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Mechanisms underlying the binocular combination of visual information were investigated 
within the context of a visual information acquisition theory proposed by Loftus, Busey, and 
their colleagues (e.g., as described by T. A. Busey & G. R. Loftus, 1994). A central assumption 
of the theory is that of a sensory threshold, which engenders an information loss such that 
information processing subsequent to the threshold is assumed to occur only when the 
magnitude of a sensory representation triggered by the stimulus exceeds the threshold. The 
presumed sensory threshold may be situated prior to or subsequent to the point at which the 
information from the two eyes combines. The location of this threshold was investigated in 3 
experiments that provided conclusions about the location of the sensory thresholds and the 
mechanisms of binocular combination. It is concluded that a linear summation mechanism, an 
independent sampling information acquisition model, and both pre- and postcombinatorial 
sources of information loss are required to account for the data. 

Visual information acquisition begins at the perceptual 
level with photons arriving at each of an observer's two 
eyes. The information contained in the pattern of arriving 
photons may represent something as simple as a monochro- 
marie patch of light or as complicated as a naturalistic scene. 
Regardless of the stimulus, however, the geometry of 
binocular vision and the separation between the two eyes 
generally dictate that slightly different versions of this 
information arrive at each eye. 

Despite initially acquiring two separate representations of 
the visual scene, it is only under rare circumstances that 
observers report seeing more than one view of the world. 
This plus other evidence from the stereo depth perception 
literature (e.g., Julesz, 1971) and the binocular combination 
literature (e.g., Blake & Fox, 1973; Blake, Sloane, & Fox, 
1981) implies that the visual system must combine the 
outputs of the two eyes into a single unitary sensory 
representation and then, on the basis of this representation, 
proceed with further information-processing mechanisms to 
acquire task-relevant information. 

In this article, we report research on binocular coding 
investigated within the context of a visual information 
acquisition theory described by the two of us and our 
colleagues (Busey & Loftus, 1994; Loftus, Busey, & Send- 
ers, 1993; Loftus & Ruthruff, 1994). The theory consists of  a 
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sensory front end followed by information acquisition 
components. The sensory front end is responsible for 
generating the sensory representation indicated above, and 
subsequent information acquisition mechanisms are respon- 
sible for acquiring task-relevant information. This theory 
successfully predicts performance in a number of different 
information-processing paradigms including digit recall 
(Busey & Loftus, 1994; Loftus et al., 1993; Loftus, Duncan, 
& Gehrig, 1992; Loftus & Ruthruff, 1994), picture recogni- 
tion (Loftus & McLean, 1998), and synchrony judgment 
and partial report (Loftus & Irwin, in press). Despite 
these successes, however, the current conceptualization 
of the theory does not specify how information from the 
two eyes combines to create a unitary sensory stimulus 
representation. 

We have two goals in this article. Our first goal is to 
account for the mechanisms that combine information from 
the two eyes in information-processing tasks. Our second 
goal is to examine the sources of information loss that result 
from a sensory nonlinearity that proved essential to account 
for past data. We demonstrate that these two goals cannot be 
addressed separately but are intimately related. Below we 
propose an extension of the Loftus and Busey theory and 
focus on a crucial component of it termed a sensory 
threshold, which entails a specific source of information loss 
in the information-processing pathway. We address two 
central questions: First, is the sensory threshold prior or 
subsequent to this point at which information from the two 
eyes combines? Second, what mechanisms are responsible 
for combining the two sources of information into a single 
unitary representation? l 

1 The range of binocular phenomena is large, and we confine the 
domain of our theory building to relatively low-contrast stimuli. 
The majority of binocular summation experiments have been 
conducted with low-contrast stimuli presented for brief durations in 
detection tasks, and these findings provide a good database from 
which combinatorial theories can be developed. 
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Mechanisms of Binocular Combination 

The major empirical question guiding binocular summa- 
tion experiments has been How much better are two eyes 
than one eye? The answer has not been simple. As detailed in 
excellent reviews by Blake and Fox (1973; Blake et al., 
1981), binocular performance may exceed monocular perfor- 
mance by various magnitudes. Binocular performance above 
monocular performance can be expected on statistical 
grounds, because a binocular stimulus provides two opportu- 
nities to detect a near-threshold stimulus. Blake and Fox 
(1973) formaliTed this into the probability summation 
prediction, which is implied by the assumption that the two 
opportunities were made independently. This model as- 
sumes an or rule for combination of the information from 
both eyes, such that the stimulus is detected if either the left 
or  the right eye detects it. Other models of binocular 
combination can be produced through consideration of the 
neural mechanisms that combine the signals from the two 
eyes, which include superadditive summation (interaction), 
additive (linear) summation, and subadditive summation 
(inhibition). Interaction implies that the output of a system 
combining the inputs from the two eyes exceeds the sum of 
the inputs. Linear summation implies that the output is the 
sum of the inputs, and subadditive summation implies that 
the output is less than the sum of the inputs. The probability 
summation prediction has become somewhat of a measuring 
stick from which conclusions about the combinatorial mecha- 
nisms can be derived. Blake and Fox (1973) concluded that 
ff binocular performance exceeds a probability summation 
prediction based on monocular performance, this implies 
genuine neural interaction (i.e., an additive or superadditive 
summation mechanism). They argued that the probability 
summation model accordingly provides a baseline to detect 
combinatorial mechanisms that imply more interaction than 
the or  rule described above. 

Although the focus of binocular combination experiments 
has been on the nature of the combination mechanisms (i.e., 
neural interaction, linear summation, or inhibition), we 
demonstrate that such questions cannot be addressed with- 
out consideration of both pre- and postcombiuatorial sources 
of information loss. In particular, we argue that a postcombi- 
natorial threshold mechanism must play a major role when 
binocular combination data are used to infer the mechanisms 
of combination. 

Binocular Superiority Depends on Temporal Overlap 

The question of the combinatorial mechanisms subserv- 
ing binocular combination is best addressed by varying the 
onsets of the presentations to each eye. For example, 
consider the probability summation model, which assumes 
that each eye provides an independent chance to detect a 
near-threshold stimulus. If this model holds, performance 
will remain constant if the two eyes are stimulated simulta- 
neously or if first one eye and then the other eye is 
stimulated. Conversely, improved binocular performance 
with simultaneous presentation compared with successive 
presentation would constitute evidence against the probabil- 

ity summation model. Thus the temporal overlap of the two 
presentations in a binocular condition provides a strong test 
of binocular summation models, and below we review 
relevant temporal overlap experiments. 

Three studies of binocular combination demonstrate the 
utility of varying the temporal onsets of a binocular stimulus 
to each eye, and all three sets of authors have argued for 
neural interactions (predictions above those of probability 
summation) between the two eyes to produce binocular 
performance. Westendorf, Blake, and Fox (1972) presented 
contrast increments to both eyes in a detection task. The 
stimulus onset asynchrony (SOA) between the two presenta- 
tions was either 0 ms or 100 ms. Westendorf et al. found 
binocular performance above that predicted from probability 
summation for the simultaneous presentations bur binocular 
performance consistent with probability summation for the 
100-ms SOA. They concluded that binocular performance 
cannot be predicted solely from probabilistic considerations 
but that the superiority at the 0-ms SOA resulted from neural 
interaction between the two eyes. 

An earlier study by Matin (1962) demonstrated the utility 
of varying the temporal overlap of the two presentations. 
Matin varied the interval separating the two presentations 
over a wide range and found that SOAs less than 100 ms 
produced binocular performance that was superior to that 
predicted by probability summation. He concluded that the 
two eyes were not independent detectors but that detection 
instead resulted from neural summation between the two 
eyes. 

Although much of the work on binocular summation has 
relied on detection tasks, Eriksen and his colleagues (Erik- 
sen & Greenspon, 1968; Eriksen, Greenspon, Lappin, & 
Carlson, 1966) examined letter identification in a three- 
alternative forced-choice procedure. As with previous find- 
ings, they found that for SOAs shorter than 50 ms, binocular 
performance exceeded that expected from the probability 
summation prediction. 

Existing Models of Binocular Combination 

In short, the available evidence disconfirms a probability 
summation mechanism and has led investigators to posit 
neural interaction as the combination mechanism mediating 
binocular combination. However, these data also clearly 
indicate that no single combinatorial mechanism can ac- 
count for binocular summation at all SOAs, because binocu- 
lar performance changes with SOA. Thus a complete 
description must account for the amount of temporal overlap 
that is produced by a nonzero SOA binocular stimulus. The 
present article represents such an approach, although it is 
motivated, in part, by extant binocular summation models. 
Two of the most influential are the binocular energy detector 
model of Legge (1984a, 1984b) and the interocular suppres- 
sion model of Cogan and colleagues (Cogan, 1987; Cogan, 
Clarke, Chan, & Rossi, 1991). 

The binocular energy detector model extends the signal 
detection model of Green and Swets (1974) to binocular 
summation. The model consists of two monocular channels 
that are subjected to input noise before undergoing a 
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squaring function. The results are linearly summed, and t h e  
final binocular output results from a compressive nonlinear- 
ity and the addition of central noise. This model predicts a 
quadratic summation relationship between binocular and 
monocular thresholds, which results from the fact that when 
two noisy signals are added, the standard deviation increases 
by the square root of the number of signals. Although this 
model can account for a diverse range of low-contrast 
phenomena, all of the binocular stimuli used to test the 
model consist of simultaneous presentations to both eyes. 
The model does not include a temporal representation of the 
physical stimulus, and thus it cannot be used to account for 
nonzero SOA binocular presentations. As described above, 
these stimuli provide strong tests of binocular summation 
models because they can be used to determine how the range 
of binocular summation varies with the onsets of the two 
presentations of a binocular stimulus. 

Alexander Cogan (Cogan, 1987; Cogan et al., 1991) 
presented a model that can qualitatively account for the 
effects of varying the SOA between the two presentations of 
a binocular stimulus. We describe this model and fit it to our 
data in the General  Discussion section. In brief, it is as 
follows. The combination mechanism is relatively complex: 
Information registering in either eye both provides excita- 
tory input to the monocular channel and inhibits the other 
monocular channel. In a separate mechanism, the informa- 
tion from the two eyes combines into a binocular fused 
channel, and the final binocular output is the sum of the 
combined monocular channels and the binocular fused 
channel. This model accounts for increments and decre- 
ments in binocular and monocular presentations and will 
also qualitatively account for the effects of nonzero SOAs in 
binocular presentations. However, Cogan did not provide 
quantitative fits to variable-SOA data. The importance of 
quantitative fits becomes apparent in the General Discussion 
section of the current article, but to anticipate, two models 
that share similar theoretical structures and thus provide 
qualitatively identical predictions do not give the same 
quantitative predictions. Indeed, we test and disconfirm 
Cogan's model on the basis of poor quantitative fits. 

One conclusion is clear from the existing binocular 
summation data and theories: A complete account of binocu- 
lar summation must include both descriptions of how 
information from the two eyes combines as well as how this 
relationship changes as the SOA between the two presenta- 
tions is varied. This, along with a description of the sources 
of information loss that contribute to performance, is the 
major theoretical contribution of the current work. 

The remainder of this article is organized as follows. First, 
we explicitly describe the task that we are trying to model. 
Second, we briefly outline our theory and propose two (not 
mutually exclusive) candidate extensions to it that may 
account for performance in tasks designed expressly to 
investigate binocular combination. Third, we describe data 
from three experiments designed to evaluate the two exten- 
sions of the theory and, more generally, to reveal the nature 
of the information combination mechanisms. Fourth, we 
conclude that neither extension alone will completely ac- 
count for all of the observed characteristics of the data, 

although a combination of the two extensions does provide a 
good account of the data. Fifth, we make specific conclu- 
sions about the nature of the information combination 
mechanisms and, on the basis of these conclusions, describe 
theoretical implications for researchers studying the nature 
of the combinatorial mechanisms. FInally, we apply Cogan's 
model to our data to examine how the choice of combination 
mechanisms affects our conclusions. We argue that the 
question of the nature of the combinatorial mechanism is 
intimately tied to the question of the location of the sensory 
threshold and that binocular performance above that pre- 
dicted by probability summation need not imply neural 
interactions between the two monocular channels. 

An Information-Processing Task 

The task that we attempt to model is complex enough to 
provide generalizability to everyday tasks but simple enough 
to be plausibly described with a relatively simple and 
concise theory. In this task, four digits are presented to an 
observer whose job is to report as many of them as possible, 
in their correct order, and to guess if necessary. The basic 
performance measure, p, is the proportion of correctly 
reported digits, in their correct locations, adjusted for the 
guessing probability of 0.10. 2 

Theory 

We (Busey & Loftus, 1994) described a theory, which we 
termed the LST (linear systems theory) model, that has 
successfully accounted for performance in this digit-recall 
task) In this section we summarize the theory, and in the 
next section we develop two extensions of it that are 
designed to account for the combinatorial mechanisms 
involved in binocularly viewed stimuli. This theory conjoins 
a linear-filter front end, common in the vision fiterature, with 
an independent information-sampling model that operates 
on the output of the linear-filter front end to acquire 
task-relevant information. Figure 1 presents three functions 
that are relevant throughout our discussion of the theory. 
Note also that complete equations for all models can be 
found in Appendix A and that the units and dependencies of 
all model parameters and functions can be found in a 
glossary in Appendix B. 

Linear-Filter Front End 

The initial response in the visual system to a briefly 
presented stimulus can be modeled as the output of a 
band-pass or low-pass linear filter (e.g., Sperling & Melch- 
her, 1978; Watson, 1986). Rapid temporal changes in the 
stimulus are temporally blurred by a visual system that 
cannot keep up with the stimulus; slower temporal changes 
are better represented. The exact nature of the response can 

2 The guessing formula is p ----- ( X  - -  0.1)/0.9, where x is the raw 
proportion correct and p is the corrected proportion. 

3 See also Lotus, Busey, and Senders (1993) and Loftus and 
Ruthruff (1994). 
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Figure 1. Theoretical components of the linear-filter model of character identification. Left panel: A 
stimulus is characterized by its changes in contrast over time. Middle panel: The stimulus engenders 
a response in the visual system that is a function of the stimulus input functionf(t) and the impulse 
response function g(t). A sensory threshold is assessed, such that further information processing does 
not proceed unless the sensory response exceeds the sensory threshold. Right panel: If the sensory 
response exceeds the threshold, further information processing takes place at a rate defined by r(t). 
This rate is proportional to the product of the above-threshold sensory response and the proportion of 
remaining stimulus information. Performance in terms of the proportion of correctly recalled digits is 
assumed to be proportional to the area under the information-acquisition rate function (which 
represents total acquired information). 

be derived by specifying an impulse response function for 
the linear filter that describes the severity of the temporal 
blurring or, thought of in another way, the amount of 
response that persists following the termination of the 
physical stimulus. Under low-luminance conditions such as 
the ones used in our experiments, the filter is usually 
assumed to be low-pass, which means that the visual system 
reproduces progressively higher temporal frequencies pro- 
gressively less faithfully. 

The shape of the impulse response function, g(t), dictates 
the type of temporal blurring. In keeping with previous 
sensory literature (e.g., Watson, 1979, 1986), we have 
chosen this function to be the difference of two gamma 
functions, each with a different time constant, 

g(t) = x ( n - 1 ) !  s[ r -~ ' - - -  1"~.~ ] '  (1) 

where 'r represents the time-constant of the gamma function 
and provides an estimate of the temporal response properties 
of the mechanisms mediating a given task. The sensory 
response function component of the LST theory is based on 
work from Andrew Watson (1986), George Sperling (Sper- 
ling & Sondhi, 1968), and others working in the temporal 
domain of perception. The left panel of Figure 2 shows 
example impulse response functions. 

The first term in Equation 1 represents an excitatory 
component, whereas the second term represents an inhibi- 
tory component of the response, which tends to sharpen the 
response and allows it to respond to higher temporal 
frequencies. The parameter r represents the ratio of the 
time-constant of the inhibitory component of the response to 
the excitatory component of the response, and s represents 
the magnitude of the temporal inhibition component. The 
parameter n represents the number of exponentially decay- 
ing stages in each gamma process, and for the current 
modeling we fix it at 9, although the fit of linear-filter models 

to data is relatively unaffected by different values of n (Burr 
& Morrone, 1996). 

Identification data for letter stimuli such as those used in 
the present study are often modeled by setting s to 0 (Busey, 
1994), which gives a monotonic impulse response function 
g(t) as shown by the solid curve in the left panel of Figure 2. 
An alternative way of representing the same information is 
by taking the Fourier transform of the impulse response 
function g(t), which results in a temporal contrast sensitivity 
function (TCSF). The TCSF plot shows the sensitivity of a 
system to different temporal frequencies. The TCSF corre- 
sponding to the solid line in the left panel of Figure 2 is 
given by the solid line in the fight panel. These curves 
represent a purely sustained response and give a mono- 
tonically decreasing TCSF, as shown in the fight panel of 
Figure 2. 

Detection data for stimuli containing mainly low spatial 
frequencies, or stimuli presented on bright backgrounds, 
often are modeled by s > 0 (Watson, 1986). In this case the 
impulse response inhibits processing after an initial excita- 
tory response, which results in an inhibitory lobe in the 
impulse response function g(t) (shown by the dashed line in 
the left panel of Figure 2) and a characteristic TCSF with a 
decrease in sensitivity at low temporal frequencies (shown 
by the dashed curve in the right panel of Figure 2). 

The temporal characteristics of the physical stimulus are 
summarized by a function describing contrast over time 
since stimulus onset, called the stimulus inputfunctio~ This 
represents the physical stimulus, not the visual system's 
response to this stimulus. For the stimuli discussed here, the 
digits simply appeared at some contrast, ~,, for some 
controlled stimulus duration, and then disappeared. Thus the 
stimulus input funedonf(t)  can be described as 

¢~ (O<_t<_d) 
f( t )  = (2) 

0 elsewhere 
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Figure 2. The temporal frequencies (freq) underlying a task may be characterized by an impulse 
response function (left panel), which characterizes the time course of the perceptual response 
engendered by a stimulus, or by the temporal contrast sensitivity function (TCSF; fight panel), which 
characterizes the fidelity by which the pathways subserving a given task pass different temporal 
frequencies. The TCSF plots are the Fourier transform of the impulse response functions into 
frequency space. High spatial frequency stimuli tend to elicit monophasic impulse response 
functions, which have no falloff at low temporal frequencies in the TCSF plot. Stimuli containing low 
spatial frequencies tend to elicit biphasic impulse response functions that contain an inhibitory lobe. 
This temporal inhibition acts to sharpen the response of the visual pathway, allowing it to respond to 
faster changes in the visual scene. However, this inhibition causes a falloff at low temporal 
frequencies in the TCSF plot, which results from a tendency for the biphasic impulse response 
function to inhibit itself when processing slow temporal changes. Parameters used: monophasic, n = 
9, x = 4.38, s = 0; biphasic, n = 9, T = 3.58, r = 2.0, s = 0.39. 

where • represents stimulus contrast and t is time since 
stimulus onset. 4 

We term the visual system's response to such a stimulus a 
sensory response function, denoted a(t), which is computed 
by convolving the stimulus input function with the impulse 
response function: 

a(t) = f ( t )  * g(t) (3) 

where * represents convolution. The sensory response 
function represents the output of  the linear-filter stage of  the 
theory and describes the initial representation of  a stimulus 
in the visual system. 

Further information acquisition mechanisms act on this 
representation to acquire task-relevant information. How- 
ever, prior to becoming available for information acquisi- 
tion, the sensory response function is assumed to pass 
through a threshold device, such that only the portion of  the 
sensory response function that exceeds a sensory threshold 
is available for information acquisition. Thus we define a 
new function ao(t): 

a(t) - O (a(t) > O) 
ao(t  ) = (4) 

0 (a(t) <-- O) 

where O is the magnitude of  the sensory threshold. Informa- 

tion acquisition cannot begin until the sensory response, 
a(t), exceeds the sensory threshold. 

As described below, once the information acquisition 
process begins it proceeds at a rate that is proportional to 
ao(t). Before we turn to this issue, however, some notes on 
the nature of  the sensory nonlinearity are in order. The 
behavior of  the sensory threshold described in Equation 4 
can be mimicked by other nonlinearities, and in particular by 
a power function of  the form 

aft(t) = [a(t)] 13, 

where 13 represents the magnitude of  nonlinear compression. 
This power function has been used by Watson (1979) in his 
probability summation in time model and by Legge (1984a, 
1984b) in a binocular summation model with 13 = 2. Raising 
the sensory response function a(t) to an exponent greater 
than 1 has properties similar to those of  a hard threshold. It 
tends to produce more overall area when a sensory response 
function is tail and thin, versus short and wide. (See Figure 2 

4 Because the stimuli were displayed on a computer monitor, the 
actual function f ( t)  flickered at 75 Hz, albeit at a rate faster than 
typically resolvable by the human eye. However, as described in 
Appendix C of Busey and Loftus (1994), this has little implication 
for our theory. 
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in Watson, 1979, for an example of this effect, where Ig(ti) l 
represents the height of the sensory response function a(t). 
As 13 increases, the psychometric function becomes steeper 
and approximates a hard threshold). The hard-threshold 
model has the same behavior, and thus the two models can 
mimic each other. We have fit models with both hard- 
threshold and power-function nonlinearities, and in general 
we find the two formulations equivalent. However, the 
threshold model gives slightly better fits to the data and is 
also slightly easier to demonstrate graphically. In addition, 
there is neurological evidence in favor of this formulation 
from Ohzawa and Freeman (1986), as we discuss in the 
General Discussion. For these reasons, as well as for 
consistency with previous formulations (Busey & Loftus, 
1994), we present the model predictions in terms of the 
threshold model. However, we provide model parameters 
and root mean square errors (RMSEs) for the power function 
model in Table 3. 

Acqu i red  In format ion:  The In format ion  
Acquis i t ion  Rate  

Once the sensory response function exceeds the sensory 
threshold, information acquisition can begin. At time t 
following stimulus onset, information acquisition proceeds 
at an instantaneous rate, termed the information acquisition 
rate, denoted r(t), which is proportional to the product of (1) 
the magnitude of above-threshold sensory response and (2) 
some decreasing function of already acquired information. 
The particular form of the information acquisition formula- 
tion is similar to independent sampling models proposed by 
Townsend (1981), Shibuya and Bundesen (1988), Rumel- 
hart (1970), and Massaro (1970); namely, information is 
presumed to be acquired at random and with replacement. 
The independent sampling assumption implies that the rate 
of acquiring information is constant and governed by a 
scaling parameter 1/c,. However, because information is 
sampled from the stimulus with replacement, the rate of 
acquiring new information is proportional to the amount of 
not-yet-acquired information. 

More specifically, let l(t) be the proportion of acquired 
information at time t. The information acquisition rate, r(t), 
is by definition the derivative of I(t) with respect to time and 
is given by 

at dI [ - l ( t ) ] .  r(t) - ~ = ao(t)  ! '0  -- 
cs ] 

(5) 

Equation 5 states that the rate of acquiring new stimulus 
information is proportional to the product of the above- 
threshold sensory response and the remaining stimulus 
information, with a constant of proportionality llcs. The 
units of cs are milliseconds, and the units of r(t) are 1/ms. 
Appendix B contains a glossary of all model parameters and 
their units. 

It is simple to show (e.g., Busey & Loftus, 1994) that with 
this rate function, the function relating total proportion of 
acquired information, denoted I(oo), to the above-threshold 

area under ao(t), denoted Ao(oo), is given by 

I(~o) = 1.0 - e-Ao(®)/cs. (6) 

The units of Ao(oo) are milliseconds, and I(oo) has units of 
proportion of total information. 

One additional linking hypothesis is required to make 
quantitative predictions, which is that p, the proportion of 
correctly recalled digits, equals the total proportion of 
acquired information I(oo). Given this and Equation 6, our 
fundamental prediction emerges: 

p = 1.0 - e-A°(~vc'. (7) 

An important consequence of Equation 7 is that perfor- 
mance, p, is monotonically related to the above-threshold 
area under the sensory response function. Thus if some 
condition i results in more above-threshold area, Ao(oo), than 
does another condition j, the theory predicts that perfor- 
mance in condition i will exceed that in condition j. In 
addition, any two conditions that produce the same above- 
threshold area, Ao(OO), are predicted to have the same 
performance. Although Equation 7 provides a stronger 
description of the area-performance relation than does 
monotonicity, for purposes of exposition it is convenient to 
think in terms of the consequences of the weaker monotonic- 
ity relation, which is that more above-threshold area implies 
greater performance. 

At the risk of redundancy, we emphasize that these 
relations are a consequence of Equations 1, 3, 4, 5, and 6 and 
are not assumptions of the theory. It is also worthwhile to 
note that the prediction of Equation 7 holds for any stimulus 
wave form, not just the rectangular wave form given in 
Equation 2 and used in the present experiments. 

Testing Equation 7 requires an experimental design that 
varies Ao(oo), the above-threshold area under the sensory 
response function. We typically vary the stimulus duration 
within several different types of conditions, including those 
involving binocular, monocular, and dichoptic stimuli, in 
order to produce empirical data that provide a strong test of 
the theory. When plotted against stimulus duration, digit- 
recall performance in a given condition is called a perfor- 
mance curve. 

The above model formulations do not explicitly assume 
the presence of noise, although, as discussed below, the 
sensory threshold may be thought of as representing the 
amount of signal lost to noise. The binocular energy model 
of Legge (1984a, 1984b) assumes both input and central 
sources of noise, although formulations by Cogan (1987) do 
not explicitly assume noise. Noise could be explicitly 
incorporated into the model without changing the formula- 
tions by assuming that the height of the sensory response 
function gives the probability that the signal exceeds the 
noise at that particular instance. This is the interpretation 
adopted by Watson's probability summation in time (Wat- 
son, 1979), and this makes the power-function formulation 
of the model similar to Legge's (1984a, 1984b) model. 

Complete equations for all model formulations are pro- 
vided in Appendix A. 
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The Role o f  the Sensory Threshold in Binocular 
Combination of  Ocular Channels 

The sensory threshold described in the previous section is 
assumed to exist prior to the information acquisition compo- 
nents of the information-processing pathway. As a result, we 
consider it asensory component. Because no further informa- 
tion processing takes place unless the sensory response 
exceeds threshold, the threshold can be considered a source 
of information loss. We now ask: Does this information loss 
occur before or after the information from each eye is 
combined into a central unitary representation? 

Below we describe two models that address this question. 
Each model extends the previously described ~eory by 
assuming that information enters each eye and engenders in 
each eye an initial peripheral sensory response function. 
These two peripheral sensory response functions then com- 
bine centrally to provide a single central sensory response 
function. Information is acquired on the basis of this central 
sensory response function, and further processing, or a 
task-relevant response, is made on the basis of the amount of 
acquired information. We describe these two models within 
the context of Experiment 1, which was designed to evaluate 
them. 

Experiment  1: Is the Sensory Threshold Prior 
or Subsequent to Binocular  Combination? 

In Experiment 1 we used monocular, binocular, and 
dichoptic stimuli. A monocular stimulus is presented to one 
eye only. A binocular stimulus is presented to both eyes 
simultaneously. A dichoptic stimulus consists of two tempo- 
ral stimulus halves, presented successively, with a zero 
interstimulus interval (ISI): The stimulus is presented first to 
one eye and then immediately to the other eye. 

As we shall see, comparison of performance curves for 
these three presentation types allows us to isolate the 
location of the presumed sensory threshold. To do so, we 
must extend our theory such that it takes these three 
presentation types into account. We first assume that informa- 
tion from each eye is carried by a monocular channel and 
that each monocular channel generates a peripheral sensory 
response curve. The information from the monocular chan- 
nels combines to produce a central sensory response curve, 
upon which memory performance is based. As an extension 
of linearity, we further assume that the two peripheral 
sensory response curves sum to produce the central sensory 
response curve. 5 

Support for our assumption of a linear combination 
mechanism comes from single-cell recording done with 
simple cells in cat visual cortex by Ohzawa and Freeman 
(1986). Using sine-wave gratings tuned to the cell's optimal 
orientation, they found that the light-evoked neural re- 
sponses from each eye are summed linearly to produce the 
output of a binocular cell. Of some relevance to our theory is 
that Ohzawa and Freeman also found a minority of cells that 
deviate from this linearity prediction, which they attributed 
to a threshold mechanism that occurs after the linear 

binocular summation. We return to this in our General 
Discussion section. 

The linearity assumption also allows quantitative evalua- 
tion of the sources of information loss, both before and after 
the site of binocular combination. Such a summation 
mechanism was adopted by Legge (1984a, 1984b), although 
his additional assumptions about noise may provide for 
different predictions of binocular performance. A more 
complex combination mechanism developed by Cogan 
(1987) is discussed in a subsequent section. 

Given the assumptions described above, we are able to 
ask, Is there a sensory threshold for the peripheral sensory 
response functions, for the central sensory response curve, 
or for both? 

Two Models 

Figure 3 illustrates these two possibilities. To illustrate 
them, we show the responses generated by an 80-ms 
dichoptic presentation (which, of course, involves a 40-ms 
presentation to one eye followed by a 40-ms presentation to 
the other eye). The top half of Figure 3 shows the peripheral 
sensory threshold model, by which a peripheral threshold, 
Op, is assumed on the sensory response functions generated 
by each monocular channel. Only the above-peripheral- 
threshold area from the peripheral sensory response curves 
combines to form the central sensory response curve. All of 
the central sensory response curve area contributes to 
performance. 

The bottom half of Figure 3 shows the central sensory 
threshold model, by which a central threshold, Oc, is 
assumed on the central sensory response curve. All of the 
peripheral-curve area contributes to the central sensory 
response curve, but only the above-central-threshold area 
contributes to performance. Both thresholds are imple- 
mented through the Equation 4 thresholding operation. 

Predictions: Monocular Versus Dichoptic Conditions 

Evaluating these two candidate models entails the follow- 
ing logic. Consider an 80-ms monocular presentation and its 
corresponding sensory response curve, shown in the left 
panel of Figure 4. This monocular presentation implies the 
same above-central-threshold area (1.4 in this example) for 
both peripheral and central sensory threshold models. The 
location of a sensory threshold is irrelevant for this condition 
because information is presented to only one eye, and there 
is no information to combine from the other eye. This makes 
the monocular condition a good comparison stimulus be- 
cause monocular performance is predicted to be the same by 
both models. 

5 An alternative formulation has been suggested by Randolph 
Blake. Rather than two independent monocular channels, Blake 
suggests thinking in terms of binocularly tuned neurons that vary in 
their ocular dominance. Either formulation allows consideration of 
the question "Is the information loss (due to the sensory threshold) 
before or after binocular combination?" 
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Figure 3. The peripheral threshold and central threshold models, along with the responses 
generated by a diehopfic presentation. Peripheral threshold model: Information enters each eye and 
engenders two peripheral sensory response curves, ap(t). These curves pass through the peripheral 
threshold, Op, such that only the above-peripheral-threshold area combines centrally to form the 
central sensory response curve, ac.e(t). All of the area under this function determines performance. 
Central threshold model: The two presentations engender two peripheral sensory response curves, 
but under the central threshold model all of the peripheral area combines centrally. After 
combination, a central sensory threshold, Oc, is assessed, such that only the above-central-threshold 
area determines performance. 

Now consider a dichoptic presentation in which the 80-ms 
duration is broken into two 40-ms presentations, the first to 
one eye, and the second to the other eye with a zero ISI. 6 The 
peripheral and central sensory threshold models yield differ- 
ent predictions for this condition. The middle panel of 
Figure 4 shows the central sensory response curve prediction 
for the peripheral threshold model. Only the above-peripheral- 
threshold area contributes to the central sensory response 
curve, but all of the central-sensory-response-curve area 
contributes to performance. Because the area reaching the 
central sensory response curve is smaller than the above- 
threshold area in the monocular condition, the peripheral 
threshold model predicts dichoptic performance to be lower 
than monocular performance. This can be seen clearly in the 
middle panel of  Figure 4 as a notch in the central sensory 
response curve of the dichoptic presentation. This loss of 
area results from two peripheral thresholds being assessed 
separately on two different peripheral sensory response 
curves, compared with the single peripheral threshold as- 
sessed on a single peripheral sensory response curve in the 
monocular case. 

As we show next, a finding of poorer dichoptic perfor- 
mance than monocular performance not only is consistent 
with a peripheral threshold model but also disconlirms any 
model in which the sole threshold is central. 

The right panel of  Figure 4 shows the central sensory 
response curve for a dichoptic presentation predicted from 

the central sensory threshold model. The dashed curves axe 
the peripheral sensory response curves before they combine 
to produce the central sensory response curve. Because the 
two peripheral sensory response curves combine before the 
central sensory threshold, the dichoptic central sensory 
response curve is identical to the monocular central sensory 
response curve, and they have the same above-central- 
threshold area. Thus the cenllal threshold model predicts 
monocular and dichoptic performance to be identical. It is 
for this reason that a finding of poorer dichoptic perfor- 
mance than monocular performance disconfirms a purely 
central threshold model. 

Predictions: Monocular Versus Binocular Conditions 

A second set of predictions involves comparison of the 
monocular and binocular conditions. In general, the means 

6 Because the stimufi were displayed on a computer monitor, the 
actual ISI was equal to the monitor's refresh rate, or 15 ms. 
However, the monocular and dichoptic displays all had the same 
presentation time course (e.g., 6 refreshes to one eye, versus 3 
refreshes to one eye followed by 3 refreshes to the other eye). 
Given this fact, we can safely assert that the effective ISI was zero, 
a presumption we will make throughout the rest of this article. 
Appendix C of Busey and Loft'us (1994) discusses this issue in 
detail. 
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Figure 4. Left panel: Sensory response function for a monocular d-ms presentation. Middle panel: 
Peripheral threshold model's prediction for dichoptic presentation, which gives less area and thus 
reduced performance compared with the monocular condition. Right panel: Central threshold 
model's prediction for dichoptic presentation, which is identical to its prediction for monocular 
presentation, and thus dichoptic performance will be identical to monocular performance. 

by which information from the two eyes is combined to 
produce binocular information--and, correspondingly, the 
relation between performance based on a monocular versus 
a binocular presentationmis the source of some debate 
(Blake & Fox, 1973; Blake et al., 1981; Legge, 1984b). Two 
reasonable propositions have been put forth: first that the 
combination occurs via probability summation, and second 
that the combination occurs via quadratic summation. In our 
General Discussion we evaluate a third proposition that 
assumes neural interaction between the two ocular channels 
in a binocular presentation. 

The supposition that the information combines by means 
of probability summation is easily incorporated in our 
theory. In what follows we develop a version of the theory 
that gives a prediction consistent with probability summa- 
tion, and to do so we begin with probability summation and 
work backward. We are assuming that the two opportunities 
t o  view a binocular stimulus are equally affected by a 
sensory nonlinearity, and thus we are considering a version 
of the model that consists only of a peripheral threshold 
(although the same arguments below would hold assuming 
no thresholds). 

Consider any two information sources (e.g., first and 
second presentations, left eye and fight eye, etc.) and denote 
the proportions correct based on these two sources as Pl and 
/'2. If Pa denotes proportion correct given both information 
sources, then probability summation implies that 

PB = PL -F ( 1 . 0  - -  PL)PR (8) 

o r  

( 1 . 0  - P B )  = ( 1 . 0  - -  p L ) ( 1 . 0  - -  P R ) .  ( 9 )  

Substituting 1.0 - e -Ae(®)lc s (Equation 7) for each p and 
simplifying, we find 

e-Ae.B(®Y~, = (e-AO~(®)/~0(e-Ae,R(~Y~ 0 

where Ae.L(oo) and Ae,R(oo) represent the peripheral sensory 
response curves from the left and fight eyes, respectively, 
after a peripheral threshold has been assessed. Ao,B(oo) 

represents the sensory response function for both eyes. 
Taking the natural log of each side of the equation, 

Ae,B(~) = A O , L ( ~ )  + AO,R(~ ) .  (10) 

Thus Equation 10 may be interpreted to mean that two 
separate areas (e.g., two areas corresponding to performance 
from the two eyes separately) sum to produce a total area 
corresponding to performance in the combined (e.g., binocu- 
lar) condition. Thus probability summation entails simply 
summing the two peripheral sensory response curves over t 
to generate the central sensory response curve. Assuming 
equal contributions from both eyes, that is, Ae,L(oo) = 
AO,R(~) = Ae~(o0), then Ae.B(~) = 2Ao~(~) and 

PB = 2pM -- P~i (11) 

where Pa and PM correspond to binocular and monocular 
performance, respectively. We stress that this assumes that 
the sensory threshold O is assessed be fore  the site of 
combination and that the information-processing rates c, ate 
the same for both eyes. Thus we are considering the 
peripheral threshold model for the moment. 

We began this section by using the probability summation 
equation (Equation 9) and worked backward to produce a 
version of the theory that is consistent with Equation 9. The 
goal was to detail those assumptions necessary to produce 
the probability summation prediction. To summarize, if, in 
addition to the assumptions embodied in Equations 4, 5, and 
6, we also assume a linear combination mechanism and no 
postcombination information loss, then the theory will make 
a prediction that is consistent with probability summation 
(Equation 11). This is because the above-threshold area 
engendered by a binocular presentation is twice that engen- 
dered by a monocular presentation under a peripheral 
threshold model. 

We have developed a model that makes a prediction 
consistent with probability summation but uses a linear 
summation combination rule. This may come as a surprise to 
some readers, who associate an or  combination rule with the 
probability summation model (the stimulus is detected if the 
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left eye detects it or if the right eye detects it, or both). A 
linear summation rule is typically associated with neural 
summation, which gives a prediction for binocular perfor- 
mance above that predicted by probability summation. How 
then can we develop a model with a linear summation rule 
that still predicts probability summation? The answer to this 
apparent paradox lies in the equation for converting above- 
threshold area to performance (Equation 7). The exponential 
in this equation allows us to re-express the traditional 
probability summation equation (Equation 9) in terms of the 
sums of areas, which implies a linear summation mecha- 
nism. However, this formulation is formally equivalent to 
the or rule of probability summation. Probability summation 
contains the intrinsic notion of diminishing returns: If  two 
observers or eyes each have a 50% chance of detecting the 
stimulus, the stimulus will be detected 75% of the time. Our 
formulation moves this notion of diminishing returns to the 
exponential in the information-processing stages. If we 
instead computed individual probabilities for the left and 
right eyes with Equation 7, we would have to adopt the or 
rule expressed in Equation 9 as our combination mechanism. 
Thus our adoption of a linear summation mechanism 
depends on the information-extraction portion of the theory 
(Equation 7). We should note that this component of the 
model is essential in that it accounts for performance as a 
function of exposure duration. 

Note that the probability summation prediction is a 
consequence of the assumptions of (a) a linear summation 
mechanism, (b) no postcombinatorial information loss, and 
(c) our exponential information-extraction mechanism. Other 
models have adopted a linear summation mechanism and 
other assumptions and derive a different prediction of 
binocular performance on the basis of monocular data. 

Linear Summation Does Not  Imply a Probability 
Summation Prediction 

At this point we wish to clearly distinguish between a 
probability summation prediction, which is a prediction of 
binocular performance based on monocular data, and a 
theory that assumes a linear-summation combination mecha- 
nism. The latter is a model of how the information from the 
two eyes combines. When a linear summation mechanism is 
conjoined with additional assumptions of no postcombinato- 
rial information loss and an independent sampling informa- 
tion-acquisition mechanism, then a linear summation mech- 
anism will make a prediction that is consistent with 
probability summation. However, as we show below, a 
theory that assumes a linear-summation combination mecha- 
nism will make predictions that differ from probability 
summation ff a different set of assumptions about thresholds 
is made. Thus the question of combination mechanisms is 
intimately tied to the question of threshold locations; one 
cannot simply compare monocular and binocular data and 
infer the combinatorial mechanisms without also consider- 
ing pre- and postcombination information losses. This is a 
major theme of the current work. We shah refer to a model 
that sums the information from the two eyes as a linear- 
summation combination mechanism, which under certain 

assumptions will predict probability summation but which 
under other assumptions will not. 

When we refer to predictions of binocular data based on 
monocular performance, we will call this a probability 
summation prediction. When we refer to a specific model of 
binocular information combination that explicitly assumes a 
linear-summation combination mechanism and may, under 
certain assumptions, make a prediction of binocular perfor- 
mance that is consistent with probability summation, we 
shall refer to this as a linear summation model. 

We are now in a position to discuss the model's predic- 
tions about the relation between the monocular and the 
binocular conditions. First consider the predictions for a 
peripheral threshold model, as shown in the top panel of 
Figure 5. In a monocular presentation, the digits appear in 
only one eye and generate only a single peripheral sensory 
response curve. The area that survives the peripheral thresh- 
old constitutes the central sensory response curve. 

In a binocular presentation, the digits are presented to 
both eyes and generate two peripheral sensory response 
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Figure 5. Top panel: Binocular and monocular central sensory 
response curves under a peripheral threshold model. The binocular 
area is always twice as great as the associated monocular area, and 
thus binocular and monocular performances obey a probability 
summation prediction: PB = 2p~ -- p~. Bottom panel: Binocular 
and monocular central sensory response curves under a central 
threshold model. Again the binocular curve is twice as tall as a 
monocular curve, but the central sensory threshold affects the 
monocular area proportionately more. This causes a failure of 
probability summation because binocular performance would be 
predicted to be greater than that expected from a probability 
summation prediction based on monocular performance: Pa > 2pM 
- p~. Under an extreme case, the monocular curve might not even 
reach the central sensory threshold, although a binocular c u r v e  

might. In this case, Pu = 0 while PB > 0, which is a clear failure of 
probability summation. 
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curves. These two curves will both pass through peripheral 
sensory thresholds, and because the contrast of  the two 
presentations is always the same, the two peripheral curves 
will be identical:  As a result, the binocular condition's 
central sensory response curve will always be twice as high 
as the monocular condition's central sensory response curve, 
and thus the binocular area will always be twice as great. 
This implies that under a peripheral threshold model, 
binocular performance will fulfill a probability summation 
relation with monocular performance: Ps = 2pM -- p2M. Note 
that this is in accordance with the probability summation 
prediction o f  Equation 11, although we have now described 
a specific model that makes a probability summation predic- 
tion. This model makes two key assumptions: no postcombi- 
natorial source of  information loss and a linear-summation 
combinatorial mechanism. 

By the central threshold model, however, binocular 
performance is predicted to be greater than the binocular 
performance predicted by probability summation. The logic 
underlying this assertion is illustrated in the bottom panel o f  
Figure 5. In the absence of  peripheral thresholds, the two 
curves are the original monocular and binocular sensory 
response curves. As in the top panel, the binocular curve is 
overall twice as tall as the monocular curve. However, there 
is now a central sensory threshold, and only the above-cenWal- 
threshold area determines performance. 

Note that much of  the monocular area falls below the 
central threshold, leaving only an area of  1.4 above thresh- 
old in this example. In contrast, the binocular curve, by 
virtue of  being higher than its monocular counterpart, is 
relatively less affected by the same threshold; hence the 
binocular above-threshold area (4.1 in this example) is 
greater than twice the monocular above-threshold area (of 
1.4). This implies binocular performance above that pre- 
dicted by probability summation (i.e., PB > 2pM -- p2) .  
This above-probability-summation prediction holds for any 
nonzero central sensory threshold (except for the trivial case 
when neither curve exceeds threshold and performance is 
zero in both conditions). This above-probability-summation 
prediction is a direct result of  the central sensory threshold. 

Prediction Summary 

Let us summarize two critical predictions for Experiment 
1. First, a finding that monocular performance exceeds 
dichoptic performance disconfirms a purely central thresh- 
old model and confirms a peripheral threshold model. 
Second, a finding that binocular performance exceeds what 
would be predicted on the basis of  probability summation 
from the monocular condition disconfirms a purely periph- 
eral model and confirms a central threshold model. Table 1 
lists the assumptions and predictions for the peripheral and 
central threshold models. 

Method 

There were three main conditions in Experiment 1. In the first 
(monocular) condition a single d-ms stimulus was displayed to 
only one eye. In the second (dichoptic) condition there were two 
stimulus presentations, each d/2 ms in duration, separated by a 

0-m~ ISI. The first d/2 ms of the stimulus was displayed to one eye, 
while the second d/2 ms of the stimulus was displayed to the 
opposite eye. In the third (binocular) condition a d-ms s ~ u i n s  was 
presented to both eyes simultaneously. 

Observers 

Three experienced vision researchers participated in Experiment 
1. Observer T.B. is Thomas A. Bnsey, and Observers G.W. and 
T.A.K. were visiting faculty members. 

Stimuli and Apparatus 

Stimulus presentation (and response collection) in Experiments 
1, 2, and 3 were carried out on a Macintosh H computer. Stimuli 
were displayed on an Apple Monochrome monitor in conjunction 
with a Modified Wheatstune mirror stereoscope (see Blake & Fox, 
1973). The refresh rate (67 Hz) of the display device was 
sufficiently fast to eliminate flicker and poses little interpretational 
problem for our theory (see Bnsey & Loftus, 1994, Appendix C). 

Observers sat approximately 57 cm away from the screen in a 
dimly lit room and used the computer keypad to respond. A chin 
rest positioned the observer's head in front of two mirror arrange- 
ments that projected each half of the screen to one of the observer's 
eyes. An enclosing box eliminated reflections from the screen and 
assisted with eye fusion. 

Considerable effort was made at the start of each block of trials 
to fuse the two halves of the monitor into one image without eye 
strain. Observers adjusted each of the four mirrors until the fixation 
point fused into a single image. They then adjusted the mirrors to 
create a cross out of two right angles, each of which was shown 
only to one eye. Figure 6 shows the experimental apparatus and the 
image used to adjust the mirrors. To further enhance eye fusion 
within a session, the background was a uniform gray field, and the 
fixation point never disappeared. 

The digits were presented in the 24-point Times Roman font. The 
digits were each 0.50 ° high by 0.40 ° wide, separated by 0.75 ° 
vertically and 0.40 ° horizontally. Table 2 lists the luminances and 
contrasts. We used darker letters on a lighter background to avoid 
phosphor-decay problems. We programmed the experiment using a 
timing and display package described by Ames and Palmer (1992). 

Design and Procedure 

There were 8 monocular and dichoptic stimulus durations, 
ranging from 30 to 240 ms in 30-ms increments. In the monocular 
condition, the entire d-ms duration was shown to either the fight or 
left eye. In a corresponding dichoptic condition, d/2 ms of a d-ms 

The statement lhat both eyes contn'bute identical responses is a 
simplifr~on, given that most observers have a dominant eye. How- 
ever, any perfonmnce asymmeUy between the two will simply bring 
binocular perfonnance clos~ to the averted ~ perfirmance. 
Consider the exlreme case in which an observer is blind in one eye. In 
this case, binocular perfommnce will be exactly ckmble the across-eye 
averaged monocular ~ :  Binocular performance will equal 
performance fixln the sighted eye, which is then averaged wit11 zero 
performance fix~m the blind eye. Our argument for the existence of a 
central threshold requin~ O.at binocular perfornm~ce be ~ t ~  than 
twice ~ monocular peffonnan~. However any asymmeCy serves to 
raduce Ibe difference between monocular and binecular perfonnan~ 
and cannot increase the difference between binocular and averaged- 
monocular performance. 
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Table 1 
Assumptions and Predictions for  the Four Models 

Model Assumptions Predictions 

Peripheral threshold 
model 

Central threshold model 

Dual threshold model 

Modified Cogan model 

Each eye engenders a peripheral 
response ap(t) which is sub- 
jected to a~r iphera l  
threshold Op (see Equation 4) 
to create ao,p(t) for each eye. 
These sensory response func- 
tions are then summed to 
create ac(t). 

Each eye engenders a peripheral 
response ap(t), and these are 
summed to create at(t). This 
central sensory response func- 
tion is then subjected to a cen- 
tral sensory threshold Oc to 
create ao,c( t ). 

Each eye engenders a peripheral 
response ap(t), which is sub- 
jected to apcripheral 
threshold Op (see Equation 4) 
to create ao~(t) for each eye. 
These are summed to create 
adO. This central sensory 
response function is then sub- 
jected to a cenwal sensory 
threshold Oc to create ae.c(t). 

Each eye engenders a peripheral 
response ap(t), which receives 
inhibition from the contralat- 
eral eye (see Equation 15). 
These are summed to create 
the combined either-eye 
output, bx. A separate fused 
channel by creates the bin- 
ocular component. The central 
sensory response function 
ac(t) is the sum of bx and bF. 

Dicboptic performance will be 
below monocular perfor- 
mance. 

Binocular performance will 
equal the probability summa- 
tion prediction based on 
~ = 2 ~  -~. 

Dichoptic performance will 
equal monocular performance. 

Binocular performance will be 
greater than the probability 
summation prediction based 
on Ps = 2pM - p~. 

Dichoptic performance will be 
below monocular perfor- 
mance. 

Binocular performance will be 
greater than the probability 
summation prediction based 
o u r  : 2 t , .  - ~ .  

Dichoptic performance will be 
below monocular perfor- 
m a l i c e .  

Binocular performance will be 
greater than the prob. ability 
summation prediction based 
on Ps -- 2pM -- p~. However, 
the magnitude of binocular 
superiority over this predic- 
tion may not be sufficient to 
account for the data. 
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presentation was shown to either the right or left eye, followed 
immediately by the second (d/2)*ms presentation to the opposite 
eye, with a 0-ms ISI. Eye position was randomized across all 
conditions. In the binocular condition, there were 7 durations, 

Top View Front View 

I 
i -/ /  ~ m  

Front $ ~  

I 

- i  
L 

Fused View Presentation 
View 

Figure 6. Display apparatus used in Experiments 1, 2, and 3. Care 
was taken atthe start of a block of  trials to fuse the two Ls into a 
cross to ensure that during the lmmentation view the digits 
overlapped on the same retinal area. The fixation point never 
disappeared, which allowed maintenance of the fused condition. 

ranging from 30 ms to 119 ms in 15-ms increments, s During 
monocular and dichoptic presentations, the eye opposite the 
stimulated eye saw the blank background field. 

Observers completed eighteen 72-trial blocks, which provided 
54 replications of each condition per observer. 9 

Results 

Figure 7 shows the data for Experiment 1, along with the 
predictions from the peripheral  threshold model. Details  of  
the parameter-fitting procedures and equations are provided 

s We used different durations for monocular and binocular 
stimuli because we attempted to map out approximately the same 
performance ranges for both types of stimuli. 

9 The experimental design for Experiment 1 originally called for 
8 durations for each of the three conditions. However, we verified 
the stimulus presentation with a fast photometer and an oscillo- 
scope, and we discovered that a software error had caused the 
15-ms binocular condition to remain on the screen for 30 ms. As a 
result, the dat~ for this condition were averaged with the 0ate for 
the 30-ms condition, which gave 108 replications of the 30-ms 
binocular condition. 
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Table 2 
Luminances and Contrasts for  All Experiments 

Luminances 
and contrast Digits Fixation point 

Experiments 1 and 2 

Background 3.502 3.502 
Foreground 3.252 1.472 
Contrast 0.037 0.408 

Experiment 3 

Background 8.521 8.521 
Foreground 7.392 2.011 
Contrast 0.071 0.618 

Note. All luminances are in candles/m 2. Contrast is defined as 
(L~ - Lf)I(L b + ~),  where/4, is the background luminance, and/.,f 
is the foreground luminance. 

in Appendix A. No notable performance differences exist for 
the 3 observers, and thus the data shown are averaged across 
observers. The upper (binocular) solid line represents the 
model's prediction of binocular performance based on 
probability summation from the monocular condition. Error 
bars represent standard errors, and the RMSE at the lower 
right is the root mean square error between the data points 
and the predicted values. 1° 

Two findings and associated conclusions are apparent. 
First, the finding that dichoptic performance is below 
monocular performance allows us to reject a pure central 
threshold model. Second, the finding that binocular perfor- 
mance is above that predicted by probability summation 
allows us to reject a pure peripheral threshold model. 

Discuss ion  

The failure of both single-threshold models to account for 
performalace in all three conditions leaves open the possibil- 
ity that there are both a peripheral and a central threshold. 
Let us summarize the logic underlying this assertion. 
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Figure Z Experiment I results: Data are averaged for 3 observers 
along with the best-fitting predictions of the peripheral threshold 
model. For illustrative purposes, the model fit given in Figure 7 
minimizes error around only the monocular and dichoptic presenta- 
tions. This demonstrates the inadequacy of the probability summa- 
tion assumption, implicit in the peripheral threshold model, for 
describing binocular performance based on monocular perfor- 
mance. 

The observed binocular performance above that predicted 
from probability summation indicates that a complete model 
requires a central threshold. This central threshold hinders 
monocular performance more than binocular performance 
because the two monocular channels o f  a binocular presenta- 
tion combine before the central threshold is assessed. The 
above-threshold binocular sensory response curve is there- 
fore more than twice as high as an equal-duration monocular 
cu rve .  

The observed inferiority of dichoptic performance rela- 
tive to monocular performance indicates that a complete 
model must also include a peripheral threshold. The perfor- 
mance decrement for dichoptic presentations compared with 
monocular performance implies some form of information 
loss prior to the combination of the two ocular channels; 
such loss occurs with a peripheral threshold. 

To summarize, we have rejected the pure forms of the 
peripheral and central sensory threshold models and con- 
eluded that both the peripheral and central sensory thresh- 
olds are necessary. We now alter our theory to account for 
these findings. Essentially, we do this by dividing the 
formerly single sensory threshold into peripheral and central 
sensory thresholds. 

The Dua l  Threshold  M o d e l  

Figure 8 illustrates this modified model, which we call the 
dual threshold model. Each ocular channel produces a 
sensory response function, complete with peripheral thresh- 
old. The above-threshold areas from each channel sum to 
produce the central sensory response function, which in- 
eludes a central threshold. 

a(t) - Op (a(t) > Op) 
ao,L(t) = (12) 

0 (a(t) <-- Op) 

where ao~.(t) is the sensory response from the left eye after a 
peripheral threshold Op is assessed. The response from the 
right eye, ao,R(t), is computed in the same fashion. These 
values combine to create a central sensory response func- 
tion, a¢(t), 

ae(t ) = ao2~(t) + ao~(t) .  (13) 

We then assess a central threshold, 

ac(t) - Oc (ac(t) > Oc) 
ao,c(t) = (14) 

0 (ac(t) -< Oc) 

where ao,c(t) represents the height of the sensory response 

1o The Figure 7 model fit differs from other model fits in that we 
minimized the model's predictions only on the monocular and 
dichoptic data, which demonstrates that although the peripheral 
threshold model can account for monocular and dichoptic perfor- 
mance, it cannot account for binocular performance. 
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Figure 8. The dual threshold model. Above-peripheral-threshold areas from the peripheral sensory 
response curves combine to produce the central sensory response curve. 

function after the central threshold has been assessed. Ace(oo) 
is the integral of ae.c(t) from 0 to 0% and performance is 
related to the above-central threshold area, Aeo(Oo), by 
Equation 7. 

Figure 9 shows the modified theory's best fit to the 
Experiment 1 data. The fit is extremely good, with an RMSE 
of 0.0189. The assumption of a central threshold implies a 
model that contains a linear summation mechanism but no 
longer makes a probability summation prediction of PB = 
2pM -- ph.  Table 1 lists the assumptions and predictions for 
the dual threshold model. 

Note that the site of information loss is relative to the 
combinatorial mechanisms. Information lost during the 
combination process, such as subadditive summation, would 
be considered postcombinatorial information loss because it 
would affect both the left- and right-eye information. 
Precombinatorial information losses affect only the informa- 
tion from a single eye. 

Table 3 lists the parameter values for each observer and 
for the fit in Figure 9. The parameter values for the dual 
threshold model come from the temporal variables in 
Equation 1 and the threshold values from Equations 12 and 
14. The information-processing rate parameter c, comes 
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Figure 9. Experiment 1 results: Data are averaged for 3 observ- 
ers; the solid line shows the best fit of the dual threshold model to 
the averaged data. An analysis of variance F statistic comparing the 
mean squared deviation of the model (RMSE 2) to the average 
variability of each mean (SEM z) was not significant, F(19, 162) = 
0.378, p > .05, which supports the good fit of the model to the data. 

from Equation 7. We also provide the parameter values for 
the power-function version of the model, with the analogous 
peripheral and central 13 values. 

Accounting for Previous Data 

Given the necessity of two thresholds to adequately 
describe the Experiment 1 data, we might ask how previous 
experiments using similar stimuli, such as those described in 
Loftus et al. (1993), Loftus and Ruthruff (1994), and Busey 
and Loftus (1994), could be fit by a single-threshold model. 
The answer is that, mathematically, the previously assumed 
single threshold subsumes both thresholds. The two thresh- 
olds simply combined and were represented by a single 
threshold. Only when the binocular and dichoptic conditions 
were included did the two thresholds reveal themselves. The 
dual threshold model would, of course, also fit the data from 
Loftus et al. (1993), Loftus and Ruthruff (1994), and Busey 
and Loftus (1994), albeit with a 100% trade-off between the 
two threshold parameters. 

Dual Threshold Model Predictions for Dichoptic 
and Gap-Monocular Presentations 

A further test of the dual threshold model can be made as 
follows. Experiment 4 of Busey and Loftus (1994) included 
the present monocular condition, as well as a related 
condition called a gap-monocular condition, in which the 
total duration (d) of the monocular presentation was split 
into two temporal (d/2)-ms halves, separated by a 250-ms 
blank screen. Observers performed substantially better in the 
monocular condition than in the gap-monocular condition. 
As we showed (Busey & Loftus, 1994), this is predicted by 
the theory, which implies more sensory response area above 
threshold in the monocular than in the gap-monocular 
condition. 

The dichoptic condition of Experiment 1 is analogous to a 
gap-monocular condition except for the 0-ms ISI and the 
presentation of each pulse to a different eye. Dichoptic 
condition performance is, like gap-monocular condition 
performance, worse than monocular performance. This is 
implied by the theory in part because a diehoptic condition 
suffers the effects of two peripheral thresholds, whereas a 
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Table 3 
Summary of Best-Fitting Dual Threshold Model and Dual Power-Function Model Parameters for Experiments 1-3 

Dual threshold model Dual power-function model 

Observer T ~ Op 0 C RMSE ~ ~ Op Oc RMSE 

Experiment 1 

G.W. 12.95 4.07 0.46 1.61 .0333 13.46 8.69 × 10 -3 1.36 2.29 .0313 
T.B. 7.27 2.37 1.26 1.18 .0329 7.27 1.16 × 10 -4 2.26 1.92 .0382 
T.A.K. 6.73 2.23 1.32 0.62 .0367 5.06 1.00 × 10 -4 ' 3.16 1.35 .0431 
Average 8.02 3.11 0.97 1.10 .0189 6.13 1.65 × 10 -4 2.54 1.70 .0206 

Experiment 2 

G.W. 28.55 6.50 0.65 0.16 .0324 8.39 1.50 × 10 -6 1.98 2.88 .0288 
T.B. 24.56 5.15 0.21 0.55 .0401 13.12 1.45 × 10 -2 1.20 2.35 .0385 
T.K. 22.39 3.61 0.53 0.37 .0498 7.99 4.65 × 10 -6 1.48 3.49 .0485 
G.W.--No Oc b 22.16 6.10 1.02 .0318 
G.W.--No [~c 8.74 12.92 × 10 -5 5.06 .0287 

Experiment 3 

T.B. 17.09 3.87 0.14 1.89 .0482 19.42 2.85 x 10 -2 1.01 2.74 .0512 
L.M. 15.78 2.25 0.68 0.85 .0362 2.98 1.91 x 10 -6 266.21 0.02 .0536 
M.B. 14.48 7.57 0.31 1.66 .0376 10.99 9.15 X 10 -2 1.17 2.32 .0324 
Average 15.33 4.38 0.32 1.41 .0262 12.22 8.68 x 10 -2 1.14 2.19 .0387 

Note. Threshold parameters Oe and Oc are in units of percentage contrast, 0 and c~ are in milliseconds, and the units for RMSE (root mean 
square error) are percentages of correctly recalled digits. Note that the RMSEs for combined data may not agree with the RMSEs in Figures 
7, 9, 11, 14, and 16. Table 3 combined RMSEs are derived from parameter searches on averaged data, whereas the RMSEs in Figures 7, 9, 
11, 14, and 16 are computed by averaging the individual model fits from the 3 observers and comparing these with the averaged data from 
the 3 observers. Thus the graphs in the figures represent averages of model fits fit to individual data rather than a fit to averaged data. n = 9 
for all fits. 
• T.A.K.'s Experiment 1 power-function model fit was best fit by a very small c~ value coupled with a large 13p value. However, when cs was 
fixed to a reasonable value (0,0001), the fit was not markedly worse. The best-fitting parameter values were x = 2.84, c~ = 1.38 x 10 -21, 
13p = 12.023, 13c = 1.33, and RMSE = .0408. wl'he fit from Experiment 2 labeled G.W.--No Oc represents the fit of the peripheral 
threshold model to Observer G.W. Because of differences among observers, we did not fit a version of the theory to averaged data. 

monocular presentation suffers from only a single peripheral 
threshold. 

The dichoptic and gap-monocular conditions axe related 
in that in both, the stimulus is divided into two temporal 
halves, and performance in both conditions is worse than 
monocular performance. However, the dual threshold model 
predicts a performance difference between these two condi- 
tions. The reason is described in detail later, but briefly it is 
as follows. The dichoptic condition's 0-ms ISI allows the 
two peripheral sensory response curves to overlap and sum, 
and thus provides more above-central-threshold area under 
the central sensory response curve compared with a gap- 
monocular condition. The gap-monocular condition's large 
ISI prevents the two peripheral sensory response curves 
from overlapping, leaving less above-central-threshold area. 
Thus, on the basis of  the slightly more area above the 
dichoptic curve's central sensory threshold, the dual thresh- 
old version of  the theory predicts a slight performance 
advantage for the dichoptic condition compared with the 
gap-monocular condition. Expressed differently, it appears 
that we cannot treat two separate presentations to separate 
eyes as simply independent, to-be-summed events, as would 
be dictated by a simple, peripheral-threshold-only model. 
The dichoptic peripheral sensory response curves overlap 
and push more area above the central sensory threshold, 
whereas the two curves from the two pulses in a gap- 
monocular presentation cannot overlap. The extra area 

pushed above the central threshold predicts that dich- 
optic performance will be slightly above gap-monocular 
performance. 

A comparison of  our previous Experiment 4 (Busey & 
Loftus, 1994) and the present Experiment 1 confirms this 
prediction: The difference between the dichoptic and monocu- 
lar curves in the present Experiment 1 is not as great as the 
difference between the gap-monocular and monocular curves 
in our previous Experiment 4 (Busey & Loftus, 1994). 
Subtracting gap-monoptic performance from monoptic per- 
formance reveals that 20-25 percentage points separate the 
two conditions in our previous Experiment 4 (Busey & 
Loftus, 1994). n However, subtracting dichoptic perfor- 
mance from monocular performance reveals a separation of  
only 10-15 percentage points between the two conditions of  
Experiment 1. Monoptic performance was similar in the two 
experiments, never differing by more than 10% across 
experiments. 

Although these findings suggest that gap-monoptic perfor- 
mance is inferior to dichoptic performance, this conclusion 
requires an across-experiment comparison. In Experiment 2 
we replicated this finding by comparing the three conditions 

n The Busey and Loftus (1994) data were graphed using a 
nonlinear transformation of percentage ¢,orrect, but here we con- 
verted the previous Experiment 4 data back to percentage correct to 
make this comparison. 
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(monocular, dichoptic, and gap-monocular) in a single 
experiment. Thus Experiment 2 provides a further test of the 
dual threshold model along with independent estimates of 
the model parameters. 

Experiment 2: Testing the Independent Sampling 
Model With Two Thresholds 

From the perspective of the dual threshold model, the 
fundamental difference between a dichoptic and a gap- 
monocular presentation is that the two peripheral sensory 
response curves of a dichoptic presentation are processed 
independently only up to the point where they combine to 
produce the central sensory response function. After this 
happens, the two peripheral sensory response curves overlap 
and sum to produce more area above the central sensory 
threshold in a dicboptic presentation, and thus the model 
predicts greater dicboptic performance compared with a 
corresponding gap-monocular condition. 

To see why this is so, consider Figure 10. The top panel 
shows the central sensory response curve for a 150-ms 
monocular presentation with the central sensory threshold. 
The middle panel shows the central sensory response curve 
for a dicboptic presentation consisting of two 75-ms displays 
with a 0-ms ISI. Even though the overall exposure duration 
is identical in the two conditions, the top of the dicboptic 
sensory response curve appears bowed when compared with 
the monocular curve. This happens because presenting all of 
the stimulus to the same eye, as in a monocular presentation, 
creates a sensory response curve that is wider above the 
sensory threshold than are the two dicboptic sensory re- 
sponse curves (see left panel of Figure 10, solid vs. dashed 
curves). This results in more above-peripberal-threshold 
area for the monocular condition. The bow in the dichoptic 
central sensory response function (see middle panel of 
Figure 10) results from the narrower dicboptic peripheral 
sensory response curves, which tend to lose more area to the 
peripheral sensory threshold. 

The bottom panel of Figure 10 shows the central sensory 
response curve for a gap-monocular presentation consisting 
of two 75-ms displays separated by a 250-ms ISI. This panel 
demonstrates the sensory independence between the two 
curves: The ISI is long enough to prevent the first presenta- 
tion from summing with the second. Accordingly, there is 
less area above the central sensory threshold, which reduces 
performance for this condition compared with both the 
monocular and dichoptic conditions. 

The two peripheral sensory thresholds ensure that dicbop- 
tic performance is below monocular performance, but the 
interaction of the two dichoptic peripheral sensory response 
curves at the central sensory response curve drives more 
area above the central sensory threshold. Thus dichoptic 
performance is predicted to be above performance in the 
gap-monocular condition but below that in the monocular 
condition. 

Predictions Summary 

Let us summarize the predictions of Experiment 2. A 
finding of monocular performance above dichoptic perfor- 
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Figure 10. Top panel: Central sensory response curve for a 
150-ms monocular presentation. For comparison with the dichoptic 
and gap monocular stimuli, an 80-ms monocular stimulus can be 
thought of as two 40-ms presentations to the same eye with a 0-ms 
ISL Middle panel: Central sensory response curve for a 150-ms 
dichoptic presentation. Bottom panel: Central sensory response 
curve for a 150-ms gap-monocular presentation. The dichoptic and 
gap-monocular curves have less above-central-sensory-response- 
threshold area than does the monocular curve, which predicts lower 
performance for the dichoptic and gap-monocular conditions. 
However, the dichoptic area is slightly greater than the gap- 
monocular area, which implios that dichoptic performance will be 
slightly above the gap-monocular performance. The monocular 
stimulus has an advantage over the dichoptic stimulus in that its 
two "halves" combine before a peripheral threshold is assessed, 
which pushes more area above the peripheral threshold. 
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mance implies a model with a peripheral threshold. A finding 
of dichoptic performance above gap-monocular perfor- 
mance implies a central threshold. 

Method 

Experiment 2 incorporates three basic conditions. In the monocu- 
lar condition a single d-ms stimulus was presented to one eye. In 
the dichoptic condition there were two (d/2)-ms stimulus presenta- 
tions, the first to one eye and the second to the other eye, separated 
by a 0-ms ISI. In the gap-monocular condition there were two 
(d/2)-ms presentations, both to the same eye, separated by a 250-ms 
ISI. 

Observers, StimulL and Apparatus 

Observers, stimuli, and apparatus were identical to those of 
Experiment 1 except that Observer T.A.K. was replaced by 
Observer T.K., a male graduate student. 

Design and Procedure 

The design and procedure were essentially identical to those of 
Experiment 1 except that the binocular condition was replaced by 
the gap-monocular condition. There were eight durations with each 
of the three conditions. Observers completed eighteen 72-trial 
blocks, which provided 54 observations per condition per observer. 

Results 

Figure 11 shows the results of  Experiment 2. Because 
there were qualitative differences between G.W. and the 
other 2 observers, we present individual data here. T.B.'s and 
T.K.'s data (left and middle panels) confirm the foregoing 
prediction: Dichoptic performance (filled squares) lies be- 
tween monocular and gap-monocular performance. T.K.'s 
dichoptic d~ta_ are close to the gap-monocular data, although 
dichoptic performance is significantly greater than the 
gap-monocular data, t(1,520) = 3.87, p < .0001. 

Observer G.W.'s data are shown in the right panel. The 
most important difference is that dichoptic and gap- 
monocular performance are the same. The dual threshold 
model, however, can fit each data pattern with different 
parameter values. Consider the comparison between Ob- 
server T.B. and Observer G.W. Figure 12 shows the central 
sensory response curves for Observers T.B. and G.W. for 
each condition, as generated by the best-fitting model 
parameters. The top three panels demonstrate why a dual 
threshold model predicts dichoptic performance between the 
monocular and gap-monocular performances: The low pe- 
ripheral threshold and the temporal proximity of  the two 
peripheral sensory response curves combine to produce 
more above-threshold area relative to the gap-monocular 
condition. 

Observer G.W.'s overall performance is approximately 
half that of the other 2 observers. From the model's 
perspective, this is a direct result of a high peripheral 
sensory threshold, which causes a greater loss of  area 
compared with the performance of Observer T.B. The 
bottom three panels of Figure 12 show the central sensory 
response curves given by the best-fitting model para- 
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Figure 11. Experiment 2 results: data for 3 separate observers 
along with best fits from the dual threshold model. F statistics 
computed as for the data in Figure 9 show that the model d i d  n o t  

significantly deviate from the data for Observers T.B. and G.W., 
F(20, 54) ffi 1.79,p > .05 and F(20, 54) = 1.32,p > .05, whereas 
for Observer T.K. it did deviate significantly from the data, F(20, 
54) = 2.64,p < .05, perhaps in part because of the variability in the 
monocular data. 

meters for G.W. A large peripheral threshold does not allow 
the two peripheral sensory response curves to overlap 
centrally as much. Without this large overlap, the two 
dichoptic curves will produce about the same above- 
threshold area as the gap-monocular curve and subsequently 
similar performance. 

Because Observer G.W.'s dichoptic and gap-monocular 
performances were close together, a dual threshold model 
with the central threshold set to zero (equivalent to the pure 
peripheral threshold model) will account for the data. 
However, the best fit to the data comes from peripheral and 
central sensory thresholds that are both positive. In addition, 
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Figure 12. Central sensory response curves for Experiment 2 Observers T.B. and G.W., which 
show how different model parameters generate qualitatively different predictions with the same 
theory. G.W.'s large peripheral thresholds allow less overlap of the peripheral dichoptic curves 
(middle panel), and thus they do not provide much more above-central-threshold area than the 
above-central-threshold area derived from the gap-monocular condition. 

Observer G.W.'s Experiment 1 data also required a central 
threshold to provide a good model fit. 

Observer T.K.'s overall performance lies somewhere in 
between that of the other observer~, and he has a peripheral 
threshold that is in between T.B.'s and G.W.'s. We see a 
concomitant reduction in the difference between dichoptic 
and gap-monocular performance. However, this data pattern 
is readily accounted for by the theory. The parameter values 
for the 3 observers in Experiment 2 are listed in Table 3. 

Discussion 

Experiment 2 confirms the dual threshold model, which is 
implied by T.B.'s and T.K.'s data, and provides the best fit to 
G.W.'s data. In addition, the fit to G.W.'s data demonstrates 
how predictions that seem qualitatively different come from 
a single theory's different parameter values. 

Exper iment  3: Testing the Central Threshold 

Experiments 1 and 2 provided strong support for a 
peripheral threshold: Monocular performance above dichop- 
tic performance requires some form of precombination 
information loss. This information loss is represented in the 
dual threshold theory by a peripheral threshold. All 3 
observers in Experiments 1 and 2 demonstrated a clear 
superiority of monocular performance over diehoptie perfor- 
mance. However, Experiment 2 provides only weak support 
for a central threshold; only 2 of the 3 observers (T.B. and 
T.K.) demonstrated a difference between diehoptic and 
gap-monocular performance. Perhaps the conditions used in 
Experiment 2 were not powerful enough to distinguish 
between a theory that requires a central threshold and a 

theory that does not. One goal of ours in Experiment 3 was 
to test the central threshold component of the theory directly. 

To test the central threshold component of the dual 
threshold theory, in Experiment 3 we incorporated dichopti- 
cally presented stimuli and variation in the ISI between the 
two pulses of a dichoptic presentation. To see how this 
manipulation identifies the existence of a central sensory 
threshold, consider a basic dichoptic presentation consisting 
of a 60-ms presentation to one eye followed by a 60-ms 
presentation of the same stimulus to the other eye. Consider 
two conditions that differ in the ISI between the two 
presentations. In the first condition, the ISI is 0 ms, and in 
the second condition it is 45 ms. Because the two conditions 
engender two identical peripheral sensory response curves, 
they both generate the same above-peripheral-threshold area 
passed to the combination mechanisms. As a result of these 
identical areas passed to the combination mechanism, any 
performance difference between the two conditions must be 
caused by postcombinatorial mechanisms; that is, a detrimen- 
tal ISI effect must result from either a loss due to a central 
threshold or a loss in the combination of the two peripheral 
areas via nonlinear summation. 

Figure 13 shows the central sensory response curves 
resulting from monocular, O-ms-ISI dichoptic presentations 
and 45-ms-ISI dichoptic presentations. It demonstrates that a 
central threshold assumption makes the prediction that as 
ISI increases, performance will decrease in the dichoptic 
condition. 

Me~od  

In Experiment 3 we used the monocular and dichoptic stimuli of 
Experiments 1 and 2. However, in the dichoptic condition, the ISI 
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Figure 13. Linear-summation dual threshold model. Central 
sensory response curves for 0-ms-ISI dichoptic, 45-ms-ISI dichop- 
tic, and monocular presentations for a 60-ms/60-ms condition. The 
two dichoptic-condition central sensory response curves have the 
same overall area (Panels A and B), because the individual 
peripheral contributions are the same for both conditions. However, 
because the 45-ms-ISI dicboptic condition has area that is more 
spread out in lime, the central threshold affects it more, which gives 
it less above-central-threshold area (3.86 vs. 2.09). This leads to the 
prediction that as ISI is increased in the dichoptic condition, 
performance will decrease. This decrease is due solely to the 
central sensory threshold because the peripheral sensory thresholds 
affect both pulses equally in all conditions. Panel C shows the curve 
resulting from a monocular presentation; the monocular area is 
slightly larger than the O-ms-ISI dichoptie area because the taller 
peripheral sensory response curve for the monocular condition puts 
more area above the peripheral sensory threshold. The combination 
of peripheral and central thresholds leads to the prediction that 
monocular performance will be above the O-ms-ISI dichoptic 
performance (as was seen in Experiments 1 and 2) and that 
performance will decrease as ISI is increased in the dichoptic 
condition. 

between the first and second pulses was systematically varied from 
0 to 90 ms. The duration of each of two pulses in each dichoptic 
presentation was either 30, 45, 60, or 75 ms. 

Observers 

Three observers participated in Experiment 3: Thomas A. Busey 
(T.B.), a female graduate student (L.M.), and a male graduate 
student (M.B.). 

Stimuli and Apparatus 

The stimuli and apparatus were identical to those of Experiment 
1. The contrast of the digits was set to 7.1%. 

Design and Procedure 

Both monocular and dichoptic stimuli were used. Within the 
dichoptic condition were 5 different ISis ranging from 0 to 90 ms. 
The two pulses were the same duration, which was 30, 45, 60, or 75 
ms. Within the monocular condition were four stimulus durations: 
60, 90, 120, or 150 ms. Observers completed twenty-four 72-trial 
blocks, which provided 72 observations per condition per observer. 

Results and Discussion 

Experiment 3 results are summarized in Figure 14. All 3 
observers produced data that demonstrate the same overall 
pattern, and thus averaged data are shown. The solid lines 
represent the fit of  the dual threshold model, the best-fitting 
parameters of  which are provided in Table 3. Two findings in 
these data are noteworthy. 

First, as ISI is increased in the dichovtic condition, 
performance decreases. This implies some form of  postcom- 
binatorial information loss, as modeled by a central sensory 
threshold in Figure 13. Prior to the combination of  the 
information from each eye, dichoptic presentations with 
different ISis all provide the same information; the ISI only 
becomes relevant once the responses from each eye are 
combined. However, under a linear summation mechanism, 
increasing the ISI still cannot cause a decrease in perfor- 
mance without something like a central sensory threshold, 
because the  various dichoptic conditions have the same 
overall area under their central sensory response functions. 
The central threshold causes a reduction in performance for 
longer-ISI dichoptic conditions because it tends to eliminate 
more of  the area under the wider, shorter central sensory 
response curves produced by a longer:ISI dichoptic condi- 
tion. Thus under the current dual threshold model, the Figure 
14 data imply a central sensory threshold. 

The second noteworthy finding in the Figure 14 data is 
that monocular performance is above performance in the 
0-ms-ISI dichoptic condition. This is most clearly evident 
for the short-duration presentations. Overall, the magnitude 
of  the effect is somewhat reduced when compared with the 
differences observed between these two conditions in Experi- 
ments 1 and 2. However, this pattern held for all 3 observers, 
with the exception of  the longest-duration condition for 
Observer T.B. The superiority of  monocular performance in 
this experiment as well as in Experiments 1 and 2 constitutes 
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Figure 14. Experiment 3 results: Data are averaged for 3 
observers; the solid line shows the best fit of the dual threshold 
model with a linear combinatorial mechanism. The data show two 
important features. First, as ISI increases, performance in the 
dichoptic condition decreases. This finding provides evidence for a 
posteombinatorial information loss, modeled within the theory as a 
cenlxal sensory threshold. Second, monocular performance for the 
four monocular stimulus durations (abbreviated Mono. in the 
figure) is above performance in the 0-ms-ISI dichoptic condition, 
most markedly at the short-duration 30-ms/30-ms and 45-ms/ 
45-ms presentations. This provides evidence for a precombinatorial 
information loss, modeled within the theory as a peripheral sensory 
threshold. The dual threshold model can account for this effect, as 
indicated by the predicted monocular performance (abbreviated M. 
Pred. in the figure). An analysis of variance F statistic computed as 
for the data in Figure 9 was significant, F(20, 162) = 1.63, p < .05, 
which may have resulted from the slight but systematic deviations 
at the 30-ms/30-ms condition. 

clear evidence for some form of precombinatorial informa- 
tion loss. Within the context of the dual threshold model, this 
information loss implies a peripheral sensory threshold. 

Taken together, the findings shown in Figure 14 confirm 
the dual threshold model and reconfirm the existence of a 
postcombinatorial source of information loss, modeled within 
the theory as a central sensory threshold. 

To summarize the conclusions of Experiment 3, we have 
again disconfirmed a version of the linear summation model 
that does not have some form of postcombinatorial informa- 
tion loss, and we have demonstrated that when this postcom- 
binatorial information loss is modeled by a central sensory 
threshold we can provide good quantitative fits to the data. 

General  Discussion 

Strong tests of binocular summation come from experi- 
ments that vary the temporal onsets of the two presentations 
of  binocular and dichoptic stimuli. We have described a 
theory that quantitatively accounts for the temporal and 
ocular summation mechanisms that combine information 
over time and across the two eyes. Central to this account are 
two sources of information loss, one prior to and one 
following the site of binocular combination. We have chosen 
sensory thresholds as the mechanism of the information loss. 

In what follows, we make several remarks about the 
thresholds in particular, along with general implications of 
our threshold notions for interpreting binocular superiority. 
Note that it is not our intent to provide a complete model of 
binocular combination that accounts for the wide variety of  
phenomena that exist in the binocular combination litera- 
ture. Rather, we have embedded a somewhat simplified 
binocular combination model within our general theory. 
This model is designed to (a) illustrate the implications of 
the sensory threshold, (b) examine the mechanisms of 
binocular combination in conjunction with this threshold, 
and (c) demonstrate the role of temporal interactions that 
result from overlapping sensory response functions. 

Above-Probability-Summation Performance Does Not 
Implicate Neural Interaction 

In their review of the binocular summation literature, 
Blake and Fox (1973; see also Blake et al., 1981) suggested 
that binocular performance above that predicted via probabil- 
ity summation from monocular performance implies "genu- 
ine neural interaction between the eyes, not just probability 
summation" (Blake et al., 1981, p. 266). They suggested that 
a modification of the combination rule is required to account 
for the superiority of binocular performance over the 
probability summation prediction. We conclude that this 
need not be the case. We have provided a model that has a 
linear summation mechanism and an exponential information- 
acquisition stage. This model, with no postcombinatorial 
threshold, makes a prediction that is consistent with probabil- 
ity summation. However, this model will also account for 
the above-probability-summation data from Experiment 1 
without altering the nature of the combination mechanism. 
The existence of a postcombinatorial information loss 
(modeled by the central threshold) is completely responsible 
for this prediction. 

The logic of this assertion is illustrated in the bottom 
panel of Figure 5. In the absence of a central threshold, the 
binocular curve is twice as high as a same-duration monocu- 
lar curve (with or without a peripheral threshold); correspond- 
ingly, the binocular-curve area is twice as great as the 
monocular-curve area. In the absence of additional mecha- 
nisms, this would fulfill a probability summation prediction 
of PB = 2pu - p 2  as a result of the exponential in the 
information-processing components. However, when a cen- 
tral sensory threshold is introduced, binocular performance 
rises above what would be predicted from probability 
summation. This happens because the monocular curve's 
lower height renders it more vulnerable to a central sensory 
threshold than a binocular curve. From this perspective, 
binocular performance is observed to be above what is 
predicted by probability summation not because observers 
are doing better in the binocular task, but because they are 
doing worse in the monocular task, They are doing worse as 
a direct result of a postcombinatorial information loss, 
which affects monocular performance more than binocular 
performance. 
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Alternative Ocular-Channel Combination Models 

An explicit assumption of the current linear summation 
model is that the above-threshold areas from the two 
monocular channels simply sum to produce the central 
sensory response function on which performance is based. 
Although this combination mechanism has support from 
neuroscience (Ohzawa & Freeman, 1986) and has been 
adopted by Legge (1984a, 1984b) and others, alternative 
mechanisms have been proposed. We now consider in detail 
a model developed by Cogan (1987; Cogan et al., 1991). A 
summary of this model follows; a more complete description 
can be found in Figure 15. We have adapted this model to the 
current data, and we discuss the extensions to the model that 
are required to account for the present experimental data. We 
should point out that we are using Cogan's model to fit 

Cogan (1987) Model 

Left Eye Right Eye 

Peripheral 
a(t) curves 

8 i ~ IR-,c'e R 
IL~ ~ e  L 

Net Binocular Effect 

Figure 15. Cogan's (1987) model applied to the data of Experi- 
ments 1, 2, and 3. The height of the peripheral sensory response 
curves at each point in time is used to construct a net binocular 
effect curve that is similar to the central sensory response curves in 
the previous modeling. Each eye contributes an excitatory response 
that is reduced by an inhibitory response from the other eye (bx, and 
b~). A separate binocular fused channel (/~) combines information 
from the two eyes in a mechanism that allows for facilitation to take 
place. The either-eye inhibition (iL and iR) acts as precombination 
information loss, and the binocular fused channel allows interac- 
tions that can act, in principle to imitate a postcornbinatorial 
information loss such as the central sensory response function. 
However, this model cannot account for the data of Experiments 1, 
2, and 3 without additional assumptions. 

proportion of correctly recalled digits rather than contrast 
thresholds, and thus we are not using his model as it was 
originally developed. In particular, Cogan developed an 
elegant quantitative formulation that allowed him to calcu- 
late, rather than estimate, the parameters of the model. 
However, this formulation requires threshold data and thus 
cannot be applied to the present proportion-correct data. As a 
result, we are adopting only a portion of Cogan's model, that 
which describes the binocular combination process. We are 
unable to calculate the values of the model parameters from 
our performance curves, and thus we treat the model 
parameters as free parameters. 

The Cogan (1987) model assumes that the two eyes perform 
transduction on incoming stimuli to produce ipsilateral excitation 
(eL, eR) and contralateral inhibition (iL, iV.). The amount of 
inhibition in one eye is proportional to the excitation in the other 
eye, such that iR = c. eL and iL = C. eR. The combined Other-eye 
output, bx is given by 

eR eL 

bx = (1 + c- e L) + (1 + C. es)" (15) 

A separate, fused channel, bF, is given by 

bF = k 'eR"  eL, (16) 

and the net binocular effect is simply the sum of bx and bF. 
Components of this model share similarities with the dual 

threshold model presented here. Cogan et al. (1991) devel- 
oped a linear-filter front end and used this model to fit 
two-pulse detection thresholds, in which the two pulses 
could be either the same contrast (+  + )  or opposite contrasts 
( + - ) .  They systematically varied the SOA and determined 
relative sensitivities to each type of stimulus. Although they 
did not obtain quantitative model fits, qualitative model 
predictions corresponded to the observed data. 

Because of the qualitative success of the Cogan (1987) model 
in accounting for the two-pulse data~ we  fit the Cogan model to 
the present data~ Before we describe the results of this modeling, 
some comparisons between the two models are in order. 

A major emphasis in the present work is the effects of 
postcombinatorial information loss on binocular and monocu- 
lar stimulus representations. An example is the ability of the 
dual threshold model with a central sensory threshold to 
account for above-probability-summation binocular perfor- 
mance, even with a linear-summation combination mecha- 
nism that would otherwise provide a probability summation 
prediction. This results from the higher binocular central 
sensory response function that allows more area to survive a 
central sensory threshold. The binocular channel bF in the 
Cogan (1987) model can in principle have the same effect: If  
both eL and eR are active at once, bF will be large, giving a 
larger response and thus better performance. This is qualita- 
tively similar to the two peripheral sensory response curves 
providing more above-central-threshold area when they 
co-occur. Thus the parameter k from Cogan's binocular 
channel is somewhat analogous to the free parameter Oc in 
the dual threshold model, and because we do not have 
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threshold data we must estimate k from the data, making it a 
free parameter as well. 

The interocular inhibition from the Cogan (1987) model 
serves to reduce the response in the opposite monocular 
channel. This precombinatorial information loss is some- 
what analogous to the peripheral thresholds in the dual 
threshold model. There are important differences in that the 
peripheral thresholds act only on a single monocular chan- 
nel, whereas the interocular inhibition crosses channels. 
However, within the model formulations and the application 
to our data, precombinatorial information loss is represented 
by a single free parameter, either c or Op. 

Qualitatively, the dual threshold model and the Cogan (1987) 
model are similar and have the same number of free pmmmtea's 
when applied to proporfion-cxa'tect data. Given this, it is reason- 
able to ask whether the Cogan model can fit the data from 
Experiments 1, 2, and 3. Such fits require an information- 
processing model component to deal with the change from a 
detection paradigm to a letter identif~.ation paradigm. 

To assist in model comparison, we simply appended the 
information-processing mechanisms of the dual threshold 
model to the output of the Cogan (1987) model (Equation 7). 
Consistent with the dual threshold model, we assumed that 
the presentations to each eye engender a peripheral sensory 
response function corresponding to Cogan's eL or eR. These 
two response functions inhibit each other in proportion to 
their height at each moment in time, according to the free 
parameter c. A separate binocular channel was also created 
from the peripheral sensory response functions according to 
the free parameter k via Equation 14. The sum of these two 
channels gives a central sensory response function. The area 
of this central sensory response function is used to generate a 
performance prediction via Equation 7. Table 1 lists the 
assumptions and predictions for the modified Cogan model. 

The Cogan (1987) model could not fit the data as well as 
the dual threshold model. Parameter values are shown in 
Table 4. The left panels of Figure 16 show the fits to the 
averaged data from Experiments 1 and 3. The data from 
Experiment 2 could also not be fit but are not shown because 
the conclusions derived from the data mirror those from 
Experiment 1. The reason for these poor fits appears to come 
from a binocular excitation channel that cannot completely 
take the place of a central information loss that accounts for 
both the above-probability-summation binocular perfor- 
mance of Experiment 1 and the decrease in performance 
with increasing ISI from Experiment 3. When a central 
nonlinearity such as a central threshold is added to the 
Cogan model (see Figure 16, right panels), the revised 
Cogan model gives very good fits in all cases. However, the 
addition of a central threshold gives the revised model one 
more free parameter than the dual threshold model. 

To summarize, although the data from Experiments 1, 2, 
and 3 disconfirm the simple version of the Cogan (1987) 
model, that model gives excellent quantitative fits if a central 
threshold or central power function is added. Such an 
addition might be required by the additional complexity of 
the task: Detection and letter identification might require 
different spatial and temporal frequencies (Busey, 1994), 
and letter identification is best thought of  as a classification 
task. The central information loss may result from inefficien- 
cies or noise in the information-processing mechanisms that 
are not required for simple detection. 

Evidence for Temporal Inhibition 

The impulse response function used in the present work 
(Equation 1) is monophasic and therefore does not allow for 
temporal inhibition. Busey (1994) found weak evidence for 

Table 4 
Summary of Best-Fitting Cogan (1987) Model Parameters for Experiments 1-3 

Original Cogan model Cogan model with central threshold 

Observer x c, c k RMSE x c~ c k Oc RMSE 

Experiment 1 

G.W. 4.62 19.51 1.98 × 10 -6 33.28 .0943 14.10 4.77 82.71 52.21 1.84 .0330 
T.B. 6.66 9.67 1.16 × 104 82.28 .0747 6.47 1.90 48.17 20.82 2.67 .0327 
T.A.K. 31.33 12.77 2.15 × 10 ~s 433.54 .0634 5.66 1.44 32.05 11.36 2.50 .0370 
Average 25.19 9.91 3.44 × 106 186.34 .0563 8.03 3.06 65.13 31.97 2.08 .0172 

Experiment 2 

G.W. 2.33 17.52 1.39 × los 0.00 .0946 17.85 5.28 33.60 0.00 1.32 .0284 
T.B. 0.65 11.71 2.27 × 106 0.29 .1107 23.13 5.04 73.70 57.52 0.81 .0413 
T.K. 1.60 9.62 2.48 × l0 s 0.00 .1384 22.22 3.31 34.40 3.59 0.96 .0469 

Experiment 3 

T.B. 28.12 15.72 5.36 x 10 -3 49.72 .1403 30.00 6.36 4,383.00 152.30 0.69 .0330 
L.M. 58.84 5.02 4.24 × 10 n 250.40 .0786 27.08 2.71 649.50 118.40 0.78 .0297 
M.B. 0.80 21.75 9.41 x 10 -6 78.97 .0953 14.10 6.89 5.50 0.00 2.15 .0376 
Average 31.06 12.95 2.46 × 10 -4 19.95 .1221 20.96 5.63 446.10 97.78 0.89 .0202 

Note. Threshold parameter @c is in units of percentage contrast, 0 and c, are in milliseconds, and RMSE (root mean square error) is in 
units of percentage of correctly recalled digits. Model parameters c and k are from Cogan's (1987) model, n -- 9 for all fits. All fits of the 
Cogan (1987) model as implemented here were substantially worse than the corresponding dual threshold fits of Table 3. As a result of this 
lack of fit, the best-fitting parameter values are often extreme values because the model is stressed to accommodate the data. When a central 
nonlinearity is added, the values for c and k exhibit much more regularity. 



1210 BUSEY AND LOF'I'US 

q f , , -  

'4"1 

E 
m e  
L .  

4) 
Q. 
X 
U.I 

¢9 

E 

m m  
! .-- 

4) 
Q. 
X 
I.IJ 

Adapted Cogan Model 

O 

g 

Adapted Cogan Model With a 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

o Monocular 
• Dichoptlc 
[ ]  Binocular I 

RMSE = 0.(~78 

I I I I 
50 100 150 200 250 
d = Stimulus Duration (ms) 

; i  • eo~:) ms l  
• 45/45 ms l  ; ' ! . .  .._ - : : • 

= • 

t • • ,i, 

& 
• & • • 

RMSE = 0 1217 

0 3 0  6 0  9 0  

Inter-Stimulus Interval (ISI) (ms) 

Central Threshold 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

P, 

b. 

0 Monocular I 
• D I c h o p t i c  

rn Binocular I 

RM6E - 0.0t 795 

50 1 O0 150 200 250 
d = Stimulus Duration (ms) 

I • 45/45mI 
t- e ~  

t 

RMSE =, 0.0~23 

0 3 0  6 0  9 0  

Inter-Stimulus Interval (ISI) (ms) 

Figure 16. Fits from the Cogan (1987) model adapted to the Experiment 1 and 3 data. Left panels: 
The adapted Cogan model cannot completely account for the above-probability-summation 
binocular performance (top left panel) or for the decrease in dichoptic performance with increasing 
ISI (bottom left panel). Both of these effects require a postcombinatorial source of information loss. 
When such an information loss source, such as a central sensory threshold, is added, the revised 
model gives very good fits at the expense of one more free parameter than the dual threshold model. F 
statistics computed for the fit of the Cogan model with a central threshold to the data of Experiments 
1 and 3 were both nonsignificant, F(18, 162) = 0.35, p > .05 and F(19, 162) = 1.50, p > .05, 
indicating the good fit of the revised model to the data, albeit with one more free parameter than the 
fits in Figures 9 and 14. 

temporal inhibition in digit identification tasks, and when 
the theory was modified to include temporal inhibition (via a 
biphasic impulse response function setting s > 0 in Equa- 
tion 1) it successfully accounted for the data in these related 
tasks. However, application of this biphasic model to the 
present data did not markedly improve the fit over that 
provided by the monophasic model that we have described 
(despite two additional free parameters). This failure re- 
suited from the peripheral thresholds, the effects of which 
tend to eliminate the inhibitory components of the biphasic 
peripheral sensory response curves. Similarly, a version of 

the theory that includes temporal inhibition but without 
peripheral sensory thresholds also did not provide a mark- 
ediy better fit to any of the three data sets. A version of the 
Cogan (1987) model with temporal inhibition did not 
provide fits better than those shown in Figure 16, despite 
requiring two additional free parameters. 

Neuroscience Evidence for  a Central Threshold 

Using single-cell recording in cat visual cortex, Ohzawa 
and Freeman (1986) found overwhelming evidence for 
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linear summation in binocular cells. However, a minority of 
cells exhibited deviations from this linearity in that the 
response from the cell was maximal when both eyes were 
equally stimulated but dropped off at a rate faster than would 
be expected from a linear model when one eye was reduced. 
This is quite similar to the behavior of the central threshold 
observed in the current modeling (e.g., see Figure 13). 
Indeed, Ohzawa and Freeman attributed this nonlinearity to 
a threshold mechanism that comes into play after the linear 
binocular summation. One possible mechanism for such a 
threshold is the threshold for firing on the postsynaptic cell 
receiving input from both eyes. Weak stimulation to either 
eye may not exceed this threshold and cause the cell to fire, 
although weak stimulation to both eyes may result in an 
action potential on the postsynaptic cell. 

Sensory Thresholds: Implications 
for  Cognitive Psychologists 

As noted above, the notion of peripheral and central 
sensory thresholds is similar to peripheral and central 
sources of noise. Denis Pelli has demonstrated that under 
some conditions, either the central or peripheral noise 
dominates the signal and thus affects performance. He and 
Manoj Raghavan (Pelli, Raghavan, & Ahuja, 1995; Ragha- 
van & Pelli, 1995) demonstrated that the visibility of large, 
long-duration letters is limited by (central) cortical noise and 
that the visibility of small, brief-duration letters is limited by 
(peripheral) photon noise. The important implication for 
perception researchers is that a stimulus variable such as size 
can differentially affect two stages of processing (peripheral 
or central). Thus these two stages become important to 
model even in experiments that do not use monocular or 
dichoptic stimuli. 

The thresholds as conceptualized above may be thought 
of as a constant drain on a system that is attempting to 
process a signal. Consider a metaphor in which the sensory 
response function represents the speed of some system, say 
the value of the speedometer in a car. The total amount of 
information--that is, the area under the  sensory response 
function--is analogous to the odometer reading after some 
period. Once the threshold is added, however, the metaphor 
changes to a motorboat traveling upriver. The speed of the 
current represents the height of the threshold; thus if 
motorboat speed does not exceed the current speed, then no 
upriver progress will be made. 

Conclusions 

We have extended a previously proposed theory of visual 
information processing to the domain of binocular combina- 
tion. Application of this extended theory to data from three 
experiments helps identify the sources of information loss, 
both pre- and postcombination. Finally, we have confirmed a 
version of the extended theory that combines both pre- and 
postcombinatorial sources of information loss with a linear- 
summation combination mechanism and an independent 
sampling information-acquisition mechanism. This applica- 
tion demonstrates that the question of the combination 
mechanisms involved in binocular combination is intimately 

tied to the question of pre- and postcombination sources of 
information loss: One cannot simply look at monocular and 
binocular data and infer the combinatorial mechanisms 
without also considering the potential for something like 
peripheral and central sensory response thresholds. In particu- 
lar, the existence of a central threshold implies that binocular 
performance above that predicted by probability summation 
on the basis of monocular data need not implicate an 
above-linear-summation combination mechanism. A linear 
summation mechanism, an independent sampling informa- 
tion-acquisition mechanism, and a central threshold will 
provide an equivalent account. 

The linear-filter model components also allow a good 
quantitative account of the degree to which the relationship 
between monocular and binocular performance changes as 
the asynchrony between the two pulses of the binocular 
stimulus changes. Such modeling reveals not only under 
what conditions the two monocular channels influence each 
other but also how they are affected by the postcombinato- 
rial information loss. Finally, we have demonstrated that 
such quantitative fits are important when comparing two 
models that have similar structure and components and thus 
give qualitatively similar results. 
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Appendix A 

Equations for All Model Fits 

Parameter fitting was accomplished with a simplex gradient 
descent method. To avoid the possibilities of local minima, we 
computed the best-fitting parameters multiple times, each time 
from a different starting location in parameter space. The vast 
majority of parameter searches terminated at the same ending 
parameters for a given model fit. 

All model fits derive the peripheral sensory response functions, 
ap(t), via the convolution of the stimulus wave form with the 
impulse-response function of the linear filter: 

ap(t) = f(t) * g(t) (AI) 

where g(t) is the gamma function from Equation 1. Note that for 
monocular and dichoptic stimuli, the left-eye and fight-eye f(t) 
functions will differ according to which eye is stimulated (or 
stimulated first in the dichoptic case). 

We develop two forms of the nonlinearity. The thst is a hard threshold 
that assumes that infocmtion acquisition does not begin until the 
sensory response function ex__ceed__s the sensory threshold. The second is 
a soR tlm~aold that raises the semory ~ function to a power in 
line wilh Watson's (1979) lxobability-summan'on-in-fime theory. 

Predictions for the Dual Threshold Model 

A peripheral threshold, Op, is assessed on the peripheral a(t) 
wave form for the hard threshold version of the theory, 

ap(t) - Op (a(t) > Op) 
ao.p (t) = (A2) 

0 (a(t)  < Op) 

or a power function is applied to the peripheral a(t) wave form: 

a~,p(t) = [ap(t)]~. (A3) 

The two peripheral sensory response functions sum to create the 
central sensory response function, a~(t): 

a¢(t) = aO,L(t) + a o ~ ( t )  (A4) 

o r  

ae(t) = al3~(t) + al3~(t) (AS) 

for the power-function version of the theory. 
In the dual threshold model, a central threshold is assessed to 

create ao.c(t) for the hard threshold version of the theory, 

at(t) - 0¢ (ac(t) > 0~) 
ao.c(t) = (A6) 

0 (at(t) --< Oe) 

or a power function is applied to the central a(t) wave form: 

a~.c(t) = [a~(t)] I~. (A7) 

The area under the ao,~(t) function is converted to performance 
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via the following formula: 

p -- 1.0 - e-Ao~f®Yc'. (AS) 

where aa(t) and aL(t) represent ea and eL, respectively. The central 
sensory response function at(t) is computed as follows: 

at(t) = bx(t ) + l~(t). (A12) 

For the power-function version of the theory, performance is a 
function of the area under the al~s(t ) wave form: 

If a central threshold is applied after the point of cJ3mbinafion, this 
fc~ufiafion is ~ to create oo,¢( t) for the hard threshold version, 

p = 1.0 - e-JtP ~'¢**)tc*. (A9) 

Predictions for the Cogan Model 

Using the notation of the Busey and Loftus (1994) model, the 
Cogan (1987) model is formulated as follows: 

a~(t)- O~ (a~(t) > Oc) 
ao~(t) = (A13) 

0 (ac(t) -< Oc) 

or a power function is appfied to the central a(t) wave form" 

af~:(t) = [ a t ( t ) ]  13. (A14) 

and 

aR(t) aL(t) 
bx(t) = + (At0) 

[I + c. aL(t)] [I + c. aR(t)] 

l~(t) = k . aR(t) . aL(t) (All) 

In all three cases, performance is converted from the area under 
the central sensory response function via Equation 7: 

p = 1.0 - e-A~®)tc~ (A15) 

where ,4¢(~) is replaced by Ao~(oo) when a central threshold is 
added or by Al~.c(oo) when a central power function is added. 

( Ap~ndixes continue) 
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Appendix B 

Glossary 

Term Definition Units 
Depends 

o n  

d 
t 

F 

Stimulus duration 
Time since stimulus onset 
Stimulus contrast 

Physical attributes 

Milliseconds 
Milliseconds 
Percentage (contrast) 

P 

Performance measures 

Proportion of digits recalled (conected for 10% guessing 
probabmty) 

Proportion 

t 

n 

O 
Op 
Oc 
i;P 

Linear-systems parameters 

Decay constant of the impulse-response function 
Number of stages in the impulse-response function 
Sensory threshold 
Peripheral sensory threshold 
Central sensory threshold 
Peripheral power function 
Central power function 

Milliseconds 
Integer 
Percentage (contrast) 
Percentage (contrast) 
Percentage (contrast) 
Percentage (contrast) 
Percentage (contrast) 

f ( t )  
F(t) 
F(oo) 
g(t)  
G(t) 
G(oo) 
a(t) 
A(t) 
A(oo) 
ao(t) = 

a(t)  - 0 

a~.(t) 
Ao~t) 
As (~)  

Linear-systems functions 

Stimulus-contrast function 
Integral from 0 to t off(t)  
Total area underf(t) 
Impulse-response function 
Integral from 0 to t of g(t) 
Total area under g(t) ffi 1.0 
Sensory response function 
Integral from 0 to t of a(t) 
Total area under a(t) 
Above-threshold sensory response function 

Above-peripheral-threshold sensory response function 
Above-central-threshold sensory response function 
Integral from 0 to t of as(t) 
Total area under ao(t) 

Percentage (contrast) 
Milfiseconds 
Milliseconds 
Percentage (contras0 
Milliseconds 
Milliseconds 
Percentage (contrast) 
Milliseconds 
Milliseconds 
Percentage (contrast) 

Percentage (contrast) 
Percentage (contrast) 
Milliseconds 
Milfiseconds 

t,n 
t ,n  
t ,n  
f ( t ) ,  t, n 
f(t),  t, n 
f ( t ) ,  t, n 
f(t), t, n, 0 

f ( t ) ,  t, n, Oe 
f ( t ) ,  t, n, Oc 
f ( t ) ,  t, n, 0 
f ( t ) ,  t, n, 0 

cs 

Extraction-rate parameter 

Reciprocal of raw sampling rate Milliseconds 

r(t) 
l ( t )  
I(oo) 

Extraction-me and performance functions 

Information-extraction rate function Milliseconds- 
Extracted-information function Proportion 
Total extracted information Proportion 

f ( t ) ,  % n, O, cs 
f ( t ) ,  "r, n, O, cs 
f ( t ) ,  x, n, O, Cs 

C 

k 
b~(t) 
bF(t) 
ac(t) 

Modified Cogan (1987) model parameters and functions 

Degree of inhibition from contralateral eye Proportion 
Amount of fused binocular energy Proportion 
Total either-eye output Percentage (contrast) 
Total fused output Percentage (contrast) 
Net binocular effect [bx(t) + bF( t)] Percentage (contrast) 

f(t), t, n, c 
f(t), t, n, c 
f(t), t, n, c, k 
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