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In many sciences including for example, ecology, medicine, and psychology, null hypothesis 

significance testing (NHST) is the primary means by which the numbers comprising the data from some 

experiment are translated into conclusions about the question(s) that the experiment was designed to 

address. In this entry, I make three main points. First, I provide a brief description of NHST and within 

the context of NHST, define the most common incarnation of a null hypothesis. Second, I sketch other 

less common forms of a null hypothesis. Third, I articulate a number of problems with using null 

hypothesis-based data analysis procedures. 

NHST and the Null Hypothesis 
Most experiments entail measuring the effect(s) of some number of independent variables on some 

dependent variable.  

An example experiment 
In the simplest sort of experimental design, one measures the effect of a single independent variable, 

say amount of information held in short-term memory on a single dependent variable, say reaction time to 

scan through this information. To pick a somewhat arbitrary example from cognitive psychology, 

consider what is known as a Sternberg experiment, in which a short sequence of memory digits (e.g., 

“34291”) is read to an observer who must then decide whether a single, subsequently presented test digit 

was part of the sequence. Thus for instance, given the memory digits above, the correct answer would be 

“yes” for a test digit of “2” but “no” for a test digit of “8”. The independent variable of “amount of 

information held in short-term memory” can be implemented by varying set size which is the number of 

memory digits presented: in different conditions, set size might be, say, 1, 3, 5 (as in the example), or 8 

presented memory digits. The number of different set sizes (here 4) is more generally referred to as the 

number of levels of the independent variable. The dependent variable is the reaction time measured from 

the appearance of the test digit to the observer’s response. Of interest in general is the degree to which the 

magnitude of the dependent variable (here, reaction time) depends on the level of the independent 

variable (here set size). 

Sample and population means 
Typically, the principal dependent variable takes the form of a mean. In this example mean reaction 

time for a given set size could be computed across observers. Such a computed mean is called a sample 

mean, referring to its having been computed across an observed sample of numbers. A sample mean is 

construed as an estimate of a corresponding population mean which is what the mean value of the 

dependent variable would be if all observers in the relevant population were to participate in a given 

condition of the experiment. Generally, conclusions from experiments are meant to apply to population 
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means. Therefore, the measured sample means are only interesting insofar as they are estimates of the 

corresponding population means.  

Notationally, the sample means are referred to as the Mj’s while the population means are referred to 

as the µj’s. For both sample and population means, the subscript “j” indexes the level of the independent 

variable; thus in our example M2 would refer to the observed mean reaction time of the second set-size 

level, i.e., set size = 3 and likewise, µ2 would refer to the corresponding, unobservable population mean 

reaction time corresponding to set size = 3. 

Two competing hypotheses 
NHST entails establishing and evaluating two mutually exclusive and exhaustive hypotheses about 

the relation between the independent variable and the dependent variable. Usually, and in its simplest 

form, the null hypothesis (abbreviated H0) is that the independent variable has no effect on the dependent 

variable, while the alternative hypothesis (abbreviated H1) is that the independent variable has some effect 

on the dependent variable. Note an important asymmetry between a null hypothesis and an alternative 

hypothesis: a null hypothesis an exact hypothesis while an alternative hypothesis is an inexact hypothesis. 

By this is meant that a null hypothesis can only be correct in only one way, viz, the µj’s are all equal to 

one another, while there are an infinite number of ways in which the µj’s can be different from one 

another, i.e., an infinite number of ways in which an alternative hypothesis can be true. 

Decisions based on data 
Having established a null and an alternative hypothesis that are mutually exclusive and exhaustive, 

the experimental data are used to—roughly speaking; see Point 2 below—decide between them. The 

technical manner by which one makes such a decision is beyond the scope of this entry, but two remarks 

about the process are appropriate here.  

1. A major ingredient in the decision is the variability of the Mj’s. To the degree that the Mj’s are close to 

one another, evidence ensues for possible equality of the µj’s and, ipso facto, validity of the null 

hypothesis. Conversely, to the degree that the Mj’s differ from one another, evidence ensues for 

associated differences among the µj’s and, ipso facto, validity of the alternative hypothesis. 

2. The asymmetry between the null hypothesis (which is exact) and the alternative hypothesis (which is 

inexact) sketched above implies an associated asymmetry in conclusions about their validity. If the Mj’s 

differ sufficiently, one “rejects the null hypothesis” in favor of accepting the alternative hypothesis. 

However if the Mj’s do not differ sufficiently, one does not “accept the null hypothesis”, but rather one 

“fails to reject the null hypothesis”. The reason for the awkward, but logically necessary, wording of the 
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latter  conclusion is that, because the alternative hypothesis is inexact, one cannot generally distinguish a 

genuinely true null hypothesis on the one hand from an alternative hypothesis entailing very small 

differences among the µj’s on the other hand. 

Multifactor designs: Multiple null hypothesis-alternative hypothesis pairings 
So far I have described a simple design in which the effect of a single independent variable on a 

single dependent variable is examined. Many, if not most experiments, utilize multiple independent 

variables, and are known as multifactor designs (“factor” and “independent variable” are synonymous). 

Continuing with the example experiment, imagine that in addition to measuring effects of set size on 

reaction time in a Sternberg task, one also wanted to simultaneously measure effects on reaction time of 

the test digit’s visual contrast (informally, the degree to which the test digit stands out against the 

background). One might then factorially combine the four levels of set size (now called “Factor 1”) with, 

say, two levels, “high contrast” and “low contrast,” of test-digit contrast (now called “Factor 2”). 

Combining the four set-size levels with the two test-digit contrast levels would yield 4 x 2 = 8 separate 

conditions. Typically, three independent NHST procedures would then be carried out, entailing three null 

hypothesis-alternative hypothesis pairings. They are: 

1. For the set size main effect: 

H0: Averaged over the two test-digit contrasts, there is no set-size effect 

H1: Averaged over the two test-digit contrasts, there is a set-size effect 

2. For the test-digit contrast main effect: 

H0: Averaged over the four set sizes, there is no test-digit contrast effect 

H1: Averaged over the four set sizes, there is a test-digit contrast effect 

3. For set-size x test-digit contrast interaction: 

Two independent variables are said to interact if the effect of one independent variable depends on 

the level of the other independent variable. As with the main effects, interaction effects are immediately 

identifiable with respect to the Mj’s; however again as with main effects, the goal is to decide whether 

interaction effects exist with respect to the corresponding µj’s. As with the main effects, NHST involves 

pitting a null hypothesis against an associated alternative hypothesis. 

H0: With respect to the µj’s, set size and test-digit contrast do not interact. 

H1: With respect to the µj’s, set size and test-digit contrast do interact. 

The logic of carrying out NHST with respect to interactions is the same as the logic of carrying out 

NHST with respect to main effects. In particular, with interactions as with main effects, one can reject a 
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null hypothesis of no interaction, but one cannot accept a null hypothesis of no interaction. 

Non-“Zero-Effect” Null Hypotheses 
The null hypotheses described above imply “no effect” of one sort or another—either no main effect 

of some independent variable, or no interaction between two independent variables. This kind of “no-

effect” null hypothesis is by far the most common null hypothesis to be found in the literature. 

Technically however, a null hypothesis can be any exact hypothesis; that is the null hypothesis of “all µj’s 

are equal to one another” is but one special case of what a null hypothesis can be.  

To illustrate another form, let us continue with the first, simpler Sternberg-task example (set size is 

the only independent variable), but imagine that prior research justifies the assumption that the relation 

between set size and reaction time is linear.  Suppose further that research with digits has yielded the 

conclusion that reaction time increases by 35 ms for every additional digit held in short-term memory; 

i.e., that if reaction time were plotted against set size, the resulting function would be linear with a slope 

of 35 ms.  

Now let us imagine that the Sternberg experiment is done with words rather than digits. One could 

establish the null hypothesis that “short-term memory processing proceeds at the same rate with words as 

it does with digits”, i.e., that the slope of the reaction time versus set-size function would be 35 ms for 

words just as it is known to be with digits. The alternative hypothesis would then be “for words, the 

function’s slope is anything other than 35 ms.” Again the fundamental distinction between a null and 

alternative hypothesis is that the null hypothesis is exact (35 ms/digit), while the alternative hypothesis is 

inexact (anything else). This distinction would again drive the asymmetry between conclusions, 

articulated above: a particular pattern of empirical results could logically allow “rejection of the null 

hypothesis; i.e., acceptance of the alternative hypothesis” but not “acceptance of the null hypothesis”. 

Problems with NHST 
No description of NHST in general, or a null hypothesis in particular is complete without at least a 

brief account of serious problems that accrue when NHST is the sole statistical technique used for making 

inferences about the µ’s from the Mj’s. Very briefly, three of the major problems involving a null 

hypothesis as the centerpiece of data analysis are these. 

A null hypothesis cannot be literally true 
In most sciences it is almost a self-evident truth that any independent variable must have some 

effect, even if small, on any dependent variable. This is certainly true in psychology. In the Sternberg 

task, to illustrate, it is simply implausible that set size would have literally zero effect on reaction time, 

i.e.,  that is that the µj’s corresponding to the different set sizes would be identical to an infinite number of 
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decimal places. Therefore, rejecting a null hypothesis—which, as noted, is the only strong conclusion that 

is possible within the context of NHST—tells the investigator nothing that the investigator should have 

been able to realize was true beforehand. Most investigators do not recognize this, but that does not 

prevent it from being so. 

Human nature makes acceptance of a null hypothesis almost irresistible 
Earlier I articulated why it is logically forbidden to accept a null hypothesis. However, human nature 

dictates that people do not like to make weak yet complicated conclusions such as “We fail to reject the 

null hypothesis.” Scientific investigators, generally being humans, are not exceptions. Instead, a “fail to 

reject” decision, dutifully made in an article’s results section, almost inevitably morphs into “the null 

hypothesis is true” in the article’s discussion and conclusions sections. This kind of sloppiness, while 

understandable, has led to no end of confusion and general scientific mischief within numerous 

disciplines. 

NHST emphasizes barren, dichotomous conclusions 
Earlier, I described that the pattern of population means—the relations among the unobservable 

µj’s—are of primary interest in most  scientific experiments, and that the observable Mj’s are estimates of 

the µj’s. Accordingly, it should be of great interest to assess how good are the Mj’s as estimates of the 

µj’s. If, to use an extreme example, the Mj’s were perfect estimates of the µj’s there would be no need for 

statistical analysis: the answers to any question about the µj’s would be immediately available from the 

data. To the degree that the estimates are less good, one must exercise concomitant caution in using the 

Mj’s to make inferences about the µj’s. 

None of this is relevant within the process of NHST, which does not in any way emphasize the 

degree to which the Mj’s are good estimates of the µj’s. In its typical form, NHST allows only a very 

limited assessment of the nature of the µj’s: Are they all equal or not? Typically, the “no” or “not 

necessarily no” conclusion that emerges from this process is woefully insufficient to evaluate the totality 

of what the data might potentially reveal about the nature of the µj’s. 

An alternative that is gradually emerging within several NHST-heavy sciences—an alternative that 

is common in the natural sciences—is the use of confidence intervals which assess directly how good is a 

Mj as an estimate of the corresponding µj. Very briefly, a confidence interval is an interval constructed 

around a sample mean that, with some pre-specified probability (typically 95%), includes the 

corresponding population mean. A glance at a set of plotted Mj’s with associated plotted confidence 

intervals provides immediate and intuitive information about (a) the most likely pattern of the µj’s and (b) 

the reliability of the pattern of Mj’s as an estimate of the pattern of µj’s. This in turn provides immediate 
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and intuitive information both about the relatively uninteresting question of whether some null hypothesis 

is true, and about the much more interesting questions of what the pattern of µj’s actually is and how 

much belief can be placed in it based on the data at hand. 

Further readings 
Fidler, F.. & Loftus, G.R. (in press). Why hypothesis testing is misunderstood: Hypotheses and 

Data. 

Loftus, G.R. (1996). Psychology will be a much better science when we change the way we 

analyze data. Current Directions in Psychological Science, 161-171.  

Loftus, G.R. & Masson, M.E.J. (1994) Using confidence intervals in within-subjects designs. 

Psychonomic Bulletin & Review, 1, 476-490. 

Other relevant entries 
Alpha 

Analysis of Variance (ANOVA) 

Beta 

Chi-squared Test 

Confidence Intervals 

Contrasts 

Decision Rule 

Directional Hypotheses 

F Test 

Hypothesis 

Hypothesis Testing 

Inference (Inductive and Deductive) 

Level of Significance 

Logic of Scientific Discovery, The (Popper) 

Nonsignificance 

Population 

Power Analysis 
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p-value 

Research Hypothesis 

Significance (Statistical Significance) 

Significance Level 

Simple Main Effects 

Statistical Power Analysis for the Behavioral Sciences (Cohen) 

Two-tailed Test 

Type I Error 

Type II Error 

 


