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Multidimensional Models and Iconic Decay:
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We discuss two issues raised by Di Lollo and Dixon. First, we formalize the notion of “infor-
mational dimensionality” and demonstrate that Loftus’s extraction-rate model is equivalent to
Di Lollo and Dixon’s “dual-decay model” with respect to dimensionality. Second, we describe
how the extraction-rate model can be modified to apply it to 2 data sets reported by Di Lollo
and Dixon. The major modifications involve (1) the assumption of capacity limitations in short-
term memory and (2) the assumption of differential information-extraction rates prior to and
after probe presentation in a partial-report paradigm. We demonstrate that although the model
can account qualitatively for Di Lollo and Dixon’s data, it cannot account for them quantitatively.

Loftus and his colleagues have proposed a model of infor-
mation extraction from visual stimuli and of the relationship
between extracted information and subsequent memory per-
formance. Briefly, this model, to which we henceforth refer
as the extraction-rate model, makes the following assump-
tions. First, a visually presented stimulus engenders a func-
tion, a(t), that characterizes available information that is
potentially extractable by the observer at time ¢ following
stimulus onset. Second, information is extracted according to
some instantaneous rate function, r(¢), that is the product of
two entities: a(z) and some function, A, of already-extracted
information. Third, extracted information is unidimensional.
Fourth, subsequent memory performance is monotonically
related to extracted information. The model has successfully
accounted for data from a variety of experimental paradigms
involving both visual memory and visible persistence. Re-
views are provided by Loftus and Hogden (1988), Loftus,
Hanna, and Lester (1988), Loftus and Hanna (1989), and
Loftus, Duncan, and Gehrig (1992).

Di Lollo and Dixon (1992; see also Di Lollo, 1985) have
criticized the extraction-rate model principally because of its
unidimensionality assumption. They point out that most
visual-perception-memory models have incorporated some
form of multidimensionality (e.g., [rwin and Yeomans 1986,
and Mandler and Parker, 1976, posited separate decay of item
and location information). Furthermore, Di Lollo and Dixon
(1988, 1992) offer partial-report data that, they claim, discon-
firm a unidimensional model such as the extraction-rate
model. These data issue from a paradigm in which the stim-
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ulus, a circular array of letters, is displayed for varying dura-
tions and is followed at varying interstimulus intervals (ISIs)
by a probe indicating a single to-be-reported letter. Di Lollo
and Dixon found the usual inverse-ISI effect: Performance
decreased with increasing ISI. They also found an inverse-
duration effect: Performance decreased with increasing stim-
ulus duration. Although common in temporal-integration
tasks (cf. Di Lollo, 1980), an inverse-duration effect had never
been previously reported in partial report, wherein perform-
ance is typically independent of stimulus duration (cf. Sper-
ling, 1960).

Both the inverse-ISI and the inverse-duration effect are
accounted for by a model described by Di Loilo and Dixon
(1988), who presently (DiLollo and Dixon, 1992) credit this
success to their model’s multidimensional nature: It posits
two iconic-decay functions, one initiated by stimulus onset
and the other initiated by stimulus offset.

The remainder of this article is divided into two sections.
First, we discuss and formalize the notion of multidimension-
ality and delineate the relation between the extraction-rate
model on the one hand and Di Lollo and Dixon’s (1988)
model on the other. Second, we demonstrate that the extrac-
tion-rate model can account qualitatively but not quantita-
tively for Di Lollo and Dixon’s data.

Multidimensionality

We agree with Di Lollo and Dixon (and with many others)
that encoding a visual stimulus entails acquisition of various
different information types. Accordingly, one can formulate
a generic, relatively noncontroversial model in which, given
J such types, or dimensions, the eventual stored memory
representation can be characterized by the memory vector

M=(119125-"9I./)’ (1)

where /; is the value achieved on the jth informational dimen-
sion under some set of experimental circumstances (e.g., a
partial-report stimulus displayed for 4 ms followed by a probe
at an g-ms ISI).

Performance on any later memory test is based on the
memory vector M. The exact nature of the memory-vector/
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performance correspondence depends on the precision with
which the informational dimensions, 1,,5, . . ., I, are defined,
along with the precision with which they are related to the
dependent variable(s) measured in the memory test. In the
most complete theory—data configuration, one might design
an experiment in which an arbitrary number of dependent
variables (e.g., two dependent variables, one measuring item
knowledge and another measuring location knowledge) are
assumed to assess individual Is (e.g., one I corresponding to
item information and another corresponding to location in-
formation). More commonly, however, investigators measure
(or at least report) only a single performance measure, which
we term P. To relate P to M, one can define a unidimensional
construct called extracted information to be some function of
the J, I values; that is,

1=ﬂ[1,12,...,1j), (2)

where f is monotonic (usually strictly monotonic) in all its
arguments. One can then assume performance to be a mon-
otonic function of information; that is,

P =m(I). (3)

One remark is in order here. In the present description,
information, 7, is unnecessary in the sense that one could
relate P directly to M. Having a theoretical construct corre-
sponding to “information,” however, provides the most gen-
eral, flexible, and intuitive characterization of the memory
system (cf. Loftus & Hogden, 1988).

Two Versions of This Generic Model

We emphasize that the model we have just described is
quite general in that the informational dimensions, /,,5, . . .,
I, can be given any interpretation whatsoever. In our implicit
example, they corresponded to item and location information,
as described by Irwin and Yeomans (1986), for example. We
now show that both Loftus’s extraction-rate model and
Di Lollo and Dixon’s model are versions of this general model;
that is, they both satisfy Equations 1-3. Accordingly, the
models are formally equivalent with respect to the dimen-
sionality issue.

The extraction-rate model. The extraction-rate model is a
version of this generic model (i.e., a model satisfying Equa-
tions 1-3). As Di Lollo and Dixon (1992) point out by quoting
Loftus et al. (1992), the model leaves the value of J along
with the exact informational dimensions unspecified, noting
only that there is some kind of many-to-one mapping of the
J informational dimensions onto the unidimensional infor-
mation that is explicitly used in the model. Loftus et al.
summarize by noting that “By this definition information is
unidimensional, whereas the memory representation is mul-
tidimensional” (p. 533).

Di Lollo and Dixon criticize this theoretical strategy on the
grounds that it assumes an inappropriate quantitative com-
bination of what are presumably qualitatively different infor-
mation types. We feel that this criticism is unjustified. Any
model (including Di Lollo and Dixon’s) must eventually
combine different information types to predict the results of
any experiment in which only a single, global, dependent

variable is measured (as, e.g., in Loftus et al. and in the data
reported by Di Lollo & Dixon, 1988, 1992). Equations 2 and
3 provide what we believe to be the most general means of
representing such combination.

The Di Lollo and Dixon model. Di Lollo and Dixon
(1988) offered a version of the generic model (satisfying
Equations 1-3) in which J = 3: [, is information based on
visible persistence (of the original stimulus), I, is information
based on a visual analog (representation of the original stim-
ulus), and I; is information based on guessing and other
memory stores. In the Di Lollo and Dixon model, I,, I, and
I, are expressed as probabilities, the function f'is the combi-
nation rule for the union of independent probabilities, and m
is the identity function.’

Information Combination and Informational
Metamers

We now offer some additional remarks about the notion of
combining information types when the model’s job is to
predict the value of a single performance measure. We have
claimed that the only reasonable way a model can do this is
to posit some function that maps M, the multidimensional
memory structure, onto /, a unidimensional information scale
that can then be mapped onto a unidimensional performance
scale. Di Lollo and Dixon remark that if the different infor-
mational types are qualitatively different from one another,
then combining them quantitatively (as in Equation 2) makes
little sense.

We agree that quantitative combination of qualitatively
different things is intrinsically awkward. One can, however,
avoid this theoretical pitfall. Suppose that there are two (or
more) experimental conditions (e.g., two different physical
stimuli) that produce the same values of I, . . ., I,. Following
color-vision terminology, let us call these metameric condi-
tions and the corresponding stimuli informational metamers.

Two or more metameric stimuli are, of course, metameric
independent of whatever rule maps the dimensions onto the
unidimensional “information.” A theory designed to specify
conditions under which metamers are produced, or an exper-
iment designed to ask whether such metamers even exist, thus
finesses the problems entailed in trying to determine the
appropriate rules for quantitative combination of qualitatively
different information dimensions. This strategy has long been
used in the vision literature to investigate color vision (e.g.,
Stiles, 1978; Von Helmholtz, 1896) and spatial vision (e.g.,
Nielson & Wandell, 1986) but has been used only sporadically
in the perception-cognition literature (e.g., Bamber, 1979;

It is important to note that /,, . . ., I, constitute information that
has been accumulated by perceptual processes and that is present in
memory when a response is made—which, of course, is after the
stimulus presentation has long been completed. Although Di Lollo
and Dixon do not explicitly say so, this information must be based
on some integral over time of information that is available during
stimulus presentation. Although, for example, available visual analog
information declines over time since stimulus offset, the amount of
such information that is transferred to more permanent storage
increases over this same time.
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Loftus & Bamber, 1990; Loftus et al., 1992; Palmer, 1988).
In Loftus et al. in particular, the theoretical and empirical
strategy was to determine rules by which stimulus duration
and stimulus-mask ISI combine to produce metameric mem-
ory representations.

The Extraction-Rate Model’s Application to Di Lollo
and Dixon’s Data

The extraction-rate model has been applied, apparently
successfully, to the Di Lollo and Dixon (1988) data (see Loftus
& Hanna, 1989, pp. 388-394). However, this application was
based on somewhat shaky logic. We now present an extension
of the model designed to account for partial report in general
and for the Di Lollo and Dixon (1988, 1992) data in partic-
ular.2 We show that the model succeeds qualitatively but fails
quantitatively in this enterprise. Because we have added as-
sumptions to give the model every chance to account for the
data, we regard its quantitative failure as a telling boundary
condition.

In what follows, we first reapply the model to Di Lollo and
Dixon’s (1988) partial-report data. These data issue from a
Duration X ISI factorial design that is the same as their present
(Di Lollo & Dixon, 1992) design but which incorporated a
greater number of duration-ISI combinations (8 durations
ranging from 10 to 500 ms X 5 ISIs ranging from 0 to 200
ms). We then apply the model to Di Lollo and Dixon’s (1992)
present data.

Model Modifications

Three modifications are required to apply the extraction-
rate model to partial report.

1. In Loftus et al. the relevant stimulus consisted of only
four digits, which does not exceed short-term memory capac-
ity. Accordingly, it was assumed that with sufficient stimulus
duration, all digits could be transferred to short-term store
and recalled. Di Lollo and Dixon, however, used a 15-letter
array, which far exceeds short-term memory capacity. Ac-
cordingly, we assume that amount of preprobe extracted
information (from all stimulus locations, including the target
location) increases over time toward some less-than-1.0
asymptote, the value of which is another model parameter.

2. Any model of the partial-report paradigm must assume
some processing change following probe presentation that
reflects attentional narrowing to the target letter from the
array as a whole. The exact nature of this change is suggested
by Reinitz (1990), who found that increasing attention to a
target location increases the information-extraction rate from
that location. Accordingly, we assume a postprobe change in
r(t), the magnitude of which is a model parameter.

3. Di Lollo and Dixon used a brightness-matching proce-
dure (described in detail by Di Lollo & Finley, 1986) in which
luminance was increased for shorter duration stimuli. We
instantiated this procedure in our model fit. A fundamental
assumption of the model is that increased luminance increases
the rate at which information is extracted from a stimulus.
Other things being equal, therefore, a higher luminance stim-

ulus will provide more information, and thus better memory
performance, than a lower luminance stimulus.

Method

The modified model has five free parameters: n and r, the param-
eters of the gamma function used to generate a(r); the preprobe
information asymptote; ¢, which scales the magnitude of r(¢); and the
postprobe () change factor. For each of Di Lollo and Dixon’s (1988)
40 duration-ISI conditions, we generated values for preprobe infor-
mation, postprobe information, and total information, which is the
sum of pre- and postprobe information. We assumed probability
correct to be an exponential function of total information. We found
the best fit of the model to the data by using a least squares grid-
search procedure.

Results

The best fitting parameter values were n =2, r =97, ¢ =
4.1, asymptote = 0.16, and postprobe r(¢) change = 0.36.°
The results of this procedure are shown in Figure 1, each
panel of which shows some variable as a function of duration.
The five ISI conditions are 0 ms (open circles), 50 ms (closed
circles), 100 ms (open squares), 150 ms (closed squares), and
200 ms (closed triangles).

Adequacy of the model’s fit. 'The bottom right panel shows
Di Lollo and Dixon’s (1988) data (cf. their Figure 1, p. 674),
and the bottom left panel shows the best fitting predicted
response probability. At least qualitatively, the model seems
to account for the data in the sense of capturing both the
inverse-ISI and the inverse-duration effects.

Despite this superficial success, a more detailed examina-
tion reveals some serious difficulties. First, the model’s quan-
titative fit to the data is poor. Root-mean-square error is
0.067, which means that on the average, a predicted and
observed point differ by almost seven percentage points.

Second, the model-theory deviation is not random as
would be expected simply on the basis of noisy data; rather,
it is quite systematic. This systematicity is demonstrated in
Figure 2, which shows the correlation over the 40 conditions
between the data (abscissa values) and the model’s predictions
(ordinate values). The main diagonal represents a perfect fit
of the model to the data. Different symbols represent the
different array-duration values. It can be seen that for a set of
conditions predicted to be roughly equal (e.g., those that are
circled in Figure 2), observed performance is lower with longer
durations. This means that the observed inverse-duration
effect is greater than the model predicts it to be.

There is an additional model limitation implied by the
Figure 2 result. One might argue that perhaps the model’s
difficulty lies in the specific assumed function (exponential)
that relates performance to information. This assumption

2The available information function, a(t), that we use in this
extension was generated by assuming the kind of linear-system re-
sponse described in the last section of Loftus, Duncan, and Gehrig
with a gamma impulse-response function. See Watson (1986) for
details about the nature of linear systems.

3 That the r(f) change factor is less than 1.0 means that r(1)
decreases rather than increases following probe presentation. This
somewhat nonsensical result is discussed later.
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Figure 2. Correlation, over 40 conditions, between model predic-
tions and data. (Different symbols represent different duration values.
The 45° line represents perfect prediction. The circled data points
illustrate a set of conditions predicted by the extraction-rate model
to be roughly equal.)

(discussed in detail in Loftus et al.), although it forms the
basis for a useful analytic tool, is not central to the model:
Perhaps some other assumed information-performance func-
tion would produce a better fit to Di Lollo and Dixon’s data.
This argument fails, however, because incorporating any other
monotonic relationship would have the effect of monotoni-
cally rescaling the ordinate of Figure 2, which would not
change the rank-order correlation. That is, the theory—data
relation would remain systematically incorrect.

The model’s third difficulty is that the best fitting parameter
values are suspect. In particular, the postprobe rate change
decreases rather than increases; also, the value of 7 is almost
twice as great as it was for the Loftus et al. data.*

Preprobe information and the nature of the inverse-duration
effect. The top left and right panels of Figure | show prob-
abilities based on pre- and postprobe information.® Inspection

¢ An icon’s worth, as defined by Loftus, Duncan, and Gehrig, is
roughly equal to n X 7. This product, computed from the present
best fitting parameter values, is almost 200 ms, whereas it was
uniformly less than 100 ms in the Loftus, Duncan, and Gehrig data.

° As noted, the model actually generates pre- and postprobe infor-
mation, which are added to produce total information that is entered
into an exponential equation to produce response probability. For
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Figure 3. Fit of the extraction-rate model to Di Lollo and Dixon’s (1992) data. (The left panel shows
the model’s prediction, and the right panel shows the data.)

of these panels clarifies why the predicted inverse-duration
effect is too small. Preprobe response probability increases as
a function of duration, whereas postprobe probability corre-
spondingly decreases, and the net resuit is a small decrease.
Although not intuitively obvious, it turns out that no combi-
nation of parameter values changes this fundamental quality
of the model.

It is noteworthy that the postprobe probabilities mirror the
Di Lollo and Dixon data better than do the probabilities that
are based on total information; the reason is that the former
produces a more dramatic inverse-duration effect than the
latter. Earlier, we alluded to faulty logic in Loftus and Hanna’s
application of this model to the same Di Lollo and Dixon
data (see Loftus & Hanna’s [1989] Figures 13 and 14, pp. 392
and 393). Their error was to assume that partial-report per-
formance was based on postprobe information only.

Application of the Model to Di Lollo and Dixon’s
(1992) Data

The major difference between Di Lollo and Dixon’s (1992)
present experimental paradigm and their 1988 paradigm is
that in the present paradigm, one of their array durations was
very long (1,000 ms). Di Lollo and Dixon argued that Loftus’s
model would not predict an ISI effect following a 1,000-ms
duration. Their reasoning was that at 1,000 ms, the function
r(¢) would have decayed to zero. Note that this implies a
ceiling effect: When the stimulus is still present, r(z) decays to
zero only when all stimulus information has been extracted.

comparability, Figure 1 (top panels) depicts probabilities rather than
information. These probabilities are computed by entering the infor-
mation values into exponential equations. A natural interpretation
of this scheme is probability summation: A correct response can be
made independently on the basis of either type of information.

We used the same parameter values produced by the fit to
Di Lollo and Dixon’s (1988) data. The results are shown in
Figure 3, wherein curves represent the theory predictions (left
panel) and the original data (right panel) as functions of array
duration. The curves connected with triangles, closed circles,
and open circles represents ISIs of 10, 100, and 200 ms.

Several aspects of the fit are noteworthy. First, there is again
qualitative correspondence between the data and the model’s
fit. Second, however, there are some major discrepancies; for
example, performance for the two shorter ISIs is predicted to
be too high, and the magnitude of the duration effect is
greatest at longer ISIs, which is contrary to the data pattern.
Third, contrary to Di Lollo and Dixon’s assertion, the model’s
predicted ISI effect following a 1,000-ms array duration is
greater, not less, than what was actually observed.

Discussion of the Model Fits

The model fails to account adequately for both sets of
Di Lollo and Dixon’s data, although not for the reasons
delineated by Di Lollo and Dixon in their commentary. Of
greatest interest is that the model predicts a strong ISI effect
even at long durations. In fairness to Di Lollo and Dixon, we
hasten to point out that this ability results from a new as-
sumption about short-term memory limitations. In view of a
decades-long tradition of assuming short-term memory to be
of limited capacity, however, we do not consider this assump-
tion to be ad hoc. Instead, we consider it to be a natural
extension of the model to any experimental situation in which
stimulus size exceeds short-term memory capacity.

In light of the relatively good correspondence between the
predicted postprobe response probabilities and the data (see
Figure 1), the model fails as a result of the positive relation
between stimulus duration and preprobe information. Annoy-
ing though it is in the present context, this positive relation
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cannot be denied; it is precisely this relation that allows the
model to predict the extremely robust and pervasive positive
relation between stimulus duration and performance in a
typical whole-report procedure (e.g., as reported by Loftus
et al., 1992).

Despite what we view as the logical and empirical necessity
of a positive stimulus-duration-preprobe-information rela-
tionship, we note that Di Lollo and Dixon’s model assumes
no such relationship: Preprobe information is subsumed in
the parameter C,, which is assumed to be constant over all
conditions. Although we have not carried out a formal dem-
onstration, we suspect that this feature of Di Lollo and
Dixon’s model is critical for its ability to account for the
inverse-duration effect. In other words, if they assumed some
reasonable positive relation between stimulus duration and
their C,, their model would likely run into the same difficulty
in accounting for the magnitude of the inverse-duration effect.

Conclusions

The extraction-rate model permits an arbitrary number of
informational dimensions. Like Di Lollo and Dixon’s model,
it requires a mapping of these dimensions onto some unidi-
mensional scale to predict unidimensional performance meas-
ures.

The extraction-rate model is capable of accounting for a
wide range of data. It cannot, however, quantitatively account
for the magnitude of the inverse-duration effect that Di Lollo
and Dixon have demonstrated several times. This quantitative
failure occurs not for any simple reason, but for complex
reasons that are not intuitively obvious.
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