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Using confidence intervals
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We argue that to best comprehend many data sets, plotting judiciously selected sample statistics
with associated confidence intervals can usefully supplement, or even replace, standard hypothesis-
testing procedures. We note that most social science statistics textbooks limit discussion of confi-
dence intervals to their use in between-subject designs. Our central purpose in this article is to de-
scribe how to compute an analogous confidence interval that can be used in within-subject designs.
This confidence interval rests on the reasoning that because between-subject variance typically
plays no role in statistical analyses of within-subject designs, it can legitimately be ignored; hence,
an appropriate confidence interval can be based on the standard within-subject error term—that is,
on the variability due to the subject X condition interaction. Computation of such a confidence in-
terval is simple and is embodied in Equation 2 on p. 482 of this article. This confidence interval has
two useful properties. First, it is based on the same error term as is the corresponding analysis of
variance, and hence leads to comparable conclusions. Second, it is related by a known factor (\/ﬁ)
to a confidence interval of the difference between sample means; accordingly, it can be used to infer
the faith one can put in some pattern of sample means as a reflection of the underlying pattern of pop-
ulation means. These two properties correspond to analogous properties of the more widely used be-

tween-subject confidence interval.

Most data analysis within experimental psychology
consists of statistical analysis, most of which revolves
in one way or another around the question, What is the
correspondence between a set of observed sample
means and the associated set of population means that
the sample means are estimating?! If this correspon-
dence were known, then most standard statistical analy-
ses would be unnecessary. Imagine, for example, an
ideal experiment which incorporated such a vast
amount of statistical power that all population means
could be assumed to be essentially equal to the corre-
sponding observed sample means. With such an exper-
iment, it would make little sense to carry out a standard
test of some null hypothesis, because the test’s outcome
would be apparent from inspection of the sample
means. Data analysis could accordingly be confined to
the scientifically useful processes of parsimoniously
characterizing the observed pattern of sample means
and/or determining the implications of the observed
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pattern for whatever question the experiment was ad-
dressing to begin with.

With a real, as opposed to an ideal experiment, popu-
lation means are typically not known but are only esti-
mated, which is why we do do statistical analyses. Thus,
some determination of how much faith can be put in the
observed pattern of sample means must form a prelimi-
nary step to be carried out prior to evaluating what the
observed pattern might imply for the question at hand.

This preliminary step can take one of several forms.
In the social sciences, the overwhelmingly dominant
form is that of hypothesis testing: one formulates a null
hypothesis, typically that some set of population means
are all equal to one another, and, on the basis of the pat-
tern of sample means along with some appropriate error
variance, decides either to reject or to not reject the null
hypothesis. In this article, we echo suggestions (e.g.,
Tukey, 1974, 1977; Wainer & Thissen, 1993) that graph-
ical procedures—particularly construction of confidence
intervals—can be carried out as a supplement to, or even
as a replacement for, standard hypothesis-testing proce-
dures. Before doing so, however, we briefly consider the
origins of procedures now in common use.

Historical Roots

The hypothesis-testing procedures that now dominate
data analysis techniques in the behavioral sciences have
evolved as something of an expedient compromise between
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anumber of ideologically conflicting approaches to draw-
ing conclusions from statistical data (see Gigerenzer
et al., 1989, for a thorough discussion of this assertion).

Bayesian Techniques

One of these approaches, which turned out not to have
a strong influence on the techniques that are widely used
in behavioral sciences today, is based on ideas developed
by Bayes (1763; see Berger & Berry, 1988, and Winkler,
1993, for clear introductions to Bayesian statistical analy-
sis; see Box & Tiao, 1973, and Lewis, 1993, for exten-
sive treatments of the Bayesian approach to analysis of
variance). In the Bayesian approach, the goal is to esti-
mate the probability that a hypothesis is true and/or to
determine some population parameter’s distribution
given the obtained data.

Computing this probability or probability distribution
requires specification of an analogous probability or
probability distribution prior to data collection (the prior
probability) and, in experimental designs, specification
of the maximal effect that the independent variable can
have on changing these prior probabilities. An important
feature of the Bayesian approach is that interpretation of
data depends crucially on the specification of such prior
probabilities. When there is no clear basis for such spec-
ification, data interpretation will vary across researchers
who hold different views about what ought to be the
prior probabilities.

Null Hypotheses and Significance Testing

An alternative to the Bayesian approach was devel-
oped by Fisher (1925, 1935, 1955), who proposed that
data evaluation is a process of inductive inference in which
a scientist attempts to reason from particular data to
draw a general inference regarding a specified null hy-
pothesis. In this view, statistical evaluation of data is
used to determine how likely an observed result is under
the assumption that the null hypothesis is true. Note that
this view of data evaluation is opposite to that of the
Bayesian approach, in which an observed result influ-
ences the probability that a hypothesis is true. In Fisher’s
approach, results with low probability of occurrence are
deemed statistically significant and taken as evidence
against the hypothesis in question. This concept is
known to any modern student of statistical applications
in the behavioral sciences.

Less familiar, however, is Fisher’s emphasis on signif-
icance testing as a formulation of belief regarding a sin-
gle hypothesis, and, in keeping with the grounding of
this approach in inductive reasoning, the importance of
both replications and replication failures in determining
the true frequency with which a particular kind of ex-
periment has produced significant results. Fisher was
critical of the Bayesian approach, however, particularly
because of problems associated with establishing prior
probabilities for hypotheses. When no information about
prior probabilities is available, there is no single accepted
method for assigning probabilities. Therefore, different
researchers would be free to use different approaches to
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establishing prior probabilities, a form of subjectivity
that Fisher found particularly irksome. Moreover, Fisher
emphasized the point that a significance test does not
allow one to assign a probability to a hypothesis, but
only to determine the likelihood of obtaining a result
under the assumption that the hypothesis is valid. One’s
degree of belief in the hypothesis might then be modi-
fied by the probability of the result, but the probability
value itself was not to be taken as a measure of the de-
gree of belief in the hypothesis.

Competing Hypotheses

In contrast to Fisher’s emphasis on inductive reason-
ing, a third approach to statistical inference was devel-
oped by Neyman and Pearson (1928, 1933; Neyman,
1957). They were primarily concerned with inductive
behavior. For Neyman and Pearson, the purpose of sta-
tistical theory was to provide a rule specifying the cir-
cumstances under which one should reject or provision-
ally accept some hypothesis. They shared Fisher’s
criticisms of the Bayesian approach, but went one step
further. In their view, even degree of belief in a hypoth-
esis did not enter into the picture. In a major departure
from Fisher’s approach, Neyman and Pearson introduced
the concept of two competing hypotheses, one of which
is assumed to be true. In addition to establishing a pro-
cedure based on two hypotheses, they also developed
the concept of two kinds of decision error: rejection of a
true hypothesis (Type I error) and acceptance of a false
hypothesis (Type II error). In the Neyman-Pearson ap-
proach, both hypotheses are stated with equal precision
so that both types of error can be computed. The relative
importance of the hypotheses, along with the relative
costs of the two types of error are used to set the respec-
tive error probabilities. The desired Type I error proba-
bility is achieved by an appropriate choice of the rejec-
tion criterion, while the desired Type II error probability
is controlled by varying sample size. In this view, Type I
and Type II error rates will vary across situations ac-
cording to the seriousness of each error type within the
particular situation.

Neyman and Pearson’s hypothesis-testing approach
differs from Fisher’s approach in several ways. First, it
requires consideration of two, rather than just one, pre-
cise hypotheses. This modification enables computation
of power estimates, something that was eschewed by
Fisher, who argued that there was no scientific basis for
precise knowledge of the alternative hypothesis. In Fish-
er’s view, power could generally not be computed, al-
though he recognized the importance of sensitivity of
statistical tests (Fisher, 1947). Second, Neyman and Pear-
son provided a prescription for behavior—that is, for a
decision about whether to reject a hypothesis. Fisher, on
the other hand, emphasized the use of significance test-
ing to measure the degree of discordance between ob-
served data and the null hypothesis. The significance
test was intended to influence the scientist’s belief in the
hypothesis, not simply to provide the basis for a binary
decision (the latter, a stance that Neyman and Pearson
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critically viewed as “quasi-Bayesian”; see Gigerenzer
et al., 1989, p. 103).

The issues raised in the Fisher versus Neyman—Pearson
debate have not been settled, and are still discussed in
the statistical literature (e.g., Camilli, 1990; Lehmann,
1993). Nevertheless, there has been what Gigerenzer
et al. (1989) referred to as a “silent solution” within the
behavioral sciences. This solution has evolved from sta-
tistical textbooks written for behavioral scientists and
consists of a combination of ideas drawn from Fisher
and from Neyman and Pearson. For example, drawing on
Neyman and Pearson, researchers are admonished to
specify the significance level of their test prior to col-
lecting data. But little if anything is said about why a
particular significance level is chosen and few texts dis-
cuss consideration of the costs of Type I and Type II
error in establishing the significance level. Following
the practice established by Fisher, however, researchers
are taught to draw no conclusions from a statistical test
that is not significant. Moreover, concepts from the two
viewpoints have been mixed together in ways that con-
tradict the intentions of the originators. For instance, in
current applications, probabilities associated with Type I
and Type Il errors are not used only for reaching a binary
decision about a hypothesis, as advocated by Neyman
and Pearson, but often are also treated as measures of
degree of belief, as per Fisher’s approach. This tendency
has on many occasions led researchers to state the most
stringent possible level of significance (e.g., p < .01)
when reporting significant results, apparently with the
intent of convincing the skeptical reader.

Perhaps the most disconcerting consequence of the
hypothesis-testing approach as it is now practiced in be-
havioral science is that it often is a mechanistic enter-
prise that is ill-suited for the complex and multidimen-
sional nature of most social science data sets. Both
Fisher and Neyman—Pearson (as well as the Bayesians)
clearly realized this, in that they considered judgment to
be a crucial component in drawing inferences from sta-
tistical procedures. Similarly, judgment is called for in
other solutions to the debate between the Fisher and the
Neyman—Pearson schools of thought, as in the sugges-
tion to apply different approaches to the same set of data
(e.g., Box, 1986).

Graphical Procedures

Traditionally, as we have suggested, the primary data-
analysis emphasis in the social sciences has been on con-
firmation: the investigator considers a small number of
hypotheses and attempts to confirm or disconfirm them.
Over the past 20 years, however, a consensus has been
(slowly) growing that exploratory, primarily graphical,
techniques are at least as useful as confirmatory tech-
niques in the endeavor to maximally understand and use
the information inherent in a data set (see Tufte, 1983,
1990, for superb examples of graphical techniques, and
Wainer & Thissen, 1993, for an up-to-date review of them).

A landmark event in this shifting emphasis was pub-
lication (and dissemination of prepublication drafts) of

John Tukey’s (1977) book, Exploratory Data Analysis,
which heralded at least an “official” toleration (if not ac-
tually a widespread use) of exploratory and graphical
techniques. Tukey’s principal message is perhaps best
summarized by a remark that previewed the tone of his
book: “The picturing of data allows us to be sensitive not
only to the multiple hypotheses that we hold, but to the
many more we have not yet thought of, regard as un-
likely or think impossible” (Tukey, 1974, p. 526). It is in
this spirit that we focus on a particular facet of graphi-
cal techniques, that of confidence intervals.

Confidence Intervals

We have noted that, whether framed in a hypothesis-
testing context or in some other context, a fundamental
statistical question is, How well does the observed pat-
tern of sample means represent the underlying pattern of
population means? Elsewhere, one of us has argued that
construction of confidence intervals, which directly ad-
dresses this question, can profitably supplement (or even
replace) the more common hypothesis-testing proce-
dures (Loftus, 1991, 1993a, 1993b, 1993c; see also Bakan,
1966; Cohen, 1990). These authors offer many reasons
in support of this assertion. Two of the main ones are as
follows: First, hypothesis testing is primarily designed to
obliquely address a restricted, convoluted, and usually
uninteresting question—Is it not true that some set of
population means are all equal to one another?—whereas
confidence intervals are designed to directly address a
simpler and more general question—What are the pop-
ulation means? Estimation of population means, in turn,
facilitates evaluation of whatever theory-driven alterna-
tive hypothesis is under consideration.

A second argument in favor of using confidence in-
tervals (and against sole reliance on hypothesis testing)
is that it is a rare experiment in which any null hypothe-
sis could plausibly be true. That is, it is rare that a set of
population means corresponding to different treatments
could all be identically equal to one another. Therefore,
it usually makes little sense to test the validity of such a
null hypothesis; a finding of statistical significance typ-
ically implies only that the experiment has enough sta-
tistical power to detect the population mean differences
that one can assume a priori must exist.?

We assert that, at the very least, plotting a set of sam-
ple means along with their confidence intervals can pro-
vide an initial, rough-and-ready, intuitive assessment of
(1) the best estimate of the underlying pattern of popu-
lation means, and (2) the degree to which the observed
pattern of sample means should be taken seriously as a
reflection of the underlying pattern of population means,
that is, the degree of statistical power (an aspect of sta-
tistical analysis that is usually ignored in social science
research).

Consider, for example, the hypothetical data shown in
Figure 1A, which depicts memory performance follow-
ing varying retention intervals for picture and word stim-
uli. Although Figure 1A provides the best estimate of the
pattern of underlying population means, there is no in-
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dication as to how seriously this best estimate should be
taken—that is, there is no indication of error variance. In
Figures 1B and 1C, 95% confidence intervals provide
this missing information (indicating that the observed
pattern should be taken very seriously in the case of Fig-
ure 1B, which depicts something close to the ideal ex-
periment described above, but not seriously at all in the
case of Figure 1C, which would clearly signal the need
for additional statistical power in order to make any con-
clusions at all from the data). Furthermore, a glance at
either Figure 1B or Figure 1C would allow a quick as-
sessment of how the ensuing hypothesis-testing proce-
dures would be likely to turn out. Given the Figure 1B
data pattern, for instance, there would be little need for
further statistical analyses.

Among the reactions to the advocacy of routinely
publishing confidence intervals along with sample
means has been the observation (typically in the form of
personal communication to the authors) that most text-
book descriptions of confidence intervals are restricted
to between-subject designs; hence many investigators
are left in the dark about how to compute analogous con-
fidence intervals in within-subject designs. Our purpose
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Figure 1. Hypothetical data without confidence intervals (Panel A)
and with confidence intervals (Panels B and C).
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here is to fill this gap, that is, to describe a rationale and
a procedure for computing confidence intervals in within-
subject designs. Our reasoning is an extension of that
provided by a small number of introductory statistics
textbooks, generally around page 400 (e.g., Loftus &
Loftus, 1988, pp. 411-429; Anderson & McLean, 1974,
pp- 407-412). It goes as follows:

A standard confidence interval in a between-subject
design has two useful properties. First, the confidence in-
terval’s size is determined by the same quantity that
serves as the error term in the analysis of variance
(ANOVA); thus, the confidence interval and the ANOVA,
based as they are on the same information, lead to com-
parable conclusions. Second, an X% confidence interval
around a sample mean and an X% confidence interval
around the difference between two sample means are re-
lated by a factor of \/2.3 This forms the basis of our as-
sertion that confidence in patterns of means (of which the
difference between two means is a basic unit) can be
judged on the basis of confidence intervals plotted around
the individual sample means. The within-subject confi-
dence interval that we will describe has these same two
key properties.

In the text that follows, we present the various argu-
ments at an informal, intuitive level. The appendixes to this
article provide the associated mathematical underpinnings.

A HYPOTHETICAL EXPERIMENT

Consider a hypothetical experiment designed to mea-
sure effects of study time in a free-recall paradigm. In
this hypothetical experiment, to-be-recalled 20-word
lists are presented at a rate of 1, 2, or 5 sec per word. Of
interest is the relation between study time and number of
recalled list words.

Between-Subject Data

Suppose first that the experiment is run as a between-
subject design in which N = 30 subjects are randomly
assigned to three groups of n = 10 subjects per group.
Each group then participates in one of the three study-
time conditions, and each subject’s number of recalled
words is recorded. The data are presented in Table 1 and
Figure 2A. Both figure and table show the mean num-
ber of words recalled by each subject (shown as small
dashes in Figure 2A) as well as the means over subjects
(shown as closed circles connected by the solid line).

Table 1 and Figure 2A elicit the intuition that the study-
time effect would not be significant in a standard
ANOVA': there is too much variability over the subjects
within each condition (reflected by the spread of indi-
vidual-subject points around each condition mean and
quantified as MS;) compared with the rather meager
variability across conditions (reflected by the differ-
ences among the three means and quantified as MS).
Sure enough, as shown in the ANOVA table at the lower
right of Figure 2A, the study-time effect is not statisti-
cally significant [F(2,27) <1].
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Table 1
A Between-Subject Design: Number of Words Recalled (out of 20)
for Each of 10 Subjects in Each of Three Conditions

Exposure Duration Per Word

1 sec 2 sec 5 sec
10 13 13
6 8 8
11 14 14
22 23 25
16 18 20
15 17 17
1 1 4
12 15 17
9 12 12
8 9 12
M, =110 M,=13.0 M, =142

Note—M; = Mean of Condition j

Between-Subject Confidence Intervals

Figure 2B shows the 95% confidence interval around
the three condition means. This confidence interval is
based on the pooled estimate of the within-condition vari-
ance, that is, on MS,. It is therefore based on df;, =27, and
is computed by the usual formula,

IMS,, L
Cl=M,+ — [criterion #(27)], (1)

which, as indicated on the figure, is £3.85 in this example.

Figure 2B provides much the same information as
does the ANOVA shown in Figure 2A. In particular, a
glance at Figure 2B indicates the same conclusion
reached via the ANOVA: given our knowledge about the
values of the three condition population means, we can’t
exclude the possibility that they are all equal. More gen-
erally, the confidence intervals indicate that any possible
ordering of the three population means is well within the
realm of possibility. Note that the intimate correspon-
dence between the ANOVA and the confidence interval
comes about because their computations involve the
common error term, MS),.

Individual Population Means Versus Patterns
of Population Means

A confidence interval, by definition, provides in-
formation about the value of some specific population
mean; for example, the confidence interval around
the left-hand mean of Figure 2B provides information
about the population mean corresponding to the 1-sec
condition. However, in psychological experiments, it
is rare (although, as we discuss in a later section, not
unknown) for one to be genuinely interested in infer-
ring the specific value of a population mean. More
typically, one is interested in inferring the pattern
formed by a set of population means. In the present
example, the primary interest is not so much in the
absolute values of the three population means, but
rather in how they are related to one another. A hy-
pothesis that might be of interest, for example, is that

the population means increase with longer study
times. In short, isolating the values of the individual
population means is generally interesting only insofar
as it reveals something about the pattern that they
form.

Within-Subject Data

Let us now suppose that the numbers from Table 1
came not from a between-subject design, but from a
within-subject design. Suppose, that is, that the experi-
ment included a fotal of n = 10 subjects, each of whom
participated in all three study-time conditions. Table 2
reproduces the Table 1 data from each of the three con-
ditions, showing in addition the mean for each subject
(row mean) along with the grand mean, M = 12.73
(Table 2, bottom right). Figure 3 shows these data in
graphical form: the individual subject curves (thin lines)
are shown along with the curve for the condition means
(heavy line). Note that the condition means, based as
they are on the same numbers as they were in Table 1 and
Figure 2, do not change.
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Figure 2. An example of a between-subject design. Panel A: Means
surrounded by individual data points. Panel B: Confidence intervals
around the three data points.
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Table 2
A Within-Subject Design: Number Recalled (out of 20)
for 10 Subjects in Each of Three Conditions

Exposure Duration Per Word

Subject 1 sec 2 sec 5 sec M;
1 10 13 13 12.00
2 6 8 8 7.33
3 11 14 14 13.00
4 22 23 25 2333
5 16 18 20 18.00
6 15 17 17 16.33
7 1 1 4 2.00
8 12 15 17 14.67
9 9 12 12 11.00

10 8 9 12 9.67
M, M,=110 M,=13.0 M,=142 M=1273

Note—Each row corresponds to 1 subject. M; = mean of Condition j;
M, = mean of Subject 7).

Error Variance and the Notion of “Consistency”

The Figure 3 data pattern should suffice to convince
the reader that an effect of study time can be reasonably
inferred (specifically, a monotonically increasing rela-
tion between study time and performance). This is be-
cause each of the 10 subjects shows a small but consis-
tent study-time effect. Statistically, this consistency is
reflected in the small mean square due to interaction
(MSgy-=0.61) in the ANOVA table at the bottom right
of Figure 3. And, indeed, the F for the study-time con-
ditions, now computed as MS./MS., . is highly signifi-
cant [F(2,18) = 42.51].

Constructing a Confidence Interval

Suppose that we wished to construct a confidence in-
terval based on these within-subject data. As shown in
Appendix A(2), a bona fide confidence interval-—one de-
signed to provide information about values of individual
population means—would be exactly that shown in Fig-
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Figure 3. An example of a within-subject design. Means (connected
by the heavy solid line) are shown with individual subject curves
(other lines).
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ure 2B (i.e., £3.85). That is, if we wish to provide infor-
mation about, say, the value of the 1-sec-condition pop-
ulation mean, we must construct the confidence interval
that includes the same intersubject variability that con-
stituted the error variance in the between-subject design.

Intuitively, this seems wrong. An immediately obvi-
ous difficulty is that such a confidence interval would
yield a conclusion different from that yielded by the
within-subject ANOVA. We argued earlier that the Fig-
ure 2B confidence interval shows graphically that we
could not make any strong inferences about the ordering
of the three condition means (e.g., we could not reject
the null hypothesis of no differences). In the between-
subject example, this conclusion was entirely in accord
with the nonsignificant F yielded by the between-sub-
ject ANOVA. In the within-subject counterpart, how-
ever, such a conclusion would be entirely at odds with
the highly significant F' yielded by the within-subject
ANOVA. This conflict is no quirk; it occurs because the
intersubject variance, which is irrelevant in the within-
subject ANOVA, partially determines (and in this exam-
ple would almost completely determine) the size of the
confidence interval. More generally, because the ANOVA
and the confidence interval are based on different error
terms, they provide different (and seemingly conflicting)
information.

A Within-Subject Confidence Interval

To escape this conundrum, one can reason as follows.
Given the irrelevance of intersubject variance in a
within-subject design, it can legitimately be ignored for
purposes of statistical analysis. In Table 3 we have elim-
inated intersubject variance without changing anything
else. In Table 3, each of the three scores for a given sub-
ject has been normalized by subtracting from the origi-
nal (Table 2) score a subject-deviation score consisting
of that subject’s mean, M, (rightmost column of Table 2)
minus the grand mean, M = 12.73 (Table 2, bottom right).
Thus, each subject’s pattern of scores over the three con-
ditions remains unchanged, and in addition the three
condition means remain unchanged. But, as is evident in
Table 3, rightmost column, each subject has the same
normalized mean, equal to 12.73, the grand mean.

Figure 4 shows the data from Table 3; it is the Figure 3
data minus the subject variability. As shown in Appen-
dix A(3), there are now only two sources of variability in
the data: the condition variance is, as usual, reflected by
the differences among the three condition means, while
the remaining variance—the interaction variance—is re-
flected by the variability of points around each of the
three means.

Figure 5A shows the Figure 4 data redrawn with the
individual-subject curves removed, leaving only the
mean curve and the individual data points. It is evident
that there is an intimate correspondence between Fig-
ure 5A and Figure 2A. In both cases, the condition means
are shown surrounded by the individual data points, and
in both cases the variability of the individual points
around the condition means represents the error vari-
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Table 3
‘Within-Subject Design: Data Normalized
to Remove Subject Variablity

Exposure Duration Per Word

Subject 1 sec 2 sec 5 sec M, =M
1 10.73 13.73 13.73 12.73
2 11.40 13.40 13.40 12.73
3 10.73 13.73 13.73 12.73
4 11.40 12.40 14.40 12.73
5 10.73 12.73 14.73 12.73
6 11.40 13.40 13.40 12.73
7 11.73 11.73 14.73 12.73
8 10.07 13.07 15.07 12.73
9 10.73 13.73 13.73 12.73

10 11.07 12.07 15.07 12.73
: M =110 M,=13.0 M;=142 M=1273

Note—Each subject’s deviation score from the grand mean has been
subtracted from each subject’s score. Condition means (3/;) do not
change from the Table 2 data.

ance used to test for the condition effect in the ANOVA.
Intuitively, therefore, it is sensible to compute from the
Figure SA data something very much like the between-
subject confidence interval that was computed from the
Figure 2A data (cf. Figure 2B). Because the variability
in Figure 5A is entirely interaction variance, the appro-
priate formula is, as shown in Appendix A(3),

MS
CI=M,+ $XC [criterion £(18)],
‘ n

which, in this example, is =£0.52. More generally,

[ MS
CI=M,;+ SXC eriterion #(dfgy )] (2)
n

Thus, Equation 2 embodies a within-subject confidence
interval. Note that there are two differences between
Equations 1 and 2. First, the “error variance” in Equa-
tion 2 is the interaction mean squares rather than the
within mean squares. Second, the criterion # in Equa-
tion 2 is based on df, - rather than df,,.

Figure 5B shows the resulting confidence intervals
around the three condition means. It is abundantly clear
that the information conveyed by Figure 5B mirrors the
result of the ANOVA, clearly implying differences among
the population means. (To illustrate this clarity a fortiori,
the small plot embedded in Figure 5B shows the same
data with the ordinate appropriately rescaled.) We em-
phasize that this confidence interval and the associated
ANOVA now provide concordant information because
they are based on the same error term (MS;,)— just as
in a between-subject design, the ANOVA and a confi-
dence interval provide concordant information because
they are both based on the same error term, MS),.

INFERENCES ABOUT PATTERNS
OF POPULATION MEANS

As we have noted, the “confidence interval” gener-
ated by Equation 2 is not a bona fide confidence inter-

val, in the sense that it does not provide information about
the value of some relevant population mean. We have also
noted that in either a between- or a within-subject design,
a bona fide confidence interval—one truly designed to
provide information about a population mean’s value—
must be based on intersubject variance as well as interac-
tion variance. However, this Figure 5B confidence interval
has an important property that justifies its use in a typical
within-subject design. This property has to do with infer-
ring patterns of population means across conditions.

Earlier, we argued that a psychologist is typically in-
terested not in the specific values of relevant population
means but in the pattern of population means across con-
ditions. In the present hypothetical study, for example, it
might, as noted, be of interest to confirm a hypothesis
that the three-condition-population means form a mo-
notonically increasing sequence.

In a within-subject design, as in a between-subject de-
sign, an ANOVA is designed to address the question:
Are there any differences among the population means?
The within-subject confidence interval addresses the
same question. In its simplest form, the question boils
down to: Are two sample means significantly different?
In a between-subject design, there is a precise correspon-
dence between the results of an ANOVA and the results
of using confidence intervals: As shown in Appendix A(1),
two sample means, M; and M, are significantly different
given a particular a if and only if

|M, — M| >\/2 X CI,

where CI is the [100(1.0 — a)]% confidence interval.
As demonstrated in Appendix A(3), the within-subject
confidence interval also has the property that it is related
by a factor of /2 to the confidence interval around the
difference between two means.

In summary, a between-subject and a within-subject
confidence interval function similarly in two ways. First,
they both provide information that is consistent with that

Subject Variability Removed

Number of Words Recalled
>

0 1 2 3 4 5 6
Study Time per Word (sec)

Figure 4. Subject variability has been removed from the Figure 2
data using the procedure described in the text.
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Figure 5. Construction of a within-subject confidence interval.
Panel A: The only remaining variance is interaction variance.
Panel B: A confidence interval constructed on the basis of the data in
Panel A. Note the analogy between this figure and Figure 1.

provided by the ANOVA, and second, they both provide
a clear, direct picture of the (presumably important) un-
derlying pattern of population means. In addition, they
both provide a clear, direct picture of relevant statistical
power in that the smaller the confidence interval, the
greater the power.

ADDITIONAL ISSUES

The foregoing constitutes the major thrust of our re-
marks. In this section, we address a number of other is-
sues involving the use of confidence intervals in general
and within-subject confidence intervals in particular.

Assumptions

In our discussions thus far, we have made the usual as-
sumptions (see Appendix A for a description of them).
In this section, we discuss several issues regarding ef-
fects of, and suggested procedures to be used in the
event of, assumption violations.
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In repeated measures ANOVAs applied to cases in
which there are more than two conditions, the computed
F'ratio is, strictly speaking, correct only under the assump-
tion of sphericity. A strict form of sphericity (called com-
pound symmetry) requires that population variances for
all conditions be equal (homogeneity of variance) and
that the correlations between each pair of conditions be
equal (homogeneity of covariance). If the sphericity as-
sumption is violated (and it is arguable that this typically
is the case; see, e.g., O’Brien & Kaiser, 1985), two prob-
lems arise. First, the F ratio for the test of the conditions
effect tends to be inflated (Box, 1954). Corrections for
this problem have been developed in which the degrees
of freedom used to test the obtained F ratio are adjusted
according to the seriousness of the departure from
sphericity (Greenhouse & Geisser, 1959; Huynh &
Feldt, 1976).

Second, violation of the sphericity assumption com-
promises the use of the omnibus error term (and its as-
sociated degrees of freedom) when testing planned or
other types of contrasts. The omnibus error term is the
average of the error terms associated with all possible
1 df contrasts that could be performed with the set of
conditions that were tested. When sphericity is violated,
these specific error terms may vary widely, so the om-
nibus error term is not necessarily a valid estimate of
the error term for a particular contrast (O’Brien &
Kaiser, 1985).

One solution to the problem of violation of the spheric-
ity assumption is to conduct a multivariate analysis of
variance (MANOVA) in place of a univariate analysis of
variance, an approach that some advocate as a general
solution (e.g., O’Brien & Kaiser, 1985). The MANOVA test
avoids the problem of sphericity because it does not use
pooled error terms. Instead, MANOVA is a multivariate
test of a set of orthogonal, 1 df contrasts, with each con-
trast treated as a separate variable (not pooled as in
ANOVA).

The use of MANOVA in place of ANOVA for repeated
measures designs is not, however, universally recom-
mended. For example, Hertzog and Rovine (1985) rec-
ommend estimating violations of sphericity using the mea-
sure € as an aid in deciding whether to use MANOVA in
place of ANOVA (e.g., Huynh & Feldt, 1970). Huynh
and Feldt point out that such violations do not substan-
tially influence the Type I error rate associated with uni-
variate F' tests unless € is less than about 0.75. For val-
ues of € between 0.90 and 0.75, Hertzog and Rovine
recommend using the F tests with adjusted degrees of
freedom, and only for values of € below 0.75 do they
suggest using MANOVA.

More important for our purposes is that the sphericity
assumption problem arises only when considering om-
nibus tests. As soon as one considers specific, 1 df con-
trasts, as is often done after MANOVA is applied, the
sphericity assumption is no longer in effect. Thus, a vi-
able solution is to use the appropriate specific error term
for each contrast (e.g., Boik, 1981) and avoid the
sphericity assumption altogether.
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The problems that result from violation of sphericity
have implications for the implementation of confidence
intervals as graphic aids and as alternatives to hypothe-
sis testing. The computation of the confidence interval
as shown in Equation 2 uses the omnibus error term and
is the interval that would be plotted with each mean, as
in Figure 5. Given that a crucial function served by the
plotted confidence interval is to provide an impression
of the pattern of differences among means, we must be
sensitive to the possibility that violation of sphericity
causes an underestimate of the interval’s size.

To counteract the underestimation stemming from in-
appropriately high degrees of freedom, one could use the
Greenhouse—Geisser or Huynh—Feldt procedure (as com-
puted by such ANOVA packages as BMDP) to adjust the
degrees of freedom used in establishing the criterion
t value.

It is important to note that although the confidence in-
terval computed by applying the adjustment to degrees
of freedom may be used to provide a general sense of the
pattern of means, more specific questions about pairs of
means should be handled differently. If the omnibus
error term is not appropriate for use in contrasts when
sphericity is violated, then the confidence interval plot-
ted with each mean should be based on a specific error
term. The choice of the error term to use will depend on
the contrast that is of interest. For example, in Figure 5
it might be important to contrast the first and second du-
ration conditions and the second and third conditions.
The confidence interval plotted with the means of the
first and second conditions would be based on the error
term for contrasting those two conditions. The confi-
dence interval plotted with the mean for the third condi-
tion would be based on the error term for the contrast be-
tween the second and third conditions. For ease of
comparison, one might plot both intervals, side by side,
around the mean for the second condition. The choice of
which interval(s) to plot will depend on the primary
message that the graph is intended to convey. Below, we
provide a specific example of plotting multiply derived
confidence intervals to illustrate different characteris-
tics of the data.

Another means of treating violation of the homo-
geneity of variance assumption is to compute separate
confidence intervals for the separate condition means. In
a between-subject design, this is a simple procedure: one
estimates the population variance for each group, j (MSy,,
based on n;, — 1 df, where 7. is the number of observa-
tions in Group j), and then computes the confidence in-
terval for that group as

MSy, o
Cl,= = X [criterion t(n; — 1)].
A n.
J

An analogous procedure for a within-subject design is
described in Appendix B. The general idea underlying
this procedure is that one allows the subject X condition
interaction variance to differ from condition to condi-
tion; the confidence interval for Condition ; is then based
primarily on the interaction variance from Condition j.

The equation for computing the best estimate of this
Condition j interaction variance (“estimator;”) is,

MSS)(C

estimator; = Eﬁ@/[&} H

Here, MSg, . is the overall mean square due to interac-

tion, and
' 2 2 _ 2
sy, = 205~ M)” _ vy “Tilm

n—1 n—1

(where T} is the Group j total and again 7 is the number
of subjects). Thus, MS ;V is the “mean square within” ob-
tained from Condition ] of the normalized (y;;) scores
(e.g., in this article’s example, a mean square w1th1n a
given column of Table 3). Having computed the estima-
tor, the Group j confidence interval is computed as

estlmatorj
Cl= — X criterion t(n — 1).  (3)

Mean Differences

Above, we discussed the relationship between confi-
dence intervals around sample means and around the
difference between two sample means. Because this re-
lation is the same (involving a factor of \/_ ) for both the
between- and the within-subject confidence intervals,
one could convey the same information in a plot by sim-
ply including a single confidence interval appropriate
for the difference between two sample means.

Which type of confidence interval is preferable is partly
a matter of taste, but also a matter of the questions being
addressed in the experiment. Our examples in this arti-
cle involved parametric experiments in which an entire
pattern of means was at issue. In our hypothetical experi-
ments, one might ask, for instance, whether the relation
between study time and performance is monotonic, or
perhaps whether it conforms to some more specific under-
lying mathematical function, such as an exponential ap-
proach to an asymptote. In other experiments, more
qualitative questions are addressed (e.g., What are the
relations among conditions involving a positive, neutral,
or negative prime?). Here, the focus would be on specific
comparisons between sample means, and a confidence
interval of mean differences might be more useful.

Multifactor Designs

The logic that we have presented here is based on a
simple design in which there is only a single factor that
is manipulated within subjects. In many experiments,
however, there are two or more factors. In such cases, all
factors may be manipulated within subjects or some fac-
tors may be within subjects while others are between
subjects.

Multifactor Within-Subject Designs

Consider a design in which there are two fixed fac-
tors, A and B, with J and K levels per factor, combined
with n subjects. In such a design, there are three error
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terms, corresponding to the interactions of subjects with
factors 4, B, and the 4 X B interaction. Roughly speak-
ing, one of two basic results can occur in this design: ei-
ther the three error terms are all approximately equal or
they differ substantially from one another.

As discussed in any standard design text (e.g., Winer,
1971), when the error terms are all roughly equal, they
can be pooled by dividing the sum of the three sums of
squares by the sum of the three degrees of freedom
(which amounts to treating the design as if it were a sin-
gle-factor design with JK conditions). A single confi-
dence interval can then be computed using Equation 2,

MS
CI=M+ /% [criterion £(dfy  Ap)]s  (4)

where S X AB refers to the interaction of subjects with
the combined JK conditions formed by combining fac-
tors A and B [based on (n — 1)(JK — 1) degrees of free-
dom]. This confidence interval is appropriate for com-
paring any two means (or any pattern of means) with one
another.

As discussed above, the use of the omnibus error term
depends on meeting the sphericity assumption. When
this assumption is untenable (as indicated, for example,
by a low value of € computed in conjunction with the
Greenhouse—Geisser or Huynh—Feldt procedure for cor-
rected degrees of freedom or by substantially different
error terms for main effects and interactions involving
the repeated measures factors), different mean differ-
ences are distributed with different variances, as shown
in Appendix A(4). For instance, the standard error ap-
propriate for assessing (M, — M) may be different
from that appropriate for assessing (M, — M,,) or
(M, — M,,). In such cases, one should adopt the strategy
of plotting confidence intervals that can be used to as-
sess patterns of means or contrasts that are of greatest
interest. One might even plot more than one confidence
interval for some means, or construct more than one plot
for the data. Finally, one could treat the design as a one-
way design with “conditions” actually encompassing all
J X K cells; one could then drop the homogeneity-of-
variance assumption and compute an individual confi-
dence interval for each condition, as discussed in the
Assumptions section above (see Equation 3). Here the
interaction term would be MSj, ,, described as part of
Equation 4.

Mixed Designs

Other designs involve one or more factors manipu-
lated within subjects in conjunction with one or more
factors manipulated between subjects. Here, matters are
further complicated, as evaluation of the between-sub-
ject effect is almost always based on an error term that
is different from that of the evaluation of the within-sub-
ject or the interaction effects. Here again, one could, at
best, construct different confidence intervals, depending
on which mean differences are to be emphasized.
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Data Reduction in Multifactor Designs

An alternative to treating multifactor data as simply a
collection of (say) J X K means is to assume a model
that implies some form of preliminary data reduction.
Such data reduction can functionally reduce the number
of factors in the design (e.g., could reduce a two-fixed-
factor design to a one-fixed-factor design).

An example. To illustrate, suppose that one were in-
terested in slope differences between various types of
stimulus materials (e.g., digits, letters, words) in a Stern-
berg (1966) memory-scanning task. One might design a
completely within-subject experiment in which J levels
of set size were factorially combined with K levels of
stimulus type and n subjects. If it were assumed that the
function relating reaction time to set size was funda-
mentally linear, one could compute a slope for each sub-
ject, thereby functionally reducing the design to a one-
factor (stimulus type), within-subject design in which
“slope” was the dependent measure. Confidence inter-
vals around mean slopes for each stimulus-type level
could be constructed in the manner that we have de-
scribed. Alternatively, if stimulus type were varied be-
tween subjects, computing a slope for each subject would
allow one to treat the design as a one-way, between-
subject design (again with “slope” as the dependent
measure), and standard between-subject confidence in-
tervals could be computed.

Contrasts. The slope of an assumed linear function is,
of course, a special case of a one-degree-of-freedom
contrast by which a single dependent variable can be
computed from a J-level factor as

y=2,wM,
where the M, are the means of the j levels and the w;
(constrained such that 3 ;w; = 0) are the weights corre-
sponding to the contrast. Thus, the above examples can
be generalized to any case in which the effect of some
factor can be reasonably well specified.

The case of aJ X 2 design. One particular fairly com-
mon situation bears special mention. When the crucial
aspect of a multifactor design is the interaction between
two factors, and one of the factors has only two levels,
the data can be reduced to a set of J difference scores.
These difference scores can be plotted along with the
confidence interval computed from the error term for an
ANOVA of the difference scores. A plot of this kind ad-
dresses whether the differences between means are dif-
ferent, and provides an immediate sense of (1) whether
an interaction is present, and (2) the pattern of the inter-
action. Such a plot can accompany the usual plot show-
ing all condition means.

To illustrate the flexibility of this approach, consider
a semantic priming experiment in which subjects name
target words that are preceded by either a semantically
related or unrelated prime word. Prime relatedness is
factorially combined within subjects with the prime-
target stimulus onset asynchrony (SOA), which, suppose,
is 50, 100, 200, or 400 msec. Hypothetical response-
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Table 4
Data (Reaction Times) from 6 Subjects in a Hypothetical Priming Experiment

50-msec SOA 100-msec SOA 200-msec SOA 400-msec SOA
Subject R U D R U D R U D R U D
1 450 462 12 460 482 22 460 497 37 480 507 27
2 510 492 —18 515 530 15 520 534 14 504 550 46
3 492 508 16 512 522 10 503 553 50 520 539 19
4 524 532 8 530 543 13 517 546 29 503 553 50
5 420 409 —11 424 452 28 431 468 37 446 472 26
6 540 550 10 538 528 -10 552 575 23 562 598 36
M, 489 492 3 497 510 13 497 529 32 503 537 34

7

Note—Four values of SOA are combined with two priming conditions (columns labeled R = primed; columns labeled U
= unprimed); columns labeled D represent unprimed minus primed difference scores at each SOA level.

latency data from 6 subjects are shown in Table 4. The
mean latency for each of the eight conditions is plotted
in Figure 6A. Confidence intervals in Figure 6A are
based on the comparison between related and unrelated
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Figure 6. Illustration of multiple ways of plotting to demonstrate
different aspects of the data. Panel A: Mean reaction time (RT) as a
function of the eight conditions. Confidence intervals at each stimu-
lus onset asynchrony (SOA) level is based on the 5-df error term from
the one-way, two-level (primed vs. unprimed) analysis of variance
(ANOVA) done at that SOA level. Panel B: Mean (primed —
unprimed) RT difference. Confidence intervals are based on the
§ X Cerror term from the ANOVA of RT differences.

prime conditions within a particular SOA (i.e., on the
S-df error terms stemming from individual two-level
one-way ANOVAs performed at each SOA level). This
plot thus illuminates the degree to which priming effects
are reliable at the different SOAs.

Suppose that a further avenue of investigation re-
volves around the degree to which priming effects differ
in magnitude across the SOAs. In ANOVA terms, the
question would be: Is there a reliable interaction be-
tween prime type and SOA? A standard 4 X 2 within-
subject ANOVA applied to these data shows that the in-
teraction is significant [F(3,15) = 7.08, MSg. =
95.39]. The nature of the interaction can be displayed by
plotting mean difference scores (which, for individual
subjects, are obtained by subtracting the latency in the
related prime condition from the latency in the unrelated
prime condition) as a function of SOA. These difference
scores (representing priming effects) are included in
Table 4, and the mean difference scores are plotted in
Figure 6B. The confidence intervals in Figure 6B are
based on the MSj, . term for a one-factor repeated mea-
sures ANOVA of the difference scores (MSgy . =
190.78). (Note that, as with any difference score, the
error term in this ANOVA is twice the magnitude of the
corresponding error terms in the full, two-factor
ANOVA that generated the F ratio for the interaction.)
The bottom panel of Figure 6 indicates that, indeed, re-
liably different priming effects occurred at different
SOAs (consistent with the significant interaction ob-
tained in the two-factor ANOVA), and also reflects the
range of patterns that this interaction could assume.

Knowledge of Absolute Population Means

Central to our reasoning up to now is that knowledge
of absolute population means is not critical to the ques-
tion being addressed. Although this is usually true, it is
not, of course, always true. For instance, one might be
carrying out a memory experiment in which one was in-
terested in whether performance in some condition dif-
fered from a 50% chance level. In this case, the within-
subject confidence interval that we have described
would be inappropriate. If one were to use a confidence
interval in this situation, it would be necessary to use the
confidence interval that included the between-subject
variation that we removed in our examples.
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Meta-Analysis

One advantage of reporting the results of ANOVA and
tables of means and standard deviations is that it makes
tasks associated with meta-analysis easier and more pre-
cise. In cases in which an author relies on graphical de-
pictions of data using confidence intervals, as described
here, it would be helpful to include in the Results section
a statement of the effect size associated with each main
effect, interaction, or other contrast of interest in the de-
sign. This information is not typically included even in
articles that apply standard hypothesis testing tech-
niques with ANOVA. All researchers would benefit if
both the hypothesis testing method and the graphical ap-
proach advocated here were supplemented by estimates
of effect size.

CONCLUSIONS:
DATA ANALYSIS AS ART, NOT ALGORITHM

In this article, we have tried to accomplish a specific
goal: to describe an appropriate and useful confidence
interval to be used in within-subject designs that serves
the same functions as does a confidence interval in a be-
tween-subject design. Although we have attempted to
cover a variety of “ifs, ands, and buts” in our sugges-
tions, we obviously cannot cover all of them. We would
like to conclude by underscoring our belief that each ex-
periment constitutes its own data-analysis challenge in
which (1) specific (often multiple) hypotheses are to be
evaluated, (2) standard assumptions may (or may not) be
violated to varying degrees, and (3) certain sources of
variance or covariance are more important than others.
Given this uniqueness, it is almost self-evident that no
one set of algorithmic rules can appropriately cover all
possible situations.

REFERENCES

ANDERSON, V., & MCLEAN, R. A. (1974). Design of experiments: A re-
alistic approach. New York: Marcel Dekkar.

BAKAN, D. (1966). The test of significance in psychological research.
Psychological Bulletin, 66, 423-437.

BAYES, T. (1763). An essay towards solving a problem in the doctrine of
chances. Philosophical Transactions of the Royal Society, 53,370-418.

BERGER, J. O., & BERRY, D. A. (1988). Statistical analysis and the il-
lusion of objectivity. American Scientist, 76, 159-165.

Boik, R.J. (1981). A priori tests in repeated measures designs: Effects
of nonsphericity. Psychometrika, 46, 241-255.

Box, G. E. P. (1954). Some theorems on quadratic forms applied in the
study of analysis of variance problems: II. Effect of inequality of
variance and of correlation between errors in the two-way classifi-
cation. Annals of Mathematical Statistics, 25, 484-498.

Box, G.E. P. (1986). An apology for ecumenism in statistics. In G. E. P.
Box, T. Leonard, & C.-E. Wu (Eds.), Scientific inference, data
analysis, and robustness (pp. 51-84). New York: Academic Press.

Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical
analysis. Reading, MA: Addison-Wesley.

CaMiLLL G. (1990). The test of homogeneity for 2 X 2 contingency ta-
bles: A review of and some personal opinions on the controversy.
Psychological Bulletin, 108, 135-145.

COHEN, J. (1990). Things I have learned (so far). American Psycholo-
gist, 45, 1304-1312.

FISHER, R. A. (1925). Statistical methods for research workers. Edin-
burgh: Oliver & Boyd.

487

FISHER, R. A. (1935). The logic of inductive inference. Journal of the
Royal Statistical Society, 98, 39-54.

FISHER, R. A. (1947). The design of experiments. New York: Hafner
Press.

FISHER, R. A. (1955). Statistical methods and scientific induction.
Journal of the Royal Statistical Society, Series B, 17, 69-78.

GIGERENZER, G., SWITINK, Z., PORTER, T., DASTON, L., BEATTY, J., &
KRUGER, L. (1989). The empire of chance. Cambridge: Cambridge
University Press.

GREENHOUSE, S. W., & GEISSER, S. (1959). On methods in the analy-
sis of profile data. Psychometrika, 24, 95-112.

Hays, W. (1973). Statistics for the social sciences (2nd ed.). New York:
Holt.

HErTZOG, C., & ROVINE, M. (1985). Repeated-measures analysis of
variance in developmental research: Selected issues. Child Devel-
opment, 56, 787-809.

HuynH, H., & FELDT, L. S. (1970). Conditions under which mean square
ratios in repeated measures designs have exact F distributions. Jour-
nal of the American Statistical Association, 65, 1582-1589.

HuynH, H., & FELDT, L. S. (1976). Estimation of the Box correction
for degrees of freedom from sample data in the randomized block
and split plot designs. Journal of Educational Statistics, 1, 69-82.

LEHMANN, E. L. (1993). The Fisher, Neyman-Pearson theories of test-
ing hypotheses: One theory or two? Journal of the American Statis-
tical Association, 88, 1242-1249.

Lewis, C. (1993). Bayesian methods for the analysis of variance. In
G. Kerens & C. Lewis (Eds.), 4 handbook for data analysis in the
behavioral sciences: Statistical issues (pp. 233-258). Hillsdale, NJ:
Erlbaum.

Lortus, G. R. (1991). On the tyranny of hypothesis testing in the so-
cial sciences. Contemporary Psychology, 36, 102-105.

Lorrus, G. R. (1993a). Editorial Comment. Memory & Cognition, 21,
1-3.

Lortus, G. R. (1993b, November). On the overreliance of significance
testing in the social sciences. Paper presented at the annual meeting
of the Psychonomic Society, Washington, DC.

Lortus, G. R. (1993c¢). Visual data representation and hypothesis test-
ing in the microcomputer age. Behavior Research Methods, Instru-
mentation, & Computers, 25, 250-256.

Lorrus, G. R., & Lorrus, E. F. (1988). Essence of statistics (2nd ed.).
New York: Random House.

NEYMAN, J. (1957). “Inductive behavior” as a basic concept of philos-
ophy of science. Review of the International Statistical Institute, 25,
7-22.

NEYMAN, J., & PEARSON, E. S. (1928). On the use and interpretation of
certain test criteria for purposes of statistical inference. Biometrika,
20A, 175-240, 263-294.

NEYMAN, J., & PEARSON, E. S. (1933). On the problem of the most ef-
ficient tests of statistical hypotheses. Philosophical Transactions of
the Royal Society of London, Series A, 231, 289-337.

O’BRIEN, R. G., & KAISER, M. K. (1985). MANOVA method for ana-
lyzing repeated measures designs: An extensive primer. Psycholog-
ical Bulletin, 97, 316-333.

STERNBERG, S. (1966). High-speed scanning in human memory. Sci-
ence, 153, 652-654.

TurtE, E. R. (1983). The visual display of quantitative information.
Cheshire, CT: Graphics Press.

TUrTE, E. R. (1990). Envisioning information. Cheshire, CT: Graphics
Press.

TUkEY, J. W. (1974). The future of data analysis. Annals of Mathe-
matical Statistics, 33, 1-67.

TUkey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-
Wesley.

WAINER, H., & THIsSEN, D. (1993). Graphical data analysis. In
G. Kerens & C. Lewis (Eds.), 4 handbook for data analysis in the
behavioral sciences: Statistical issues (pp. 391-458). Hillsdale, NJ:
Erlbaum.

WINER, B. J. (1971). Statistical principles in experimental design
(2nd ed.). New York: McGraw-Hill.

WINKLER, R. L. (1993). Bayesian statistics: An overview. In G. Kerens
& C. Lewis (Eds.), 4 handbook for data analysis in the behavioral
sciences: Statistical issues (pp. 201-232). Hillsdale, NJ: Erlbaum.



488 LOFTUS AND MASSON

NOTES

1. For expositional simplicity, we will use sample means in our ar-
guments, realizing that analogous arguments could be made about any
sample statistic.

2. Some caveats should be noted in conjunction with these asser-
tions. First, on occasion, a plausible null hypothesis does exist (e.g.,
that performance is at chance in a parapsychological experiment). Sec-
ond, in a two-tailed z- or #-test situation, rejection of some null hy-
pothesis can establish the directionality of some effect. (Note, how-
ever, that even this latter situation rests on a logic by which one tests
the validity of some usually implausible null hypothesis.)

3. Because we are interested in comparing within- and between-sub-
ject designs, we restrict ourselves to between-subject situations in
which equal numbers of subjects are assigned to all J conditions. We
also assume homogeneity of variance, which implies that confidence
intervals around all sample means are determined by a common,
pooled error term. In a later section, we consider the case in which this
assumption is dropped.

APPENDIX A

We begin by considering a between-subject design, and pro-
viding the logic underlying the computation of the usual stan-
dard error of the mean. We then articulate the assumptions of
the within-subject standard error, and demonstrate its relation
to its between-subject counterpart. Our primary goal is to show
that the within-subject standard error plays the same role as
does the standard, between-subject standard error in two
senses: its size is determined by the error term used in the
ANOVA; and it is related by a factor of \/2 to the standard
error of the difference between two means. Appendix sections
are numbered for ease of reference in the text.

1. Between-Subject Designs

Consider a standard one-factor, between-subject design in
which subjects from some population are assumed to be ran-
domly sampled and randomly assigned to one of J conditions.
Each subject thus contributes one observation to one condition.
All observations are independent of one another. Because we
are primarily concerned with comparing between- with within-
subject designs, we lose little generality by assuming that there
are equal numbers, n, of subjects in each of the J conditions.
The fixed-effects linear model underlying the ANOVA is,

y,-,~=ﬂ+ aj+ yij+gij' (A1)

Here, y,; is the score obtained by Subject i in Condition j, l is
the grand population mean, @; is an effect of the Condition j
treatment (Zj a; = 0), ¥, is an effect due to Subject i, and g;;
is an interaction effect of Subject ij’s being in Condition j. We
include both y; and g;; for completeness although they cannot,
of course, be separated in a between-subject design. We as-
sume that the y; are normally distributed over subjects in the
population with means of zero and variances of 07. We assume
that the g,; are likewise normally distributed over subjects in
the population with means of zero and variances of o7 for all
J conditions. We assume that for each condition, j, the Y and
the g;; are independent and that the g;; are independent of one
another over conditions. Notationally, we let y, + g;; = e;;,
which, given our assumptions so far, means that we can define
“error variance,” 02, to be 0}2, + Gé% and that Equation 1 can be

rewritten as
Yy =M A te (A2)

As is demonstrated in any standard statistics textbook (e.g.,
Hays, 1973, chap. 12—13), the following is true given the model

embodied in Equation A2 and the assumptions that we have
articulated.

1. The expectation of M;, the mean of Condition j, is H;,
where (1, the population mean given Condition j, is equal to
u+a.

2. An unbiased estimate of the error variance, 02 is pro-
vided by MS), based on J(n — 1) df. The condition means, M,
are distributed over samples of size n with variance g2/n. Thus,
thf: standard error of M/, ‘SE/’ computed as \/MSW/n, is deter-
mined by the same quantity (A4S),) that constitutes the error
term in the ANOVA.

3. The standard error of the difference between any two
means, M, and M, is computed by

[ MS,
SE = [2X = =\/2 X SE,.

Therefore, the standard error of the mean and the standard
error of the difference between two means are related by \/2.
A corollary of this conclusion is that two means, M; and M,
are significantly different by a two-tailed 7 test at some signif-
icance level, x, if and only if,

‘M] _Mk ‘
/7 > criterion ¢ (dfyy ),
2XMSy.

Voom

where criterion #(df};) is two-tailed at the 100(1.0 — x)% level, or

‘ A/[, — Mk| MSs, . _
7 > p criterion #(df;,) = ClI,

where C7 at the right of the equation refers to the 100(1.0 —
x)% confidence interval. Thus, as asserted in the text, M; and
M, differ significantly at the x level when

|M; — M| >\/2 X CIL.

2. Within-Subject Designs

Now consider a standard one-factor, within-subject design
in which n subjects from the population are assumed to be ran-
domly sampled but each subject participates in all J condi-
tions. Each subject thus contributes one observation to each
condition. The linear model underlying the ANOVA is

)’ij:“+ aj+ Vi+gi]‘- (A3)

As above, y,; is the score obtained by Subject i in Condition j,
M is the population mean, and @ is an effect of the Condition j
treatment. Again, ) is an effect due to Subject i (note that y.
now has only a single subscript, i, since each subject partici-
pates in all conditions). Again, g; is the interaction effect of
Subject i’s being in Condition j. We make the same assump-
tions about y; and the g;; as we did in the preceding section.
The mean of Condition j, M, has an expectation of

EM) = E[(UmZ(u+ a;+ v+ g,)]
=E[u+ a,+ 1UnZ (y+ g]
=p+a+ l/nZiE(yi) + l/nZiE(gU.)
or, because E(Y;) = E(g;;) = 0 for all j,
EM)=pu+a,=p, (A4)

where (I, is the population mean given condition ;.
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The expectation of (y,; — M)? is
E(yij - Mj)z = E[(I'lj Yt gy —l/nzi(uj Y+ gij)]za
which reduces to

E(y; — M))? = (o7 + o)[(n — 1)/n]. (AS)

Thus, the variability of the y,; scores around M, includes vari-
ance both from subjects (¥;) and from interaction (g;;).
The variance of the M;s around [ is

E(A/[j - l'lj)z = E[l/”zi(/Jj tV g, /Jj)]z
= E[l/nzi(% + gi/’)]z
=E[2,y¥n + Zigg/n]

= (oy+ g))/n. (A6)

That is, over random samples of subjects, the variability of the
M;s includes both subject and interaction variability. An unbi-
ased estimate of (0} + 02)/n is obtained by (MSs + MSsxc)/n.
Therefore, the bona fide standard error of M; is \/(MSS + MSsy.o)/n.

3. Removal of Intersubject Variance
We now consider our proposed correction to each score de-
signed to remove subject variance (that resulted in the trans-
formation from Table 2 to Table 3 in the text). This correction
consisted of subtracting from each of Subject i’s scores an
amount equal to Subject i’s over-condition mean, M;, minus
the grand mean, M. Thus, the equation for the transformed de-

pendent variable, y{j, is
yp=uta+tyt+g,—M+M (A7)

It can easily be demonstrated that the transformed mean of
Condition j, M}, equals the untransformed mean, M;. A com-
parison of Equations 3 and 7 indicates that M and M, differ by
mean over the n subjects of (M — M,), or

M- M, = Un2 (M — M) =M — l/nzfl/JZl.yl.].
1
=M - (—)(JnM) =0,
Jn

which means that M, = M. Therefore, by Equation 4, we con-
clude that the expectation of M /= M,, the mean of Condition j,
is U;, the population mean given Condition .

Next, we consider the within-condition variance of the y;;
scores. The variance of the (y;; — M) scores is

E(y;; —M)?>=E(y; — M; + M — M)?
=E[u+ a,+y+gy

1
- (7)2,(“ tat+y+ gij)
1
+ (E) Z,Zz(ﬂ ta +y+ ng/')

1
=2+ a;+ vy + gl
n
which can be reduced to
E(yj; = My)> = a3{(n = in].

Thus, the within-cell variance of the y;; scores includes only
the interaction component. Moreover, the only additional vari-
ance of the y;; scores is variance due to conditions.
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We have asserted in the text that the variance of the yj;
scores within each condition plays a role analogous to that of
the variance of the individual subject scores within each con-
dition of a between-subject design. More precisely, we con-
sider a “sum of squares within” over the y,; scores, which can
be computed as

S8y, = Z,-Z,-(y{j - A/[j)z = iji(y;j + M, —M— A/Ij)z’
which reduces to
SSy), = Z‘/Ziy,% —-J2X M2 - nzfl\l/.z + JnM?2,

which is equal to sum of squares due to the subject X condi-
tion interaction. This means that the variance of the y;; scores
within each condition are distributed with a variance that can
be estimated by MSy, -, whose expectation is 02. Therefore,
the standard error is computed by

sg = | MSsxc
! n

As in the between-subject case, accordingly, the size of the
standard error is determined by the same quantity (MSj, ) that
constitutes the error term in the ANOVA.

Now consider the difference between two sample means

1
(M; = My) = (7)21-(#,- T ) UnE (Bt Yt g)
1
= (;)Zz(”/ -y, + 8ij — gi)

1

= — M)+ (;)Zi(gij —&ir) (A8)
The g;; and g;, are assumed to be distributed independently,
with means of zero; thus, the expectation of M; — M, is 4; —
Hy.- By the homogeneity of variance assumption, the g;; and g;;
are distributed identically in Conditions j and &, with variance
GgZ. The M; — M; are therefore distributed with a variance
equal to 205/}1, which, in turn, is estimated by 2MS, /n. This
implies that the standard deviation of the difference between
any two means, M; and M,, is

SE_ = | 2XMSsec =2 xsE,
n

Therefore, the standard error is related to the standard error of
the difference between two means by 2, just as it is in a
between-subject case.

4. Multifactor Designs
Consider aJ X K design in which each of n subjects partic-
ipates in each JK level. The model describing this situation is

YVi=H + a; + B+ aﬁjk ty+ Sijk + ag;; +bgy + abgijk' (A9)

Here, y,;, 4, and a; are as in Equation A3, while af;, is an ef-
fect due to the 4 X B interaction. The subject-by-cell interac-
tion term g, acts like g;; in Equation A3, but has an extra sub-
script to refer to all JK cells. The ag,;, the interaction of
subjects with factor 4 sums to zero over the J levels of 4, and
is identical at each level k for each subject, i. Likewise, the
bg;;, the interaction of subjects with factor B, sums to zero
over all K levels of B, and is identical at each level j for each
subject, i. Finally, the abg,;, the interaction of subjects with
the 4 X B interaction sum to zero both over all Jlevels of fac-
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tor A for each level k and across all K levels of factor B for each
level ;.

There are three mean squares involving subject interactions:
the 4 X S, B X S, and 4 X B X S interactions, which are the
ANOVA error terms for the effects of 4, B, and 4 X B. As
shown in any standard design text (e.g., Winer, 1971, chap. 7),
the expected mean squares of each of these interactions
(MSg, 4> MSsy 5, and MSg, ;. p) contain both a 02 and a 07 com-
ponent along with another variance component corresponding
to the specific effect (03, 0123, etc.). If using standard proce-
dures, one can infer that 03, = 07, = 02, = 0, then, for making
inferences about the effects of 4, B, or 4 X B, there remains
only a single source of error, 02, which is estimated by the
pooled variances dueto 4 X S, B X S,and 4 X B X S.

We have been emphasizing that confidence intervals—both
standard confidence intervals and the within-subject confi-
dence intervals—are appropriate for assessing patterns of
means or, most basically, differences between means. Given
the model in Equation A9, the standard error of the difference
between two means depends on which two means are being
compared. In particular, for comparisons,

Across different columns within a row:
o2+ 02, + 02
E(SEjyy) = ———i——"%
Across different rows within a column:

2 2 2
ESE?_) — 02 + 0%, + 02,
jk=jr :
n
Across different rows and columns:

2 2 2 2
o2+ 02+ 0}, + 02,

E(SE? =
( Jk— qz) n

The standard errors appropriate for any arbitrary mean differ-

ence will, accordingly, be equal only when o2, = 07, = 0.

APPENDIX B

In our previous considerations, we have made a homogeneity-
of-variance assumption for the g;; (interaction components).
That is, we have assumed that agz is identical for each of the j
conditions. We now drop this assumption, and assume that the
variance of the g;; is 02. Denote the mean variance of the J 03 S
(over the J condmons) as 0.

Consider Group . The variance of the g;; for that group, 0% ,
is estimated as follows. First, the expectatlon of the variance of
the normalized scores, y;; is

E(yi,j -

which (after not inconsiderable algebra) reduces to

M)? = B(u+ a,+ ¥ + g — M, + M),

[03(n — DU = 2] +

[0i(n— 1]
¥, :

Thus, the expectation of the sum of squares within the y/; scores
of Group j is

' 2
E[z i(yij _Mj) ]
which means that the expectation of the mean square within
Group j, MSy,, is
- 2IZI =2
LI, g 0305
0 n—1 g’ E J

[0z (n — D — 2)] + [02(n — 1)]
J ”

or

ey MO0 B, O
H n-1 51—2 & .

Because the first factor in this Equation is MS;V/_,

O oJ aé

EWSW TEQZG +

It can be shown that the expectation of the overall mean
square due to interaction MSj, - is o2. Therefore,

(BD)

OMSsxc0_ T3

E .
J=2 J-2

(B2)

Substituting the left side of Equation B2 for the rightmost term
of Equation B1, and rearranging terms, the estimator of ngis

MSse ™ _,
£ @Tﬂffmw

Il

8
as indicated in the text.

There is one potential problem with the Equation B3 esti-
mator: Because it is the difference of two estimated variances,
it can turn out to be negative. In such an instance, two possible
solutions are (1) to use the overall estimator or (2) to average
estimates from multiple groups which, for some a priori rea-
son, can be considered to have equal variances.

(B3)
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