologicaldata. Second, as we shall see shortly,
the sensory threshold accounts simultaneously for liftoff,
reliftoff, and the prime’s worth paradox. Finally, the
threshold assumption explains other data gathered in the
present paradigm, including stimulus contrast effects
(Loftus & Ruthruff, in press) and effects of presenting
stimuli monoptically, binocularly, or dichoptically (Busey
& Loftus, in press).

Accounting for Data
We wifi begin by informally demonstrating how the sup-

plemented model accounts for the processing delays and

0 100 200 300
t = Time Since Stimulus Onset (ms)

Figure 8. The linear-filter model: sensory-response magnitude as a function of time since stimulus onset, for four
exposure durations. Vertical lines represent stimulus offset time. Information acquisition is assumed ioccuronly
when sensory-response magnitude exceeds the threshold, which is indicated by the horizontal line above the ab-
scissa. The performance-relevant area for the 100-msec stimulus is represented by the cross-hatched area.

400
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the prime’s worth paradox. We will then show how the
quantitative predictions indicated by the solid lines in Fig-
ures 2, 3, 4, 7, and 11 were computed.

Initial Processing Delays (Liftoff and Reliftoff)
The model’s account of the processing delay found both

by Shibuya and Bundesen (1988) and in the present Ex-
periments 1 and 2 is apparent in Figure 8. Stimuli below
a certain critical duration do not exceed threshold prior
to mask onset; hence, no information is acquired from
them. In the ifiustration of Figure 8, no information would
be acquired from either the 25- or the 5O-msec masked
stimuli.’0 However, any stimulus longer than 50 msec
would exceed threshold prior tomask appearance. Hence,
in the Figure 8 example, the liftoff duration would be
50 msec.

It is also quite obvious why the model would predict
a reliftoff for a primed stimulus. The threshold is assumed
to be an immutablepart of the system. Any timea stimu-
lus is presented, it will have to be of some minimumdu-
ration in order to exceed this threshold. As indicated in
Figure 9 (top panel), a delay of 250 msec following prime
offset is sufficient that the prime’s sensory-response func-
tion decays essentially to zero, and the primed stimulus
must start its own sensory-response function anew. Thus
when the primed stimulus is sufficiently short, the
performance-relevant area contributed by the primed stim-
ulus is zero. The only performance-relevant area in such
a situation would be that contributed by the prime. Ac-
cordingly, short-duration primed performance would be
equal to prime-only performance, just as it actually is (see
Figure 7).

The Prime’s Worth Paradox
Figure 9 addresses the prime’s worth paradox. Here a

100-msec primed trial (top panel) is compared with a 130-
msec unprimed trial (bottom panel). In the primed trial,
the prime initiates a sensory-response function that de-
caysduring the 250-msec ISI. Attime t = 300 msec, the
primed stimulus appears, initiating its own sensory-
response function, which is terminated by the mask. There
are, accordingly, two performance-relevant areas, which
are cross-hatched in the figure. The sum of these areas
determines performance. An unprimed stimulus (bottom
panel) engenders onlya single sensory-response function
andhas one performance-relevant area. The prime’s worth
of 30 msec is captured by the factthat the sum of the two
performance-relevant areas in the top panel is equal to
the singleperformance-relevant area in the bottom panel.

Threshold level determines prime’s worth. As is de-
picted in Figure 9 (top panel), the prime’s worth depends
on the leftmost performance-relevant area that is con-
tributed by the prime. The magnitude of this area is, in
turn, entirely dependent on the level of the sensory thresh-
old. If the threshold were higher (say 0.023), the prime’s
sensory-response function would not exceed threshold,
and the prime’s worth would be zero.’1 The prime’s worth
would, in contrast, be at a maximum when the threshold

Prime Primed Mask
off Stimulus on

(t=50) on(t=300) (t= 400)

Performance-
relevant Areas

U
:‘~:~~~7ii ~-

100 200 300 400 500
t = Time Since Stimulus Onset (ms)

Figure 9. A sketch of how the linear-filter model accounts for the
prime’s worth paradox. The two panels depict the a(t) functions for
a primed trial (top panel) and an unprimed trial (bottom panel).

was equal to zero. 12 Thus, within the context ofthe linear-
filter model, the prime’s worth paradox evaporates; de-
pending on the threshold value, the prime’s worth can
easily be smaller than the prime’s physical duration and,
indeed, can be as small as zero.

Massed versus distributed stimulus presentation. The
shrinkage of the prime’s worth with an ISI of 250 msec
relative to 0 msec raises a more general issue about the
effect on performance of a stimulus’s physical distribu-
tion over time. Suppose a stimulus were not masked. If
there were no sensory threshold, the linear-filter model
would imply performance to be determinedby a stimulus’
total physical duration, irrespective of how the duration
was distributed over time. Thus, for example, a d-msec
stimulus would produce the same total performance-relevant
area whether it was presented once for d msec, or twice
for (d/2) msec, separated by a blank gap. This is a funda-
mental consequence of linearity.

When the sensory threshold is introduced, however, a
single-presentation d-msec stimulus gains an advantage
over two separated (d12)-msec presentations. More gener-
ally, a threshold endows a temporally massed stimulus
with an advantageovera same-physical-duration, but tern-

A Primed Trial
Primed Stimulus Duration: d = 100 ms
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porally distributed, stimulus. To illustrate, consider an
experiment reported by Schurman, Eriksen, and Rohr-
baugh (1968, Experiment 1). The stimulus was a single
to-be-reported letter that was presented as a train of 10
stimulus pulses. Pulse duration (PD) was either 2 or
4 msec, and interpulse interval (IPI) varied from 2 to
48 msec. Schurman et al. reported that performance was
better for the 4- than for the 2-msec PD and that perfor-
mance declined monotonically with IPI.

Figure 10 indicates how this result is accounted for by
the linear-filter model, showing the sensory response func-
tion, a(t), for 2- and 4-msec pulses (top and bottom
panels) and for an IPI of 2 or 48 msec)3 For each panel,
the total areas under the two a (t) curves are equal. How-
ever, the above-threshold area is larger for the shorter
IPI. The reason for this is that with a threshold, the peak
magnitude of the a(t) function becomes important: the
higher the peak magnitude, the greater the degree to which
a(t) exceeds threshold, and the greater is the performance-
relevant area.

The Schurman et al. (1968) data are shown in Figure 11
along with the fit of the supplemented model. The fit is
reasonably good.
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lPl=48ms
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0 200 400 600
t = Time Since Stimulus Onset (ms)

Figure 10. A sketch of how the linear-filter model accounts for
data reported by Schurman, Eriksen, and Rohrbaugh (1968). The
two panels depict the a(t) functions for trials with 2-msec pulses (top
panel) and with 4-msec pulses (bottom panel). Within each panel,
the two curves are for 2-msec and 48-msec interpulse intervals.
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Figure 11. Fit of the supplemented model to the data of Schur-

man, Eriksen, and Rohrbaugh (196$). Four parameters were re-
quired to fit the model to all data points.

Supplemented Model: Quantitative Fits
The model has four basic parameters: n and r, the two

parameters of the impulse-response function, the sensory
threshold, which we designate athresh, and the proportion-
ality constant between performance-relevant area and P.
which we designate 1/c.’4 As shown in Appendix B, the
equation that describes performance curves becomes

P = A~(d)/c, (10)

where A1(d) is the magnitude of the performance-relevant
area for a d-msec stimulus (determined by the parame-
ters n, rand athresh.) Note that, as indicated in Figure 9,
there is only a single performance-relevant area for an
unprimed stimulus, whereas there are two performance-
relevant areas—one coming from the prime, and one com-
ing from the primed stimulus—for the primed-stimulus
condition.

Basic versus supplemented models. The fits, measured
by the root mean square errors (RMSEs), are comparable
for the basic and supplemented models. In general, the
supplemented model gains an advantage inparsimony over
the basic model with more complicated designs. Thus,
with an exposure-duration-only design (e.g., a single Ex-
periment 1 observer, as in Figure 3), the basic model re-
quires only three parameters (c, L, and A), whereas the
supplemented model requires four parameters (r, thresh-
old, c, and A; note that n is always set to9, not estimated).
When an additional, two-level factor is added(e.g., num-
ber of targets, as in Figure 2), the basic model requires
six parameters (two values each of c, L, and A) and the
supplemented model also requires six (r, threshold, two
values of c, and two values of A). When serial position
is added as a factor (Figure 4), the basic model requires
nine parameters (four values of c and L, plus the com-

Schurman et al. (1968) Data
(Experiment 1)

• PD=4ms
• PD’r2ms

— Suppl. Model (4)
.

.

Schurman, Eriksen, & Rohrbaugh (Expt 1)

(2-ms Pulse Duration)

IPI = 2 ms

Schurman, Eriksen, & Rohrbaugh (Expt 1)
(4-ms Pulse Duration)

£2m 5 lPl=48ms Th~h~!d
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mon A) and the supplemented model requires seven (r,
threshold, four values of c, and the common A). Finally,
for the Experiment 2 data, the basic model requires six
parameters (two values of c and L, plus the mean prime-
only value, plus the common A) and the supplemented
model requires four (r, threshold, c, and the common A).
The general idea is straightforward: with increasingly
complex designs, the supplemented model requires rela-
tively fewer parameters than the basic model does.

To fit the various data sets, we fixed n at 9, a value
often found in the vision literature (see Watson, 1986).
We determined the best fits for Shibuya and Bundesen’s
(1988) data (Figure 2), the Experiment 1 data (Figures
3 and 4), the Experiment 2 data (Figure 7), and Schurman
et al. ‘s (1968) data (Figure 11) by using a least-squares
grid search procedure. The best-fitting parameters are
shown in Tables 6-10. Each table provides the values of
all estimated parameters, along with the RMSEs for both
the supplemented model and the basic model. Footnotes
to each table provide the number of free parameters upon
which each of the RMSEs is based (i.e., the number of
data points minus the number of estimated parameters).

The foregoing logic has presumedthat the basic model
has no means of predicting relations among the slope and
intercept values for different serial positions or different
priming conditions, for example. This is because the basic
model is just that—basic. As we have noted earlier, other
investigators have offered other models whose purpose
is to predict just such relations.

Supplemented model parameter values. It should be
noted that the threshold values are in units of contrast.
The rationale underlying this assertion is as follows. As
the stimulus remains on indefinitely, a(t) will asymptote
at a value equal to stimulus contrast.’5 Accordingly, the
threshold canbe interpreted as the maximum stimulus con-
trast level at which no information would be extracted
even if the stimulus were of infinite duration.

Estimated threshold values. For the most part, the
threshold values are around0.005-0.030. There are some

Table 6
Fit of the Supplemented Random-Sampling Model

for the 2 Observers in Shibuya and Rundesen (1988)

RMSE*
____________ c(T=4) Supplemented Basic

53.38 0.374 0.364

73.73 0.435 0.431

Table 7
Fit of the Supplemented Random-Sampling Model

for 4 Observers in Experiment 1

RMSE

Observer r a,hr,,i, c Supplemented* Basict

S.S. 5.2 0.031 0.215 0.036 0.041
E.F. 5.7 0.027 0.179 0.140 0.118
TB. 6.4 0.032 0.029 0.097 0.108
ST. 6.2 0.119 2.11 0.041 0.046

*Five free parameters. tFour free parameters.

Table 8
Fit of the Supplemented Random-Sampling Model Applied to Four

Serial Positions in Experiment 1 (Averaged Over 3 Observers)

c RMSE

athrcsh SP1 SP2 SP3 SP4 Supplemented* Basict

0.026 0.308 0.296 0.532 1.085 0.089 0.090
*Twenty.flve free parameters. tTwenty-three free parameters.

Table 9
Fit of the Supplemented Random-Sampling Model

in Experiment 2 (Averaged Over 4 Observers)

RMSE

7 (
2

thr,,h c Supplemented* Basicf

8.7 0.0046 2.65 1 0.077 0.060
*Fourteen free parameters. tEleven free parameters.

C

4 msec 2 msec 4 msec RMSE*
0.138 11.37 16.6 0.124

exceptions. First, Observer M.P. in Shibuya and Bun-
desen’s (1988) study had an estimated threshold of 0.00.
Second, Observer S.T. in Experiment 1 had an estimated
threshold of 0.119. Recall that S.T. was unpracticed; ac-
cordingly, one might expect his threshold value to have
been higher than those of the practiced observers. The
thresholds were also somewhat higher for the Schurman
et al. (1968) data. We are not sure why this was so; it
could have been due to the observers’ practice levels or
to the particular nature of the luminances that were used.

Estimated c values and processing efficiency. The esti-
mated c values are of some interest, because they pro-
vide measures of the overall processing efficiency for a
given condition. In Appendix C, we provide details of
how such an efficiency measure can be derived from our
theory, along with the observed values both from the
present experiments and from Shibuya and Bundesen’s
(1988) experiment.

Bloch’s Law
There is a well-known tradeoff between stimulus in-

tensity and stimulus duration for short-duration stimuli
(e.g., Hood & Grover, 1974; Kahneman, 1968; Kahne-
man & Norman, 1964; Kaswan & Young, 1963; Zacks,
1970; see Watson, 1986, and Wasserman & Kong, 1979,
plus associated commentaries, for reviews).

Equation 8 (above), which generates the a (t) functions,
implies a tradeoff between contrast and duration. Consider
the situation in which there is no masking and the sensory
threshold is zero. Under such conditions, the performance-
relevant area is equal to the product of duration and con-
trast; accordingly, a perfect Bloch’s law tradeoff is pre-
dicted. When there is masking, or an above-zero threshold,

Table 10
Fit of the Supplemented Random-Sampling Model
for Schurman, Eriksen, and Rohrbaugh (196$),

in Experiment 1 (Averaged Over Observers)

r 2msec

2.6 0.075
*Ten free parameters.

Observer r ats,~~,,c(T—2)

M.P. 2.6 0.000 27.59
H.V. 2.4 0.051 23.07

*Twelve free parameters.
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the tradeoff is not perfect, although Loftus and Ruthruff
(in press) showed that in a no-mask experiment, with
threshold estimated to be above zero, a form of Bloch’s
law continues to occur for contrasts ranging from 0.033
to approximately 0.21. It is clear from the presentexper-
iments that such a tradeoff could not be extended up to
a contrast level of 1.0: the implied sampling rates (Ap-
pendix C, Table 11, bottom row) are simply too large.

Earlier, we noted a difference between the magnitudes
of liftoff values found by Shibuya and Bundesen (1988;
on the order of 10-30 msec) and in the present experi-
ments (on the order of 50-100 msec) and asserted that
the difference could well be due to the higher contrast
values used by Shibuya and Bundesen. The supplemented
model puts us in a position to explain this assertion as
follows. With higher contrast, the a(t) curves are higher;
accordingly, a shorter exposure duration is required for
a given a (t) curve to exceed threshold (see Loftus and
Ruthruff, in press, for a detailed explanation).

Linear Performance Curves
Earlier in this article, we noted that the linear functions

embodied in Equation 7 describe extant performance
curves quite well. When the sensory-response functions
of the sort depicted in Figure 8 are used as the basis of
the information-acquisition process, Equation 10 rather
than Equation 7 generates the performance curves. Al-
though Equation 10 does not generate perfectly linearper-
formance curves, it does generate, as is evident in Fig-
ures 1, 3, 4, and 7, approximately linear curves.

Deficiencies
There are two characteristics of our Experiment 2 data

that are not completely in compliance with the predictions
of the supplemented model. We describe them in turn.

Nonparallel primed and unprimed performance
curves. We noted earlier that, in Experiment 2, the aver-
ageprimed and unprimed performance-curves slopes were
the same (see Table 5). As we also noted, however, 2 of
the 4 observers failed to conformto this pattern: for Ob-
server G.L., the parameterc was larger in the primed than
in the unprimed condition (155 vs. 132 msec, a 17%
difference), whereas the opposite was true for Obser-
ver T.J.B. (62 vs. 77 msec, a 24% difference).

Within the supplemented model’s context, such a dis-
crepancy could arise for either or both of two reasons.
First, as indicated in Figure SC, the sampling rate could
depend on whether a stimulus has or has not been pre-
ceded by a prime. Second, the sensory threshold could
depend on whether a stimulus has or has not been pre-
ceded by a prime. There is no obvious reason to prefer
one possibility over the other, and the individual data are
not sufficiently powerful todisambiguate them empirically.

Nonrandom sampling. As can be seen in Figure 7,
there were slight but systematic deviations between the
data points and the supplemented model’s prediction.
These deviations arise because the obtained primed and
unprimed performance curves are slightly closer together

(i.e., the prime’s worth is slightly smaller) than the model
predicts. As discussed earlier, a plausible explanation for
this effect is that it stems from a small degree of nonran-
dom sampling in the primed-stimulus condition. We have
already noted one possible reason for this: when the
primed stimulus is presented, some of the features already
sampled from the prime may be systematically resampled
from the primed stimulus. As an example of how this
might happen, suppose that stimulus onset biased the ob-
server to attend to the leftmost digit of the stimulus ar-
ray. Then the leftmost digit would be systematically
resampled during primed-stimulus presentation even if it
had already been acquired from the prime. In order to
predict these small deviations, the model would have to
incorporate additional assumptions about the natureof sys-
tematic resampling. Such assumptions are beyond the
scope of the present treatment.

CONCLUSIONS

We have developed a model that represents a marriage
of two traditions: the basic random-sampling model from
the memory and attention literature, and the linear-filter
model from the vision and sensation literature. The re-
sulting supplemented random-sampling model anchors the
basic random-sampling model in a closer approximation
of sensory reality. It also subsumes the basic model, in
that it generates (approximately) the same linear perfor-
mance curves and also accounts for two facets of the
data—the processing delay (liftoff) and the prime’s worth
paradox—that are not predicted by the basic model.

We wish to reiterate that there is an important domain
about which our model is silent—that involving spatial
and temporal distribution of attention acrossdifferent stim-
ulus items (e.g., different characters within a character
array). This domain has been investigated assiduously by
others (e.g., Rumelhart, 1970; Shibuya & Bundesen,
1988; Townsend, 1981; see Bundesen, 1990, for a re-
view). However, it was not our intention to address these
issues; our principle concern was to supplement the basic
random-sampling model witha more realistic sensory ba-
sis. The supplement that we have described could easily
be incorporated into the attentional models offered by
other investigators.
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NOTES

I. To check this assumption, we carried out a control procedure in
which we displayed the stimuli concurrently with the mask. Even when
this stimulus—mask conjunction was displayed indefinitely, no stimulus
digits could be seen; recall performance was at chance.

2. This development of the random-sampling model begs the ques-
tion of what, exactly, is randomly sampled. The mathematics are con-
sistent with several possibilities. One is that each target digit is made
up of a collection of features (e.g., lines, angles, etc.) that are sampled
(as in Rumelhart’s, 1970, multicomponent theory), in which case each
digit would be recalled with a probability equal to the proportion ofthat
digit’s total acquired features. Another possibility is that the basic unit
is the target digit, which is sampled according to a Poisson process as
in Shibuya and Bundesen’s (1988) race model or Townsend’s (1981)
bounded performance model. For our purposes, it is not relevant which
of these possibilities is supposed.

3. The proportion correct,p, is corrected for the chance value of .10.
4. More precisely, this control procedure was as follows. The digits

appeared and remained on until the observer had read them, at which
time he/shepressed a key. The digits then disappeared, and the observer
entered them into the response box. Performance (correct digits in cor-
rect position) was over 95%. The observers were required to explain
the infrequent errors: all occurred as a result of inadvertently pressing
the wrong key on the keypad.

5. We thank Claus Bundesen for providing these data.
6. The 80 stimulus slides were fixed in the 80 slots of a carousel

tray. We wanted to preclude the observers’ ability to memorize and make
use of sequential, slide-to-slide information (e.g., we did not want the
bottom row “7184” to always follow the bottom row “0072”). We
accomplished this goal as follows. On each block, the 72 experimental
stimuli were randomly divided into two 36-stimulus groups (Groups A
and B). The carousel circled twice within each block: on Pass 1, all
Group A stimuli were shown, and on Pass 2, all Group B stimuli were
shown. This scheme ensured that stimulus ordering differed unpredictably
from one block to the next.

7. Actually, because the curves are linear, the primed and unprimed
curves are vertically as well as horizontally parallel. We emphasizehor-
izontal parallelness, because any nonlinear transform on the dependent
variable (e.g., expressing performance in terms ofp or d’ rather than
P) will preserve the horizontal, but not the vertical parallelness.

8. This prediction, like that of Figure 3B, assumes that whatever
causes the processing delay (the nonzero liftoff) will affect the primed
and unprimed conditions similarly.

9. The impulse-responsefunction is the system’s response to an in-
stantaneous stimulus impulse (a mathematical fiction defmed to be a stim-
ulus of infinitesimal duration, infinite contrast, and unit area).

10. It is also apparent in Figure 8 that, according to the model, a mask
is not necessary to produce an above-zero liftoff, although liftoff would
be smaller without a mask. In particular, it would be the largest dura-
tion such that the maximum of the ensuing sensory-response function
just reached threshold. Busey and Loftus (in press) and Loftus and
Ruthruff (in press) confirm this prediction.

11. Note, however, that even under these circumstances there would
still be some information obtained from the primed stimulus, because
the peak magnitude of the 1

00
-msec primed stimulus exceeds the peak

magnitude of the 50-msec prime.
12. If the primed stimulus were not masked, this maximum prime’s

worth would be 50 msec, the prime’s physical duration. With a mask,
the maximum prime’s worth is somewhat more than 50 msec; how much
more depends on the specific parameters of the a(t) function.

13. For simplicity’s sake, 5 rather than 10 pulses are shown in Fig-
ure 10. The argument would be the same no matter how many pulses
were used.

14. The proportionality constant is expressed this way because it al-
lows the parameter c, expressed in milliseconds, to be related to the
c in the original linear function described by Equations 6 and 7. This
relation is discus3ed in more detail below.
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d[I(t)] — 1.0—1(t)

dt — c

d[I(t)I —

1.0—1(t) —

d[I(t)]
= a~(t)dt.

h[I(t)]

15. The reason for this can be seen in Equation 8, above. The total Also, let r(t), the feature—acquisition rate, be the product of
area under g (t) is 1.0. Thus, as d becomes indefinitely large, G(t)asymp- at (t) and h [1(t)j, where h [I (t)] is a monotonically decreasing,
totes at 1.0, and a (t) thus asymptotes at & the contrast level, positive function of 1(t), the proportion of acquired features at

time t. Let h [1(t)] be further constrained in such a way that it
APPENDIX A approaches 0 as 1(t) approaches 1.0.

Derivation of Text Equation 2, and Related Matters Four remarks about this form of r(t) are in order. First, 1(t)
is automatically constrained to be less than 1.0. Second, r(t)

Let the raw sampling rate be 1/c; that is, features are always is zero whenever a (t) 0. Third, this form of r (t) is a gen-
sampled at a rate of 1/c per unit time. Whenever a feature is eralization of that described by Equation Al (above in Appen-
sampled, it is transferred to short-term memory. At time t fol- dix A), in that h[I(t)] is not constrained to be [l.0—I(t)]/c, and
lowing stimulus onset, some proportion, 1(t), of the features has at(t) is not constrained to be 1.0. Fourth, the performance curves
been sampled; these features are in short-term memory. generated by this form of r(t) are not perfectly exponential; how-

The remaining proportion, [1 .0 — 1(t)], are new features— ever, they are so close as to be experimentally indistinguish-
features that have never been sampled. Accordingly, at time t able from exponential curves.
following stimulus onset, the proportion of the (I/c) sampled Thefeature-acquisition rate, r(t), is, by definition, the deriva-
features that are new is El .0—1(t)], which means that the rate live of acquired features, 1(t), with respect to time. Thus,
of sampling new features, r(t), is

d[I(t)]
1.01(t) r(t) = at(t)h[I(t)},r(t) = (Al) = dtc

or
Because r(t) is the derivativeof new features, 1(t) with respect
to time, Equation Al may be rewritten as (Bl)

(A2)

Integrating both sides of Equation B1,

With terms rearranged, H[1(t)] = A1(t) + k,

where A~(t) is the integral of at (t), H[I(t)] is the integral of
(A3) { 1/h [1(t)] }, and k is the constant of integration. When t = 0,

A1(t) = 0 and 1(t) = 0; hence, k = H(0). Therefore,
Integrating both sides of Equation A3,

H[I(t)] = A~(t)+ H(0). (B2)
t

— ln[1 .0 — 1(t)] = — + k, (A4) Because H is an integral, it is monotonically increasing and has
an inverse, H~,which is also monotonic. From Equation B2,

where k is the constant of integration. When t = 0, 1(t) = 0, 1(t) = H’[A1(t) + H(0)].
which implies that k = 0. Moreover, following the mask that
occurs at stimulus offset (time d), no more features are acquired. Because the mask does not allow any acquisition of informa-
Thus, the total of features acquiredfrom the stimulus is obtained lion beyond time t = d, which is the stimulus duration, the to-
by setting t to d. Setting t to d, setting k to 0, and exponential- tal acquired information is obtained by setting t to d:
ing Equation A4 yields, 1(d) = H’[A1(d) + H(0)]. (B3)

1.0 — 1(t) = e ~ Therefore 1(d) is amonotonic functionofA~(d),which, in turn,

or, with terms rearranged, is by definition the performance-relevant area. Ifp is assumed
to be a monotonic function of 1(d), the total acquired informa-

1(t) = 1.0 — e ~ tion, then p is also a monotonic function of the performance-
which is text Equation 2. relevant area.

Suppose that we now assume feature sampling to occur at the

APPENDIX B rate of at(t)/c. By the logic provided inAppendix A, h [1(t)]
Derivation of the Performance-Curve Function (1.0—1)/c. Therefore,

Generated by the Supplemented Model cdt
H[I(t)1 = 1(t) _________ = —cln[1.0—I(t)] — cln (1.0—0),

We carry out this derivation in two parts. First, for the record, o 1.0—1(t)
we show that, under weak assumptions, performance is mono- or
tonically related to the performance-relevant area. We then show
that under assumptions ofthe random-sampling model, ourper- H[1(t)] = — cln[l .0—1(t)].
formance measure, P, is proportional to this area. Note also that H “(x) = (1.0—e ~ and that H(0) = 0. Thus,

Let a function at (t) be the magnitude by which a (t) exceeds by Equation B3,
threshold. Thus, at(t) may be defined as

1(d) = 1.0 — e~(’~.
at(t) — 0 for a(t) ~

— a (I) —
0

thresi, for a (t) > ashmesh Assuming performance, p, to equal 1(d), then

where a1h~~Shis the magnitude of the sensory threshold. 1.0 — p = e~4~(~)k. (B4)
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Taking the logarithm of both sides of Equation B4,

—ln(1.0—p) = A
1
(d)/c.

Because — ln(1.0 —p) = P. Equation B5 is text Equation 10.

This completes the proof.

APPENDIX C
Details of Estimating Encoding Efficiency

Under Various Circumstances

Table Cl provides some derived information regarding en-
coding efficiency, for both the supplemented model and the basic
model. Table Cl is organized as follows. The columns repre-
sent the 13 data sets that we have previously consideredin this
article. For each data set, the top two rows provide indepen-
dent variables: contrast and number of array items. The next
four rows provide the asymptote, two parameters—c and
threshold—for the supplemented model, andthe parameter c for
the basic model.

This information enables us to provide estimates of process-
ing efficiency, measured in acquired items/second, from the two
models. These estimates areprovided in the next two rows and
have been obtained as follows. For the basic model, the raw
sampling rate is 1/c (see Appendix A). To arrive at features/
second onemultiplies this value by 1,000 (to change from milli-
seconds to seconds), then multiplies by the number ofarray items
(to change from percent features to items), and finally multi-
plies by the asymptote to arrive at the raw sampling rate in
items/second.

Theefficiency calculation is somewhat more complex for the
supplementedmodel. Consider the a (t) functions shown in Fig-
ure 8. According to the model, sampling rate is proportional
to a

1
(t) at any given time t. To compute efficiency, we have

chosen to consider the maximum sampling rate—that is, the rate
that occurs when the stimulus has been on indefmitely. We have
noted that, under such conditions, a (t) asymptotes at the con-
trast value, ~, at which point at(t) is equal to the contrast value
minus the threshold value. We refer to this asymptotic a(t) value
as amax.

By the random-sampling assumptions, the raw sampling rate
continues to be equal to 1/c within the supplemented-model’s
context. However, this rate must now be multiplied by am~to

obtain the maximum raw sampling rate, in percent/millisecond.
The logic then proceeds as in the basic model (multiplying by

(B5) 1,000 x number of array items x A) to arrive at estimated raw
sampling rate in items/second.

The final two rows of Table Cl provide the normalized sam-
pling rate for the two models. This figure is computed suppos-
ing a contrast of 1.0, under the assumption that sampling rate
is indeed proportional to contrast. Accordingly, for each model,
the normalized sampling rate is simply the ordinary sampling
rate divided by contrast.

Theestimated sampling rates in Table Cl allow conclusions
of various kinds. First, the ordinary (nonnormalized) sampling
rates estimated by both models are in the50—100 items/second
range, which is comparable to those estimated by others. Second,
the rates estimated from the supplementedmodel are somewhat
greater than thoseestimated by thebasic model. Thereason for
this is that the basic model assumes (implicitly) that when the
sensory response appears, it is at its maximum (of 1.0); there-
fore, the raw sampling rate (1/c) is, according to the basic model,
the only (and thus highest) value that this rate can assume. Ac-
cording to the supplemented model, however, the sensory-
response function growsover time, and therefore the rates that
occur within an experiment—particularly with these rather short-
duration stimuli—are lower than the theoretical maximum. Third,
thenormalized sampling rates, while reasonable for Shibuya and
Bundesen’s (1988)data, are unrealistically high for the data from
Experiments 1 and 2. This indicates that one cannot simply ex-
trapolate linearly from the contrast that we used (0.033) to make
conclusions about the nature of processing at arbitrarily high
contrast levels.

Thescanning rates according to thesupplemented model can
also be computed for Schurman et al. ‘s (1968) data, although
they are ,naximwn rates because no asymptotecan be estimated,
and the asymptote is set at 1.0. Nonetheless, they fall within
the normal range: they are 81 and 52 items/msec for the 2- and
4-msec stimuli. We do not know why there is a difference be-
tween thetwo stimulus durations. Perhaps because presentation
was blocked by stimulus duration, different strategiesemerged
for the two durations.

Shibuya & Bundesen

Table Cl
Calculation of Sampling Rates (Items/Second) From the Basic Model and From the Supplemented Model

___________ Experiment 1

Observer Serial Position

MP-2MP-4 HV-2 HV-4 S.S. E.F. T.B.
.033

ST.
.171

1
.033

2
.033

3
.033

4
.033

Experiment 2

.033Contrast .970 .970 .970 .970 .033 .033
No.arrayitems 2 4 2 4 4 4 4 4 4 4 4 4 4

Asymptote: A .954 .865 .977 .873 .978 .992 .706 .865 .958 .958 .958 .958 .857
c (supplemented) 27.59 53.30 23.07 73.73 0.215 0.179 0.029 2.110 0.308 0.296 0.532 1.085 2.651
a,h,,~h 0.000 0.000 0.051 0.051 0.031 0.027 0.032 0.119 0.026 0.026 0.026 0.026 0.005
c (basic) 29 57 25 87 101 35 41 76 49 49 89 178 97
SR (supplemented) 67 63 78 43 36 133 97 85 87 91 50 25 37
SR (basic) 66 61 78 40 39 113 69 45 78 78 43 21 35
Normalized SR 69 65 80 45 1,103 4,031 2,951 499 2,639 2,746 1,528 749 1,112
(basic)
Normalized SR 68 63 81 41 1,174 3,435 2,087 266 2,370 2,370 1,305 652 1,071
(supplemented)

Note—SR, sampling rate, in items/second.

(Manuscript received July 13, 1992;
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