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A firing rate map, also known as a tuning curve, describes the nonlinear
relationship between a neuron’s spike rate and a low-dimensional stim-
ulus (e.g., orientation, head direction, contrast, color). Here we investi-
gate Bayesian active learning methods for estimating firing rate maps in
closed-loop neurophysiology experiments. These methods can accelerate
the characterization of such maps through the intelligent, adaptive selec-
tion of stimuli. Specifically, we explore the manner in which the prior and
utility function used in Bayesian active learning affect stimulus selection
and performance. Our approach relies on a flexible model that involves
a nonlinearly transformed gaussian process (GP) prior over maps and
conditionally Poisson spiking. We show that infomax learning, which
selects stimuli to maximize the information gain about the firing rate
map, exhibits strong dependence on the seemingly innocuous choice of
nonlinear transformation function. We derive an alternate utility func-
tion that selects stimuli to minimize the average posterior variance of
the firing rate map and analyze the surprising relationship between prior
parameterization, stimulus selection, and active learning performance in
GP-Poisson models. We apply these methods to color tuning measure-
ments of neurons in macaque primary visual cortex.
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1 Introduction

A primary goal in systems neuroscience is to understand the functional
relationship between stimuli and neural spike responses. When the param-
eter space is relatively low dimensional, this relationship is often described
by a firing rate map or tuning curve, which is the mean spike rate as a
function of the parameter vector of interest (Hubel & Wiesel, 1959; Geor-
gopoulos, Schwartz, & Kettner, 1986; Maldonado, Gdecke, Gray, & Bonho-
effer, 1997; Carandini & Ferster, 2000; Ringach, Shapley, & Hawken, 2002;
Ohki, Chung, Ch’ng, Kara, & Reid, 2005). Examples of firing rate maps
include contrast-response functions, hippocampal place fields, grid fields
in entorhinal cortex, and movement fields in motor cortex. Firing rate map
estimation is an important component of neurophysiology experiments,
often as a preliminary step for characterizing response properties before
beginning a new experiment or in cases where the firing rate map changes
due to some experimental manipulation.

In traditional or passive learning experiments, the experimenter collects
data and then fits the model parameters offline using a fixed data set. In
active learning experiments, by contrast, the experimenter fits model pa-
rameters online as data are collected and uses the model uncertainty to
select subsequent stimuli in an optimal or maximally informative manner.
The basic rationale is that one can often learn the model parameters much
more quickly by selecting stimuli adaptively, informed by the data collected
so far during the experiment. A variety of studies have developed active
learning methods for closed-loop neurophysiology experiments, with ap-
plications to receptive field estimation (Lewi, Butera, & Paninski, 2009),
color processing in macaque V1 (Horwitz & Hass, 2012), sound processing
in grasshopper auditory receptor neurons (Machens, Gollisch, Kolesnikova,
& Herz, 2005), and dynamic nonlinear stimulus integration in the retina
(Bölinger & Gollisch, 2012). An overview of the active learning application
to sensory physiology can be found in Benda, Gollisch, Machens, and Herz
(2007).

Bayesian active learning relies on an explicit probabilistic model of the
neural response and a utility function that determines the most useful stim-
ulus given posterior uncertainty. Here, we consider Bayesian active learn-
ing under a Poisson observation model with a gaussian process (GP) prior.
Gaussian processes provide a flexible, nonparametric prior over functions,
allowing us to specify general beliefs about the function (e.g., degree of
smoothness) without assuming a particular analytic form for the firing rate
map. Because spike rates cannot be negative, we model the firing rate map
as a gaussian process transformed by a fixed nonlinearity to ensure posi-
tive spike rates (Cunningham, Shenoy, & Sahani, 2008; Adams, Murray, &
MacKay, 2009; Rad & Paninski, 2010; Park, Horwitz, & Pillow, 2011).

In this article, we examine how the choice of utility function and nonlin-
earity affects the performance of Bayesian active learning for neural firing
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rate map estimation. We show that infomax learning, which selects stimuli
based on an information-theoretic criterion (Lindley, 1956; Luttrell, 1985;
Bernardo, 1979; MacKay, 1992; Paninski, 2005), is highly sensitive to the
choice of nonlinearity in a manner that is somewhat surprising. We derive
an alternate utility function based on minimizing the integrated posterior
variance, which is equivalent to minimizing expected mean squared error
in the firing rate map estimate. We develop an efficient algorithm for se-
lecting stimuli according to this criterion and demonstrate its performance
using simulated and real neural data sets.

The article is organized as follows. In section 2, we introduce the GP-
Poisson model for firing rate map responses. In section 3, we review the
basics of Bayesian active learning. In section 4, we derive information-
theoretic and variance-based Bayesian active learning methods. In section 5,
we examine the empirical properties of these two learning methods and
their dependence on the choice of the nonlinear transformation function. In
section 6, we compare these methods in simulated experiments with real
and artificial neural data.

2 GP-Poisson Model for Firing Rate Maps

Following previous work on firing rate map estimation (Rad & Paninski,
2010; Park et al., 2011), we model the neural response as conditionally Pois-
son given a stimulus, with rate determined by the value of underlying firing
rate map. We perform inference under transformed GP prior over the fir-
ing rate map, resulting in a hierarchical GP-Poisson model (see Figure 1A).
Details of the model and Bayesian inference procedure are as follows.

2.1 Poisson Encoding Model. Let ri denote the observed spike count
on the ith trial of an experiment in response to a vector stimulus xi, and let
λ(x) denote the firing rate map, a function that takes on a nonnegative value
at every point in stimulus space. We model the response ri|xi as Poisson:

p(ri|xi)= 1
ri!

λr
i e

−λi , (2.1)

where λi = λ(xi) is the spike rate at xi. Let Dt = {(xi, ri)}t
i=1 denote the data

collected up to time t in an experiment. Then we have the log likelihood of
the data

L(λ) = log p(r|λ) = r� log λ − 1�λ + c, (2.2)

where r = (r1, . . . , rt )
�, λ = (λ(x1), . . . , λ(xt ))

�, 1 is a vector of ones, and c
is a constant.
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Figure 1: (A) GP-Poisson encoding model. A vector input x passes through
a function f, whose scalar output is transformed via a nonlinearity g into a
positive spike rate λ. The response r is a Poisson random variable with mean
λ(x) = g( f (x)). (B) Schematic of Bayesian active learning for closed-loop neuro-
physiology experiments. After presenting a stimulus xt , we record the response
rt (upper right) and update the posterior over model parameters θ (bottom).
Then we select a new stimulus by maximizing the expected utility U(x̃), which
quantifies the expected usefulness (e.g., information gain) of the stimulus x̃
under the current posterior (upper left). We present this stimulus, and repeat.

2.2 Transformed Gaussian Process Prior. A popular approach for
defining a prior distribution over smooth, nonnegative functions is to trans-
form a gaussian process (GP) prior via a nonlinearity with positive range.
We adopt this approach and model the rate map as λ(x) = g( f (x)), the com-
position of a real-valued function f (x), governed by a GP prior, and a fixed
scalar nonlinearity g(·) that maps f to the space of nonnegative spike rates
(see Figure 1A).

The GP prior over f entails a multivariate normal distribution over the
function values at any finite collection of points (x1, . . . xt ) (Rasmussen &
Williams, 2006):

f ∼ N (μf, K), (2.3)

where f = ( f (x1), . . . f (xt ))
� denotes the function evaluated at these points,

μf = μ f 1 is a constant vector with value μ f (which denotes the prior mean),
and the covariance matrix K has the i, jth element given by a kernel function:
k(xi, x j). Here, we employ the popular gaussian kernel, which enforces
smoothness on f,

Ki, j = k(xi, x j) = ρ exp
( − ||xi − x j||2/(2τ 2)

)
, (2.4)

where the hyperparameters ρ and τ control the marginal variance
and smoothness of f, respectively. The GP prior therefore has three
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hyperparameters: φ = {μ f , ρ, τ }. The log GP prior at the observed points
(x1, . . . , xt ) is given by

log p(f|φ) = −1
2

log |2πK| − 1
2
(f − μf)

�K−1(f − μf). (2.5)

2.3 Posterior Inference. Given a data set consisting of stimulus-
response pairs, our goal is to infer the firing rate map λ(x) at any stimulus x.
A simple, tractable approach to this problem is to maintain a gaussian pro-
cess approximation to the posterior over f, which is the firing rate map
transformed by g−1. This approach is justified by the fact that the log likeli-
hood is concave in f subject to certain conditions on g (Paninski, 2004). By
contrast, a direct GP prior for the firing rate map λ would assign positive
probability to negative spike rates. From a gaussian process approximation
to the posterior over f, we can obtain the posterior over λ by transforming
it via g. In this article, we consider two popular choices of g: (1) exponential
and (2) soft-rectifying or softrect, given by g(x) = log(ex + 1). When the g is
exponential, the approximate posterior over λ is a log-normal process.

Our inference scheme involves two steps. First, we numerically find
the posterior mode of f at the finite number of stimulus points {x1, . . . , xt}
presented so far in the experiment; then we make a GP approximation to the
posterior over f at its mode using Laplace’s method. Details are as follows.

Given data Dt , we first compute the maximum a posteriori estimate fmap
by numerically maximizing the log posterior, given by

log p(f|Dt, φ) = r� log(g(f)) − 1�g(f) − 1
2
(f − μf)

�K−1(f − μf) + c,

(2.6)

where, as before, f = ( f (x1), . . . f (xt ))
� denotes the vector of function val-

ues at the points (x1, . . . xt ). The log posterior over f is concave so long as g
is convex and log concave (Wedderburn, 1976; McCullagh & Nelder, 1989;
Paninski, 2004), which is true for both choices of g(·) considered here. This
means convex optimization methods will provably converge to a global
minimum of the negative log posterior and provides justification for mak-
ing a gaussian approximation to the posterior.

Second we make a gaussian approximation to the p(f|Dt, φ) at fmap. The
Laplace approximation results from a second-order Taylor series expansion
of the log posterior around its mode. The resulting approximation is

p(f|Dt, φ) ≈ N (fmap, �), (2.7)
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where covariance � is the negative inverse Hessian of the log posterior,
evaluated at f = fmap (Bishop, 2006).

Given this approximation, we obtain a gaussian marginal posterior over
f∗ = f (x∗), the function evaluated at a collection of test stimuli x∗ = {x∗

i }N
i=1,

by integrating out f from the joint distribution p(f∗, f|x∗,Dt, φ),

p(f∗|x∗,Dt, φ) =
∫

p(f∗|x∗, f, φ)p(f|Dt, φ)df ≈ N (μt,	t ), (2.8)

with mean and covariance

μt =μf + K∗K−1(fmap − μf), (2.9)

	t = K∗∗ − K∗(L−1 + K)−1K∗�, (2.10)

which depend on cross-covariance matrices K∗
i j = k(x∗

i , x j) and K∗∗
i j =

k(x∗
i , x∗

j ). In section 4, we employ this approximate posterior distribution to
evaluate the expected utility of candidate stimuli.

2.4 Marginal Likelihood for Hyperparameters. The posterior over f
(see equation 2.8) is influenced by the choice of hyperparameters φ. We set
φ by maximizing marginal likelihood, or “evidence,” given by

p(r|φ) =
∫

p(r|f)p(f|φ)df. (2.11)

Although this integral is not analytically tractable for the GP-Poisson model,
we can approximate it using Laplace’s method. First, rearrange the terms
in Bayes’ rule to write the marginal likelihood,

p(r|φ) = p(r|f)p(f|φ)

p(f|Dt, φ)
. (2.12)

Then use the Laplace approximation to the posterior to evaluate the de-
nominator and evaluate the entire expression at f = fmap, where this ap-
proximation is most accurate (Rasmussen & Williams, 2006).

For fast optimization, we adopt a method (introduced in Park et al.,
2011) that involves iterating the following three steps until convergence: (1)
numerically optimize the posterior to find fmap and the Laplace approxima-
tion given the data and current hyperparameters; (2) compute a gaussian
“site potential” approximation to the likelihood by taking the ratio of the
(gaussian approximate) posterior to the gaussian prior; and (3) maximize
the marginal likelihood for φ, equation 2.12, while using the local gaus-
sian approximation to the likelihood to analytically determine fmap. (See
appendix A for details.)
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3 Bayesian Active Learning

In the following, we briefly review the basics of Bayesian active learning
and describe fast posterior update methods that enable us to apply active
learning to neurophysiology experiments.

3.1 Overview of Bayesian Active Learning. Bayesian active learning
(depicted in Figure 1B) requires three ingredients: (1) an observation model
p(r|x, θ ), describing the conditional response r given a stimulus x and a
parameter vector θ ; (2) a prior distribution over the model parameters p(θ );
and (3) a utility function U given by Chaloner and Verdinelli (1995),

U(θ, {x, r}|Dt ), (3.1)

which quantifies the usefulness of the candidate stimulus-response pair
(x, r) for learning about θ given the data recorded up to time t.

In Bayesian active learning, we choose the stimulus with maximal ex-
pected utility U(x|Dt ), which is obtained by averaging the utility function
with respect to the joint distribution over θ and r given the data

U(x|Dt )=Er,θ |Dt ,x

[
U(θ, {x, r}|Dt )

]=
∫

U(θ, {x, r}|Dt )p(r, θ |Dt, x)dθdr,

(3.2)

where the joint distribution factorizes with respect to the posterior over θ

and the predictive distribution for r: p(r, θ |Dt, x) = p(θ |Dt, {x, r})p(r|Dt, x).
The optimal stimulus at the next time step is (by definition) the stimulus
with maximal expected utility:

xt+1 = arg max
x∈X

U(x|Dt ), (3.3)

where X denotes the stimulus space. This greedy rule requires sequential
posterior updates as new observations come in, which are discussed in the
next section.

As we show here, the choice of utility function can critically affect the per-
formance of an active learning algorithm. Previously proposed utility func-
tions include prediction error on test data (Roy & Mccallum, 2001; Cohn,
Ghahramani, & Jordan, 1996), misclassification error (Kapoor, Horvitz,
& Basu, 2007), gain in mutual information (Lindley, 1956; Luttrell, 1985;
Bernardo, 1979; MacKay, 1992; Paninski, 2005; Lewi et al., 2009), and the
mutual information between function values at tested and all untested lo-
cations (Krause, Singh, & Guestrin, 2008).
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3.2 Fast Posterior Updates. Bayesian learning methods require the pos-
terior over parameters given a new observation to compute the expected
utility (see equation 3.2). Here, we describe a method for fast, approximate,
recursive posterior updates under the GP-Poisson model, which allow us
to rapidly compute expected utilities (Lewi et al., 2009). Note that we do
not use these approximate rules for updating our posterior after an actual
observation; we use them only for quickly computing expected utilities,
which require expectations with respect to the posterior given hypotheti-
cally observed data.

Let f∗ = f (x∗), where x∗ denotes a grid of points that we will use for
representing the posterior over f. During a single step of active learning,
we have a gaussian approximation to the posterior over f∗ given the data
collected up to time t (see equation 2.8). Any hypothetical stimulus-response
pair (x′, r′) yields a new likelihood term that must be added to the log
posterior,

log p(f∗|μ′,	′) ≈ log p(f∗|μt,	t ) + log p(r′|λ(x′)), (3.4)

where μ′ and 	′ denote the posterior mean and covariance given (Dt, x′, r′),
respectively. For notational simplicity, we have dropped dependence of the
posterior on hyperparameters φ. We can update the mean and covariance
by differentiating equation 3.4 and equating the two sides:

∂

∂f∗ log p(f∗|μ′,	′)= −	′−1(f∗ − μ′)

≈ −	−1
t (f∗ − μt ) + ∂

∂f∗ log p(r′|λ(x′)),

∂2

∂2f∗ log p(f∗|μ′,	′)= −	′−1 ≈ −	−1
t + ∂2

∂2f∗ log p(r′|λ(x′)).

Solving for the mean and covariance (μ′,	′) yields

Mean update: μ′(x∗) = μt(x
∗) + �	t (x

∗, x′),

Covariance update: 	′(x∗
i , x∗

j )≈	t (x
∗
i , x∗

j )−
Jμ(x)	t (x

∗
i , x′)	t (x

∗
j , x′)

1 + Jμ′(x′ )	t (x′, x′)
,

(3.5)

where the first derivative of log likelihood is denoted by � = ∂
∂ f log

p(r′|λ(x′)); the second derivative of log likelihood, the so-called observed
Fisher information, is denoted byJμ′(x′ ) = − ∂2

∂ f 2 log p(r′|λ(x′)); and both first
and second derivatives are evaluated at f = μ′(x′).
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4 Active Learning of Firing Rate Maps

Equipped with the first two ingredients for Bayesian active learning, as
specified in section 2, we now consider the third: the utility function. The
utility function specifies the learning objective and must be efficiently maxi-
mized in each trial to rapidly select the next stimulus. Here we consider two
utility functions: (1) a popular information-theoretic utility function, which
leads to an infomax learning rule, and (2) a posterior-variance-based utility
(or loss) function, which seeks to minimize the expected squared deviation
(or posterior variance) of the firing rate map estimate.

4.1 Information-Maximization Learning. In infomax learning, the goal
is to maximize information gain about the firing rate map λ from the ob-
served data. Therefore, the expected utility function is the mutual informa-
tion between λ and a future response r′ to a candidate stimulus x′, given
Dt = {(x1, r1), . . . , (xt, rt )}, the data collected so far in the experiment. Be-
cause mutual information is not altered by invertible transformations and
λ = g( f ), the mutual information between λ and r′ is the same as the mutual
information between f and r′. The expected utility is therefore

U(x′|Dt ) = I( f ; r′|Dtx
′), (4.1)

= HDt
( f ) − H(Dt ,x

′ )( f |r′), (4.2)

where HDt
( f ) denotes the entropy of f given Dt and H(Dt ,x

′ )( f |r′) denotes
the conditional entropy of f given r′, conditioned on Dt and x′. Because f
is a function (and thus infinite-dimensional), the mutual information (see
equations 4.1 and 4.2) is not actually well defined. We therefore define the
mutual information using a fixed, uniform grid of points f∗, as defined
above. The firing rate map on the grid of points is denoted by λ∗ = g(f∗).
Although this gridding approach will not scale well to high dimensions, it
suffices here because the stimulus space is relatively low-dimensional (i.e.,
two to three dimensions for the examples we consider).1

Under a gaussian approximate posterior (see equation 2.8), the posterior
entropy is proportional to the log determinant of the posterior covariance
matrix (evaluated on a grid of function values), which reduces the expected
utility to

I( f ; r′|Dt, x′)≈ log |	t | − Er′ |Dt ,x
′ log |	t+1|,

≈ σ 2
t (x′) Er′ | f,x′E f |μt (x

′ ),σ 2
t (x′ )[J f (x′ )], (4.3)

1To avoid the curse of dimensionality, one can use a nonregular grid, sampled from
a probability distribution that puts high resolution in the regions strongly affecting the
expected utility (Hennig & Schuler, 2012).
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Algorithm 1: 
Given the posterior p(f∗|μt, Λt) at time t,

1. Compute the expected information gain of each candidate x′ (equation 4.3).

2. Select a stimulus xt+1 that maximizes the expected information gain about λ∗.

3. Measure response rt+1 to xt+1.

4. Update the posterior p(f∗|μt+1, Λt+1) and the hyperparameters.

repeat

Sequential Infomax Learning.

where σ 2
t (x′) is the posterior variance at x′. The last line follows from equa-

tion 3.5, and the proof is given in Lewi et al. (2009) and MacKay (1992).
The observed Fisher information J f (x′ ) under the GP-Poisson model is

given by

J f (x′ ) = r′

λ2(x′)

[
∂λ(x′)
∂ f (x′)

]2

+
[

1 − r′

λ(x′)

]
∂2λ(x′)
∂ f 2(x′)

. (4.4)

If g = exp(·), the observed Fisher information J f (x′ ) is simply λ(x′), which
is independent of the response r′. In this case, the utility simplifies to

U(x′|Dt ) = σ 2
t (x′) exp(μt (x

′) + 1
2
σ 2

t (x′)). (4.5)

However, if g = log(exp(·) + 1), the observed Fisher information J f (x′ ) de-
pends on the response r′. The expectation with respect to p(r′| f, x′) in equa-
tion 4.3 conveniently leaves the following:

U(x′|Dt )≈ σ 2
t (x′) E f |μt (x

′ ),σ 2
t (x′ )

[
1

λ(x′)

[
∂λ(x′)
∂ f (x′)

]2
]

. (4.6)

Unfortunately, there is no closed form for this expected utility in this case.
However, as Lewi et al. (2009) suggested, one can precompute the expected
utility for each (μt (x

′), σ 2
t (x′)) and store it in a 2D lookup table, to rapidly

determine expected utility of x′ during experiments. Alternatively, one can
numerically compute the expected utility using Gauss-Hermite quadrature
(see appendix B). A summary of the algorithm is given in algorithm 1.

Note that for both choices of nonlinearity g, the expected utility for a
stimulus x′ depends on only the posterior mean and variance of f (x′), the
function value at that point. It does not depend on the function value at
other grid points, and the computational cost of evaluating the expected
utility (at a single stimulus) is completely independent of grid size. The only
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cost of using a finer grid over stimulus space is the linear cost of evaluating
mutual information at each grid point. This independence of grid size will
not hold for the utility function we consider next.

4.2 Variance-Minimization Learning. Next we consider a utility func-
tion that corresponds to minimizing the posterior variance over the firing
rate map λ. This is equivalent to choosing stimuli to minimize mean squared
error in the estimate of λ. We will refer to this approach as variance mini-
mization, or varmin learning:

U(x′|Dt ) = − Er′ |Dt ,x
′

[∫
V(λ(x)|Dt, x′, r′)dx

]
, (4.7)

where we denote the variance of λ(x) given the data as

V(λ(x)|Dt, x′, r′) =
∫

(λ(x) − λ̂(x))2 p( f (x)|Dt, x′, r′)d f (x), (4.8)

and λ̂(x) denotes the posterior mean of λ(x) given (Dt, x′, r′), also known
as the Bayesian least squares estimate.

We compute the expected utility by numerical integration on the regular
grid of points {x∗}N

i=1:

U(x′|Dt ) = − Er′ | f,x′E f |μt (x
′ ),σ 2

t (x′ )

[
N∑

i=1

V(λ(x∗
i )|Dt, x′, r′)

]
. (4.9)

Optimizing this utility involves intractable joint optimization and expecta-
tions: computing the expected variance V(λ(x∗

i )|Dt, x′, r′) requires updating
the posterior over f given (x′, r′) and averaging the unknown response r′

under the predictive distribution p(r′|x′,Dt ), as well as averaging over the
current posterior p( f |Dt ). Several papers have suggested algorithms for this
type of problem using Monte Carlo sampling (Kuck, de Freitas, & Doucet,
2006; Müller & Parmigiani, 1996). However, due to the time constraint in
typical neurophysiology experiments (	500 ms), we need to rapidly com-
pute the expectations in equation 4.9. Therefore, we adopt an approximate
solution that involves computing the expected variance of f for each candi-
date x′ and transforming it into the variance of λ. Details are as follows.

� Expected variance of f: The posterior covariance update rule in equa-
tion 3.5 simplifies the expected variance of f to

Er′ |Dt ,x
′V[ f (x∗

i )|Dt, x′, r′]

= σ 2
t (x∗

i ) − Er′ | f,x′E f |μt (x
′ ),σ 2

t (x′ )

[
Jμ′(x′ )	

2
t (x

∗
i , x′)

1 + Jμ′(x′ )σ
2
t (x′)

]
, (4.10)
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where directly computing the double integrals is intractable. For fast
computation, we make the following point estimates: r′ to its mean
λ(x′) and μ′(x′) to the current mean μt (x

′). Under these approxima-
tions, the observed Fisher information simplifies to

Jμ′(x′ ) ≈ g(μt (x
′)), for g = exp(·), (4.11)

≈ 1
λ(x′)

[
∂λ(x′)
∂ f (x′)

]2

f=μt (x
′ )

, for g = log(exp(·) + 1). (4.12)

� Transformation of variance of f into variance of λ: The expected
variance of λ at x∗

i is computed by

Er′ |Dt ,x
′V(λ(x∗

i )|Dt, x′, r′)≈
∫

g2( fi)N (μ′
i, σ

′2
i )d fi

−
[∫

g( fi)N (μ′
i, σ

′2
i )d fi

]2

, (4.13)

where fi = f (x∗
i ), the mean of fi is denoted by μ′

i = μ′(x∗
i ) ≈ μt (x

∗
i ),

and the variance of fi is denoted by σ ′2
i = σ ′2(x∗

i ). If g = exp(·), we
can compute equation 4.13 analytically due to log-normal λ; however,
if g = log(exp(·) + 1), we numerically compute it either via Gauss-
Hermite quadrature or using a precomputed 2D lookup table.

Finally, we obtain the integrated variance of λ by summing up the ex-
pected variances of λ(x∗

i ) for all the grid points {x∗
i }N

i=1. A summary of the
algorithm is given in algorithm 2. (Pseudocode is provided in appendix C.)

4.3 Assessing Accuracy of Approximations. The active learning meth-
ods described above rely on approximate computations of expected utility.
To assess the accuracy of these approximations, we performed numeri-
cal calculations of the exact utility for a single stimulus, ignoring the
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Figure 2: Comparison of exact and approximate utility function for infomax
and varmin learning. (A) Infomax learning under exponential (left) and softrect
nonlinearity (right). (B) Same, for varmin learning. Traces represent the exact
(solid) and approximate utility (dashed) as a function of the posterior mean for
three different values of the posterior standard deviation σ . Standard devia-
tions are given in units of σ0 = g−1(40), which is 3.7 for exponential (left) and
40 for softrect nonlinearity (right). Note that the approximate utility matches
the exact utility to reasonable accuracy once the posterior becomes sufficiently
concentrated.

effects of space, for different settings of a gaussian prior over the trans-
formed rate map f = g−1(λ(x)) (see Figure 2). For each setting of the prior
mean μ and variance σ 2, we represented the prior using a grid of values
{ f1, . . . , fn} over the range μ ± 4σ , then computed expected utility as U =∑Rmax

r=0 u[p̂({ f j}|r, μ, σ )]p(r|μ, σ ), where p(r|μ, σ ) = ∫
df p(r| f )p( f |μ, σ ) ≈∑n

i=1
1
r! g( fi)

re−g( fi ) 1√
2πσ 2 exp(− ( fi−μ)2

2σ 2 ) is the marginal response distribution
given μ and σ , and p̂({ f j}|r, μ, σ ) is the gridded representation of the
posterior over f given the prior and spike count r, which is proportional

to g( f j)
re−g( f j )−

( f j−μ)2

2σ2 . We used maximal spike count Rmax = 250 to en-
sure we captured the support of the marginal response distribution, but
larger values could be used as needed. Finally, u(·) is the Shannon entropy
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−∑n
j=1 p̂( f j|r, μ, σ 2) log p̂( f j|r, μ, σ 2) for infomax learning and the variance

−∑n
j=1( f j − f̄ )2 p̂( f j|r, μ, σ 2) for varmin learning.

Figure 2 shows exact and approximate utilities as a function of the prior
mean μ for three different prior variances σ 2. When the prior is broad,
which resembles the posterior after a small number of samples, the discrep-
ancy between exact and approximate utilities is noticeable, especially for
small μ. However, accuracy improves rapidly as the prior variance shrinks,
indicating that the approximate utility calculations do not adversely affect
stimulus selection once a relatively small amount of data has been collected.

We can roughly assess how many data are needed to guarantee accu-
rate utility calculations by examining how quickly the posterior narrows
as a function of the amount of data observed. For simplicity, consider the
case where the prior has infinite variance, so the posterior is determined
entirely by the likelihood. If we observe R total spikes during T seconds of
stimulus presentation at a particular stimulus location, the MAP estimate is
f̂map = g−1( R

T ), and the posterior variance under the Laplace approximation

will be σ 2
post = −(R

[g( f̂map)g
′′( f̂map)−g′2( f̂map)]

g2( f̂map)
− Tg′′( f̂map))

−1. Under the exponen-

tial nonlinearity, this yields f̂map = log R
T and the simple result σ 2

post = 1
R . The

smallest-variance curves in Figure 2 (left column, with a standard deviation
of σ0/8 = 0.46) would therefore require R ≈ 4.7 spikes.

For the soft-rectifying nonlinearity, we obtain f̂map = log(e
R
T − 1) and

posterior variance σ 2
post = 1

R ( ω2

(1−e−ω )2 ), where ω = R
T is the observed spike

rate. Thus, posterior variance depends on not just the number of spikes but
the neuron’s absolute spike rate as well. For small rates ω, this resembles
the case of the exponential nonlinearity, with σ 2

post ≈ 1
R . For larger rates, we

obtain σ 2
post ≈ ω2

R . The curves in Figure 2 (right column) indicate that the
accuracy of our approximations depends on both the mean and variance of
p( f ). In particular, for rates ω ≈ μ > 20, the curve defined by with variance
σ 2

post = (σ0/4)2 = 100 exhibits high accuracy, which can be achieved with

R = ω2

100 = 4 spikes. For a lower rate of ω = 10, good accuracy is not ob-
tained until the σ 2

post = (σ0/8)2 = 25 curve (dark gray), but this variance can
once again be achieved with R = 100/25 = 4 spikes. Thus, four to five ob-
served spikes seems sufficient to make our approximate utility calculations
accurate, regardless of the choice of nonlinearity. Nevertheless, posterior
variance may contract more slowly if the prior has finite variance with a
low mean, suggesting we might want more accurate methods for charac-
terizing maps with very low spike rates.

The density of spatial sampling necessary to achieve small posterior
variance across the entire map can be determined by noting that due to
the smoothing induced by the gaussian process prior, observing R spikes

in response to a stimulus x0 is equivalent to observing R exp(−|x0−x1|2
2τ 2 )
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BA prior over firing rate likelihood functions

Figure 3: Effects of nonlinearity on likelihood and prior. (A) Log prior on λ

under different choices of nonlinearity. With exponential nonlinearity, the log
prior has a much heavier tail than that with softrect nonlinearity. (B) Pois-
son likelihood p(r|λ) as a function of spike rate transformed by the inverse
nonlinearity f = g−1(λ) for several fixed values of spike count r. With softrect
nonlinearity, the likelihood is narrower when the spike count is low, indicating
that the most informative stimuli, all else being equal, are those likely to elicit
low spike counts. With exponential nonlinearity, the likelihood gets narrower
with increasing r, indicating that the most informative stimuli are those likely
to elicit large spike counts.

“effective spikes” at a location x1. Thus, to observe five effective spikes at
x1, we would need 8.25 spikes within a radius of τ , or 13.6 spikes within a
radius of

√
2τ . Although length scale τ cannot in general be known a priori,

we can use prior expectations about the smoothness of λ(x) to determine a
reasonable sampling density.

5 Effects of Nonlinearity and Utility on Learning

Empirically we observe that the stimuli selected as most useful in Bayesian
active learning paradigms depends critically on both the utility function
and the choice of nonlinearity g. Specifically, infomax learning selects very
different stimuli when the nonlinearity is exponential instead of soft rectifi-
cation. In this section, we examine how and why this phenomenon occurs.

First, we note that the nonlinearity g determines how the probability
mass of the GP prior is spread out over firing rates in λ space. For the
exponential nonlinearity, the marginal prior over λ is log normal, which
leads to p(λ), a very heavy right tail (see Figure 3A). By contrast, the softrect
nonlinearity transforms the right tail of the gaussian prior linearly, resulting
in a p(λ) with a very light (i.e., gaussian) right tail. In practical terms, this
means that under the exponential nonlinearity, the prior assigns a lot of
probability mass to very high spike rates, so that (in principle) there is a lot
more to learn by presenting stimuli that might probe these high firing rates.
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Figure 4: Effects of nonlinearity on stimulus selection in active learning. Illus-
tration of stimuli selected during 1000 trials of active learning, using a linearly
growing (simulated) tuning curve in 1D stimulus space. The stimuli selected un-
der infomax learning depend very strongly on the choice of nonlinearity (stimuli
near the peaks for exponential; stimuli near the troughs for soft-rectifying non-
linearity). Varmin learning is less sensitive to choice of nonlinearity compared
to infomax learning.

This effect is compounded by the effect of g on the shape of the p(r|x, f ),
the (transformed) Poisson likelihood (see Figure 3B). The inverse of the
softrect nonlinearity leaves the shape of the likelihood relatively unchanged
(see Figure 3B, left), meaning that the likelihood is broader at high firing
rates, and so there is (relatively) less reduction in uncertainty when the
stimulus elicits a high firing rate. (This arises due to the fact that narrow-
ness of the likelihood determines the amount of reduction in the posterior:
narrower likelihood implies greater reduction in posterior entropy). By
contrast, transforming by log, the inverse of the exponential nonlinearity,
reverses the ordering of likelihood width by firing rate (see Figure 3B right):
the likelihood is broad when r is small and narrow when r is large.

These two factors mean that under the exponential nonlinearity, high-
firing-rate regions provide the greatest gain in mutual information, while
under the softrect nonlinearity, low-firing-rate regions provide the great-
est gain in mutual information. Figure 4 illustrates this phenomenon with
a simulated example but shows that it is somewhat less pronounced for
varmin than infomax learning. That is, stimulus selection under infomax
learning depends much more strongly on the choice of nonlinearity than
under varmin learning. Figure 4 shows the distribution over the firing rate
λ of selected stimuli, for a simulated example with true rate uniformly dis-
tributed over [0, 100], under varmin and infomax learning for both choices
of nonlinearity. For the softrect nonlinearity, infomax learning selects the
stimuli eliciting low spike responses more often. On the contrary, with an
exponential nonlinearity, infomax learning more often selects the stimulus
eliciting high spike responses. Varmin learning selects the stimuli eliciting
higher spike responses regardless of the nonlinearity. Thus, varmin learning
is in general less sensitive to the choice of nonlinearity.
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Figure 5: Estimation of 2D firing rate map (simulated data). (A) True firing rate
map defined over a 2D input space. (B) Top: The posterior entropy, integrated
posterior variance, and mean squared error (MSE) as a function of number of tri-
als of active learning under the assumption of a softrect nonlinearity. Although
infomax learning decreases the posterior entropy faster than varmin learning
(left), varmin learning performs significantly better in terms of MSE (right).
Bottom: Analogous plots under the assumption of exponential nonlinearity.
Here, infomax and varmin methods perform more similarly.

6 Applications

6.1 Simulated Data. To compare the performance of infomax and
varmin learning, we first generated Poisson responses from a 2D firing
map (see Figure 5A) and estimated it using each learning method. We
tested random sampling to contrast the relative gain of adaptive methods,
as well as uncertainty sampling, which simply picks the stimulus for which
the posterior variance of firing rate map is maximal. (For the softrect non-
linearity, we approximated the posterior variance of firing rate map by the
delta method (Park et al., 2011).)

For comparison, we also tested using a model with gaussian (instead
of Poisson) noise, resulting in “vanilla GP” active learning procedure that
offers an analytic expression for utility. For this model, the utility does not
depend on the observations, meaning that the entire sequence of stimuli
can be planned out before the experiment. To assess the performance of
this method, we used infomax learning to select stimuli and then fit the
resulting responses with a GP-Poisson model.

Figure 5B shows the performance of each criterion in terms of poste-
rior entropy, total variance of λ, and mean squared error (average over
100 independent repetitions). For the softrect nonlinearity, varmin learn-
ing performs noticeably better than infomax learning in terms of MSE, al-
though infomax learning effectively decreases the posterior entropy faster
than varmin learning. For the exponential nonlinearity, both varmin and
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infomax methods perform similarly. Uncertainty sampling in this case fo-
cuses on picking stimuli only around the high peak areas of the true map,
which results in a slower decrease in MSE than random sampling. The
active learning method under vanilla GP performs as poorly as random
sampling, since stimulus selection is independent of the spike responses.

6.2 Real Data. We recorded from V1 neurons in awake rhesus monkeys
as visual stimulus patterns drifted through the receptive field. The orien-
tations and spatial frequencies of the stimuli were roughly matched to the
neurons’ preferred values. Each neuron was stimulated with either a soft-
edged bar or a Gabor pattern. For the neuron stimulated with the soft-edged
bar, stimuli were chosen from a 2D stimulus space in which L- and M-cone
contrast varied and S-cone contrast was fixed. The neuron was stimulated
with 620 pseudo-randomly selected soft-edged bar stimuli that effectively
tile the LM plane. Each stimulus was presented three times, resulting in
1860 trials. For the neurons stimulated with the Gabor pattern, stimuli were
chosen from a 3D cone contrast space with the purpose of finding a col-
lection of stimuli that all evoked the same response (e.g., 29 spikes/sec)
(Horwitz & Hass, 2012).

Using the recorded data set from each neuron, we conducted simulated
closed-loop experiments using the active learning methods. In the sim-
ulated experiments, we fixed g to softrect due to its superior prediction
performance on test data compared to exponential g: the average 10-fold
cross-validation score (log likelihood of test data) across six cells for expo-
nential g was −3.6051 and −3.3690 for softrect. As a performance measure,
we computed the mean squared difference between the estimate using all
the data in each original experiment and the estimate using the data selected
by each active learning method in the simulated experiment.

In Figure 6, we show that varmin learning performed significantly better
than infomax learning, especially at the beginning of the experiment, in
terms of the mean squared difference. We show the firing rate map estimate
of the neuron using all of the collected 2D data. We also show the estimated
rate map after 30 trials. The data points selected by infomax learning were
mostly clustered at the low-rate region, while the data points selected by
varmin learning were well spread throughout the LM plane.

In Figure 7, we show the 2D (L, M) slice of the estimated 3D firing map
of each neuron while fixing the S cone contrast to the mean of the values
that the S cone had during the simulated experiments, using all trials with
3D inputs (approximately 700). For these neurons, unlike the previous neu-
ron, two learning methods performed similarly at the beginning, since the
actually presented data selected by the staircase (isoresponse) design do
not cover the entire 3D stimulus space. Nevertheless, as we observe more
data, varmin learning decreased MSE more effectively than infomax learn-
ing did (see Figure 7). We show the 2D slices of the estimates after 300 trials
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Figure 6: Active learning with neural data (2D cone contrast space). (A) Firing
rate map estimate (top left) using all 1860 stimuli presented during an actual
neurophysiology experiment in macaque V1. The firing rate map estimate after
30 trials under infomax learning (middle left) and varmin learning (bottom
left). Plots at right show the first 30 stimuli selected with each method. (B) Mean
squared error (top), posterior entropy (middle), and total posterior variance
(bottom) as a function of the number of trials.

in Figure 7, where the estimates obtained by our method look closer to the
estimates using all data than those obtained by infomax learning.

Finally, we conducted population analysis using the data collected from
six V1 neurons. We made 10 differently shuffled data sets (as one does
10-fold cross-validation), where we used 10% of each data set as a validation
set and picked the stimuli by active learning from the remaining 90% of the
data set, and computed the average log likelihood of the test data for six
different neurons. The gray dots in Figure 8 are the log likelihood when the
number of trials is 40% of the entire data; black dots are when the number
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Figure 7: Active learning with neural data (3D cone contrast space) (A) 2D
slices of the estimated 3D firing maps using all 700 trials (top) and after only 300
trials with infomax (middle) or varmin learning (bottom). (B) Mean-squared
error, total variance, and posterior entropy as a function of the number of trials,
averaged over results from four different neurons.

of trials is 80% of the entire data. On average, varmin learning achieved 1.4
times higher likelihood than infomax learning. We also conducted a paired-
sample t-test and obtained the p-value 0.0130 using 80% of the entire data
(black dots). Thus, we reject the null hypothesis that infomax and varmin
learning methods perform similarly at the 0.05 significance level.

7 Discussion

We have developed an algorithm for active learning of neural firing rate
maps in real-time, closed-loop neurophysiology experiments. We have
shown that the widely used infomax learning behaves suboptimally in
terms of mean squared error, in a fashion that depends on the choice of non-
linear transformation in the GP-Poisson model. Specifically, varmin learn-
ing selects stimuli that elicit both low and high spike rates, whereas infomax
learning tends to select stimuli that elicit either all low (for softrect
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Figure 8: Log likeliood of test data across six cells. We used 10 differently
shuffled data sets. Each active learning method picked the stimuli from 90% of
each data set, and the remaining 10% was used as a validation set. On average,
varmin learning achieved 1.4 times higher test likelihood than infomax learning.

nonlinearity) or high spike rates (for exponential nonlinearity). This pro-
vides justification for varmin learning, which selects the stimuli that mini-
mize the expected total variance of the tuning curve estimate. When tested
on simulated and real neural data, we found that varmin learning increased
estimation accuracy faster than infomax learning did.

One potential criticism of varmin learning is that it requires several joint
expectations, which we approximated somewhat crudely to achieve fast
implementation. A natural future direction is to develop more efficient
sampling-based algorithms in order to take into account the uncertainties
in the firing rate map estimate when computing the expected reduction in
posterior variance. This should improve the accuracy of the current varmin
algorithm, assuming computational challenges can be overcome.

There are several promising applications of active learning methods for
firing map estimation. First, we feel it will be useful to apply such methods
to characterize response properties in higher-level visual areas (e.g., V2,
V4, IT), where cells generally have highly nonlinear selectivity in relatively
high-dimensional stimulus spaces. Second, we hope to extend active learn-
ing methods to multineuron recordings in order to select stimuli that are
most useful for characterizing the response properties of a small popula-
tion of neurons recorded in parallel. Third, we are currently working to
develop more flexible response models for use in active learning protocols,
including models with simple forms of nonlinear stimulus adaptation and
non-Poisson noise in the neural response. Taken together, we believe these
methods will greatly improve the speed and accuracy of neural characteri-
zations in high-throughput neurophysiology experiments.
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