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A B S T R A C T

Measuring the color tuning of visual neurons is important for understanding the neural basis of vision, but it is
challenging because of the inherently three-dimensional nature of color. Color tuning cannot be represented by a
one-dimensional curve, and measuring three-dimensional tuning curves is difficult. One approach to addressing
this challenge is to analyze neuronal color tuning data through the lens of mathematical models that make
assumptions about the shapes of tuning curves. In this paper, we discuss the linear-nonlinear cascade model as a
platform for measuring neuronal color tuning. We compare fitting this model by three techniques: two using
response-weighted averaging and one using numerical optimization of likelihood. We highlight the advantages
and disadvantages of each technique and emphasize the effects of the stimulus distribution on color tuning
measurements.

1. Introduction

In humans, apes, and Old World monkeys, color vision is mediated
by the long (L), medium (M), and short (S) wavelength-sensitive cone
photoreceptors. Signals from these three cone classes are combined in
the retina, sent to the brain, and propagated through a complex pro-
cessing hierarchy of recurrently connected visual areas. At each stage of
this hierarchy, signals from the preceding stages are mixed to create
new signals. Signals in the early stages are closely related to the phy-
sical properties of light, whereas signals in the later stages are more
closely related to perception (Bohon, Hermann, Hansen, & Conway,
2016; Conway, 2009; Conway et al., 2010; Gegenfurtner, 2003;
Komatsu, 1998; Solomon & Lennie, 2007). Neuronal color tuning
measurements can help reveal how and where these transformations
occur.

1.1. A problem in color neurophysiology

Color tuning measurements made in different laboratories are not
always comparable. Different laboratories typically use different sti-
muli, and comparisons are based on data summaries, such as distribu-
tions of preferred colors or cone weights. In an ideal world, these
summaries would not depend on an experimenter’s choice of stimuli,
but in reality they usually do. For example, differences in spatio-
temporal stimulus parameters affect color tuning (Conway &
Livingstone, 2006; Cottaris & DeValois, 1998; Derrington, Krauskopf, &

Lennie, 1984; Solomon, Peirce, & Lennie, 2004; Thorell, De Valois, &
Albrecht, 1984). These effects are important but beyond the scope of
this article; we focus on how the spectra of lights presented in neuro-
physiology experiments affect measurements of color tuning.

To illustrate the type of problem we are considering, we analyze an
example data set. We probed individual neurons in the primary visual
cortex (V1) of a macaque with two types of white noise stimuli. In the
phosphor noise stimulus, the three display primaries modulated in-
dependently (Fig. 1A). In the cone noise stimulus, they modulated in
ratios selected to stimulate the three cone types independently (Fig. 1B)
(see Appendix I for methodological details of the experiment). The
average phosphor noise stimulus that preceded a spike from a single
example neuron (Fig. 1C) appears different from the average cone noise
stimulus that preceded a spike (Fig. 1D); but do these two images reflect
the same color tuning? We will return to this example neuron twice
more as we present three techniques to estimate color tuning and dis-
cuss the transformation of estimates between color spaces. To begin, we
discuss the model upon which the analysis techniques are based: the
linear-nonlinear (LN) cascade.

1.2. The linear-nonlinear cascade model

Models have a central role in color neurophysiology. Without them,
color tuning measurements are simply a collection of numerical tables
that map stimuli to responses—tables that do not predict responses to
untested stimuli and that can never be sufficiently large to characterize
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tuning fully. In this paper, we focus specifically on cone signal combi-
nation under the LN model. This class of model has a long history in the
field of color psychophysics, specifically in the areas of contrast de-
tection (Cole, Hine, & McIlhagga, 1993; D’Zmura & Knoblauch, 1998;
Krauskopf, Williams, & Heeley, 1982; Sankeralli & Mullen, 1996), color
discrimination (Eskew, McLellan, & Giulianini, 1999; Ingling & Tsou,
1977; Krauskopf & Gegenfurtner, 1992; Wandell, 1985), and appear-
ance judgments (Hurvich & Jameson, 1957; Poirson & Wandell, 1993;
Thornton & Pugh, 1983). Some of the issues we discuss regarding color
spaces and transformations between them can be found in Knoblauch,
1995; Sankeralli & Mullen, 2001; D’Zmura & Knoblauch, 2001;
Brainard, 1996; Brainard & Stockman, 2010; Stockman & Brainard,
2010; Hansen & Gegenfurtner, 2013. Here, we distill from this body of
work a few key techniques that are particularly useful for color neu-
rophysiology. We apply these techniques to neurophysiological data,
compare their accuracy for measuring neuronal color tuning, and pro-
vide intuitions into their respective strengths and weaknesses.

The LN model provides a simple but powerful description of neural
responses. As the name suggests, this model has both a linear and a
nonlinear component. The linear component specifies how stimulus
elements are weighted and summed:

⎡⎣⎢ ⎤⎦⎥v v v
A
B
C

[ ]1 2 3
(1)

where the vector [v1 v2 v3] represents three stimulus elements (e.g.
signals from the three cone types), and the weighting vector [A B C]
describes how the elements are combined. The sign and magnitude of
each element in the weighting vector indicates how the corresponding
element in the stimulus vector contributes to or detracts from the
neuron’s response. Input to the LN model can be represented by any
number and kind of stimulus elements (e.g. cone excitations, DKL me-
chanism modulations, CIE chromaticity coordinates). The nonlinear
component transforms the weighted sum into neural responses:

= ⎛
⎝⎜ ⎡⎣⎢ ⎤⎦⎥⎞

⎠⎟R f v v v
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C
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where R typically represents a spike count or spike rate. The function f
captures nonlinear response features like spike-rate saturation and
rectification.

The LN model simplifies the problem of measuring color tuning,
fundamentally, by reducing multiple stimulus elements to a single

scalar through weighting and summing. The weighting vector describes
this simplification by specifying a neuron’s sensitivity to each element.
The direction of the weighting vector though color space—the neuron’s
preferred direction—is a useful summary of color tuning. In contrast,
the magnitude of the weighting vector is less informative. Any uniform
scaling of the weights can be compensated exactly by scaling of the
domain of f, so a family of LN models exists that make identical re-
sponse predictions despite each having a different f and correspond-
ingly different weights. For this reason, weighting vectors are often
normalized so that their absolute values sum to one (Conway &
Livingstone, 2006; Derrington et al., 1984; Horwitz, Chichilnisky, &
Albright, 2007; Johnson, Hawken, & Shapley, 2004; Lennie, Krauskopf,
& Sclar, 1990; Reid & Shapley, 2002).

2. Technique 1: response weighted averaging

Response weighted averaging is a data analysis technique that can
provide valuable insight into how neurons represent visual stimuli. The
response-weighted average stimulus (RWA) is described mathemati-
cally as: ∑= =RWA

n
R v v v1 [ ]

i

n

i i
1

1 2 3
(3)

where n is the total number of tested stimuli, [v1 v2 v3]i is the ith sti-
mulus, and Ri is the response to the ith stimulus. The elements of the
RWA, like those of the weighting vector, reflect the influence of each
visual signal on the response of the neuron. The average stimuli in
Fig. 1C and D are examples of RWAs.

The RWA can be used to estimate a neuron’s preferred color di-
rection (Chichilnisky & Baylor, 1999; Cottaris & DeValois, 1998;
Horwitz et al., 2007; Sun, Smithson, Zaidi, & Lee, 2006), but its accu-
racy depends on the stimulus distribution. This estimate is biased if the
stimulus distribution is asymmetric (e.g. distended or unequally sam-
pled). To visualize this bias, consider a hypothetical neuron that re-
ceives exclusively L-cone input. The stimuli that evoke the largest re-
sponses from such a neuron will strongly modulate the L-cones. If such
a neuron were probed with a stimulus distribution in which L- and M-
cone signals are positively correlated (Fig. 2A), then the stimuli that
evoke the largest responses (and therefore dominate the RWA) will also
strongly modulate the M-cones. The RWA (star) reflects this correlation,
and consequently, does not align to the L-cone axis, which is the neu-
ron’s preferred color direction (arrow).

The RWA is an unbiased estimator of the preferred direction when
the stimulus distribution is radially symmetric (RS) (Fig. 2B)
(Chichilnisky, 2001). Intuitively, this is because there exist families of
stimuli that give rise to the same weighted sum, and therefore, the same
response. Under the LN model, all such stimuli lie on contours through
color space that are straight and perpendicular to the preferred direc-
tion (colored lines). When stimuli that drive the same response are
distributed symmetrically about the preferred direction (arrow), their
average (star) aligns with the preferred direction. In most experiments,
the preferred direction of a neuron is unknown a priori, so the stimulus
distribution must be symmetric in all directions to guarantee an un-
biased estimate.1

Radial symmetry of a stimulus distribution depends on how the axes
of the color space are defined. Stretching one axis of the color space
distends the stimulus distribution along that axis, biasing the RWA in
the direction of the stretch. This problem might appear formidable,
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Fig. 1. The responses of an individual V1 neuron to stimuli from two distributions. (a)
Stimuli from the phosphor noise distribution. The color of each square was determined by
the independent modulation of the three phosphors in a CRT monitor. (b) Stimuli from
the cone noise distribution. Each colored square modulated the activity of the three cone
photoreceptor-types independently. (c) The average stimulus that preceded a spike during
the presentation of the phosphor noise. (d) The average stimulus that preceded a spike
from the same neuron during the presentation of the cone noise.

1 In practice, stimulus distributions used in experiments are usually discrete and
therefore can only approximate true radial symmetry. In this case, the denser the sam-
pling in the stimulus space, the closer this approximation is. Continuously varying stimuli
can also be used to create a radially symmetric (RS) distribution (Sun et al., 2006). Stimuli
that are presented in rapid succession or in close proximity, such that they are effectively
averaged together in the visual system, create signals that approach a Gaussian dis-
tribution, which can always be made RS with a linear transformation.
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since no single set of stimuli nor representation thereof is universally
accepted as the best for measuring color tuning, and no distribution of
stimuli is RS in every color space. Fortunately, an estimate of a neuron’s
preferred color direction, obtained in any color space by any means, can
be transformed to any linearly related color space in a straightforward
way. To demonstrate this procedure and to provide a practical appli-
cation, we discuss how stimuli and weights are transformed between
color spaces below.

2.1. The representation and transformation of lights and weights

The preferred direction of a neuron can be estimated in one color
space (e.g. where the stimulus distribution is RS) and transformed into
any linearly related space (e.g. where the distribution is not RS). This
transformation can be demonstrated using the two color spaces in-
troduced in Fig. 1: a phosphor space and a cone space. In both spaces,
the origin [000] represents the background of the display, which is also
the average of the stimulus distribution. Changes in phosphor intensity
relative to this light level are represented with positive and negative
values, as are changes in cone excitation. Each light is represented by a
single point in each space and can be transformed between them via
matrix multiplication:= ∗LMS RGB M[ ] [ ] (4)

where [R G B] is an n× 3 matrix of stimuli represented in phosphor
space, [L M S] is this same collection of stimuli represented in cone
space, and M is a 3× 3 transformation matrix. Transforming the re-
presentation of lights alters their distribution. For example, a stimulus
distribution that is RS in phosphor space (Fig. 3A, gray points) is dis-
tended in cone space (Fig. 3B, gray points) and vice versa (colored
squares).

Neural responses do not depend on how an experimenter choses to
represent visual stimuli. For the responses of an LN model neuron to
have this property, the weights must be transformed between color
spaces such that a given stimulus produces the same weighed sum ir-
respective of its representation. To achieve this, the transformation of
the stimuli must be counterbalanced by the transformation of the
weights. If the matrix M transforms lights from phosphor space to cone
space (Eq. (4)), then the weights are transformed by its inverse trans-
pose (M−T):= ∗ −lms rgb M[ ] [ ] T (5)

where [r g b] and [l m s] are the weights in phosphor and cone space,
respectively, that reflect the same color tuning. Combining Eqs. (4) and
(5) clarifies the relationship:

= ∗⎡⎣⎢ ⎤⎦⎥ = ∗ ∗ ∗⎡⎣⎢ ⎤⎦⎥−R LMS
l
m
s

RGB M M
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g
b

[ ] [ ] 1

(6)

where ∗⎡⎣⎢ ⎤⎦⎥−M
r
g
b

1 is simply a rearrangement of terms in Eq. (5).

The general principle demonstrated here is that any invertible
transformation of the stimuli must be accompanied by a compensatory
transformation of the weights, so that weighted sums are invariant to
changes in the stimulus representation. Using this principle, we can
tabulate the transformations of stimuli and weights between linearly
related color spaces (Table 1).

2.2. An experimental example

We return to the example neuron from Fig. 1, which was probed
with two stimulus distributions, each of which was RS in the color space
in which it was constructed (Fig. 3). We generate two estimates of the
preferred color direction: one in phosphor space, and one in cone space.
These two color spaces are linearly related, so the two estimates can be
transformed from one space to the other, or into a third via Eq. (5). By
convention, we represent both estimates in cone contrast space. Both
estimates indicate similar color tuning (Fig. 4A, purple symbols). Si-
milar results were obtained for a larger population of V1 neurons, as
captured by the proximity of each neuron’s normalized cone weight
estimates (Fig. 4A, gray symbols) and the high correlations between
them (Fig. 4B).

3. Technique 2: linear regression

To estimate the preferred color direction of a neuron whose re-
sponses have been probed with a non-RS stimulus distribution, the
experimenter must turn to alternative techniques. One special case of-
fers an easy solution: if the stimuli can be linearly transformed into a
new color space in which their distribution is RS, the preferred color
direction can be estimated in the new space using the RWA, then
transformed to the original space using Table 1 (multiplication with the
inverse-transpose of the stimulus transformation matrix).

This technique is not generally applicable, however, because most
non-RS stimulus distributions cannot be made RS via linear transfor-
mation. Nevertheless, there is an approximation that comes close:
multiplying the stimuli with a whitening matrix. This multiplication

Fig. 2. Responses of a hypothetical neuron that receives exclusively L-cone input. For
simplicity, only L- and M-cone modulations are simulated in this example. The position of
each gray point represents a stimulus in the LM plane. The size of each point represents
the magnitude of the corresponding response. Contour lines, from cool to warm colors,
represent the increasing responses of the neuron to stimuli of progressively higher con-
trast. The brown arrow indicates the preferred color direction of the neuron, and the
orange star represents the response-weighted average stimulus (RWA). (a) A distended
stimulus distribution in which L- and M-cone modulations are positively correlated. The
RWA does not align with the neuron’s preferred direction. (b) A radially symmetric sti-
mulus distribution of L- and M-cone modulations. The RWA aligns with the preferred
direction. For reference, the purple, green, yellow, and red points represent identical
lights in each distribution.
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Fig. 3. Phosphor noise stimuli (gray circles) and cone noise stimuli (colored squares)
represented in two color spaces. (a) Phosphor and cone noise stimulus distributions
projected onto the red-green plane of phosphor space. The phosphor noise distribution is
approximately radially symmetric (RS) in this space, and the cone noise distribution is
distended. (b) The same two distributions projected onto the LM plane of cone space. In
this color space, the cone noise distribution is approximately RS, and the phosphor noise
distribution is distended. Only four colored squares are visible because +S- and −S-cone
stimuli have an equal projection onto this plane.
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transforms the stimuli so that they have variance 1 in all directions
(their distribution need not be the same in all directions, which is why
the whitened distribution is not necessarily RS). The preferred color
direction of a neuron can be estimated with the RWA of the whitened
distribution, then transformed to the original color space. This solution
does not necessarily provide an unbiased estimate of a neuron’s pre-
ferred color direction, but it can provide a substantial improvement
over the RWA of the non-whitened stimulus distribution. This technique
is identical to linear regression.

4. Technique 3: numerical optimization

An even more general approach to the problem of estimating the
preferred color direction is to use numerical optimization to iteratively
adjust the weights of the LN model to minimize an appropriate measure
of error (e.g. the sum of squared differences between the actual and
predicted responses). Numerical optimization is more computationally
intensive than linear regression or calculating the RWA. Nevertheless, it
can be used to accurately estimate the weighting vector, as well as any
additional parameters of the model, largely irrespective of the stimulus
distribution. Additional parameters may include those that govern the
shape of f (the nonlinear component), or weights that represent input
from non-stimulus sources (e.g. response history or the firing of other
neurons; Pillow et al., 2008). Through numerical optimization, all of
these parameters can be estimated simultaneously, and thus potentially
more accurately than if each were estimated sequentially, as when the
RWA is used to estimate the preferred color direction and other pro-
cedures are used to estimate f.

Generally, the goal of this procedure is to describe the data with a
model that maximizes (or alternatively minimizes) an objective function.
The objective function describes the relationship between the para-
meters of the model (e.g. the weights) and a number that represents
how well each set of parameter values describes the data. The objective

function may also include penalties for parameter values that are un-
realistic or are unlikely to generalize well to new data.

The objective function must be tailored to the experiment, and al-
though many circumstances warrant a particular set of functions, there
is often no best choice. One set of objective functions that is well
grounded in statistical theory—likelihood functions—represent the
probability of observing a set of neuronal responses across all possible
choices of model parameter values. The parameter values that max-
imize the likelihood function identify the model under which the ob-
served responses are most likely to occur. This maximum likelihood
estimate can be written:

̂⎡⎣⎢ ⎤⎦⎥ = ⎛
⎝⎜⎜

⎛
⎝⎜ ⎛⎝⎜⎡⎣⎢ ⎤⎦⎥ ⎞⎠⎟ ⎞

⎠⎟
⎞
⎠⎟⎟
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C

θ argmax f
a
b
c

θ R, ,L

(7)

where [a b c] is a weighting vector, θ is a vector of any additional
parameters that fmight have, R is a vector of the observed responses,L
is the likelihood, or the conditional probability of responses R given the
candidate weights [a b c] and parameters values θ. [A B C] and ̂θ are the
parameter values that maximize this likelihood.

The parameter values that maximize likelihood may not be calcul-
able analytically, but may be found using numerical optimization.
Although many strategies exist for finding local maxima of the like-
lihood function, no strategy is guaranteed to produce a singular set of
parameter values that maximizes the function globally. Instead, the
fitting algorithm must search iteratively through many combinations of
parameter values. Because the number of potential parameter combi-
nations is infinite in most scenarios, not every possible combination can
be tested; therefore, the possibility usually remains that a better set
exists. Despite this shortcoming, an experimenter may confidently fit
the data using techniques that avoid local maxima in the likelihood
function if the number of parameters is reasonably low. Under re-
stricted conditions, the likelihood function can be proven to have a
single maximum, facilitating fitting models with many parameters
(Paninski, Pillow, & Lewi, 2007).
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Fig. 4. (a) Normalized cone weight estimates from a population of V1 neurons (n=35).
Two cone weight estimates (connected with black lines) were obtained from each neuron:
one from the responses to the phosphor noise (circles) and one from the responses to the
cone noise (squares). Shaded symbols indicate positive S-cone weights, and unshaded
symbols indicate negative S-cone weights. The example neuron from Fig. 1 is highlighted
in purple. (b) Correlation coefficients between the normalized cone weight estimates
obtained from the two distributions. Cone weight estimates derived from the phosphor
noise agreed closely with those derived from the cone noise for most of the neurons
tested.
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Fig. 5. Normalized cone weight estimates for the example neuron from Fig. 1 estimated
via the response-weighted average (purple) and maximum likelihood (blue). Normalized
cone weight estimates derived from the phosphor noise (squares) agreed closely with
those derived from the cone noise (circles) using both techniques.

Table 1
Transformations of stimuli and weights between linearly related color spaces.

Space 1→ Space 2
(e.g. phosphor space to cone space)

Space 2→ Space 1
(e.g. cone space tophosphor space)

Stimuli [v1 v2 v3] M M−1

Weights [A B C] M−T MT
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4.1. Comparing estimation techniques

To compare the accuracy of preferred direction estimates obtained
by numerical maximization of likelihood with those obtained by re-
sponse-weighted averaging, we performed two analyses. First, we used
both techniques on the example dataset from Fig. 1. Second, we used
both techniques to estimate the preferred color directions of simulated
neurons (see Appendix II for simulation details).

The example dataset consisted of spike times from a single neuron
stimulated with phosphor noise and cone noise. To estimate cone

weights, we represented every stimulus as cone contrasts relative to the
background and fitted the data with an LN model using numerical
optimization (maximum likelihood). Fitted cone weights were similar
whether computed from the phosphor noise data (Fig. 5, circles) or
from the cone noise data (Fig. 5, squares), confirming that maximum
likelihood estimates are relatively insensitive to the distribution of
stimuli used in the experiment.

In our second analysis, we compared estimates of the preferred di-
rections of simulated neurons using the RWA, linear regression, and
maximum likelihood. Each technique was applied to three different

Fig. 6. Estimates of preferred color direction obtained from the responses of simulated neurons. Preferred color directions were estimated with three techniques and three stimulus
distributions. Gray circles represent stimuli that were presented to the simulated neuron. The purple, green, yellow, and red points represent identical lights in each distribution. For
simplicity, only L- and M-cone modulations were simulated. (a) Left: a radially symmetric stimulus distribution. Right: the mean and standard deviation of the error between the true and
estimated preferred directions. Estimates obtained via the response-weighted average stimulus (RWA) (purple) and maximum likelihood (blue) were both unbiased. For this stimulus
distribution, RWA and linear regression estimates are the same. (b) Left: a distended stimulus distribution that was RS when whitened. Right: estimation via the RWA of the non-whitened
distribution (pink) was biased, but estimation via linear regression (purple) and maximum likelihood (blue) were not. (c) Left: a distended stimulus distribution that could not be made RS
by linear transformation. Right: estimates obtained via RWA (pink) and linear regression (purple) were both biased, but maximum likelihood estimates (blue) were not.
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stimulus distributions: an RS distribution (Fig. 6A, left), a distended
distribution that could be made RS by whitening (Fig. 6B, left), and a
distended distribution that could not be made RS by whitening (Fig. 6C,
left). For simplicity, only L- and M-cone modulations were simulated.
We compared the true preferred direction with the estimated preferred
direction obtained with each technique. The RWA estimate was un-
biased only when the distribution was RS (Fig. 6, pink curves). Linear
regression was additionally unbiased when whitening the distribution
produced radial symmetry (Fig. 6, purple curves). Maximum likelihood
was unbiased in all three cases (Fig. 6, blue curves).

5. Discussion

We described three techniques for measuring preferred color di-
rections: two based on the RWA, and one based on numerical max-
imization of likelihood. Below, we summarize their advantages and
disadvantages. Then, we discuss incorporating cone adaptation into the
LN model. Finally, we outline a general strategy for extending the LN
model.

The RWA has the advantages that it is easy to calculate and can be
used to estimate a neuron’s preferred color direction without explicit
specification of the parametric form of f (e.g. Naka-Rushton or ex-
ponential) or the error model (e.g. Poisson distributed spike counts).
Numerical optimization methods have the advantages that they can be
used with any reasonable stimulus distribution, a variety of objective
functions, and are easily generalizable to models that are more complex
than the LN model.

5.1. Accounting for adaptation with visual signals or weights

The techniques we described are for estimating the parameters of
the LN model. They do not guide the selection of stimulus representa-
tion. Some stimulus representations can facilitate response descriptions
under a narrow range of conditions, others under a broader range. For
example, the red-green detection mechanism can be modeled as LN
under constant illumination conditions:

= ⎡⎣⎢ ⎤⎦⎥R LMS
A
B
C

[ ]
(8)

where L, M, and S represent cone excitation differences, or the changes
in photoisomerizations caused by a stimulus against a static background
(Boynton, Ikeda, & Stiles, 1964; Cole et al., 1993; Giulianini & Eskew,
1998; Kranda & King-Smith, 1979; Sankeralli & Mullen, 1996; Sperling
& Harwerth, 1971), and R represents the response of the red-green
detection mechanism.

If the background illumination is changed, however, the cones
adapt, thresholds shift, and new weights are needed to describe them.
To account for this adaptation, the background illumination must be
included in the model. One possibility is to incorporate the background
into the weights, yielding a dynamic weighting vector that changes
with every background:
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where L0, M0, and S0 represent cone excitations due to the background,
and A′=A* L0, etc. Alternatively, the background can be incorporated
into the representation of the stimulus:

= ⎡
⎣
⎢⎢⎢⎢

⎤
⎦
⎥⎥⎥⎥ = ⎡⎣⎢ ⎤⎦⎥⎡⎣⎢ ⎤⎦⎥R LMS L

L
M
M

S
S

A
B
C

[ ]

A
L
B

M
C
S

0 0 0

0

0

0 (10)

Scaling the stimulus by the background changes the representation
from cone excitation differences to cone contrasts. In this color space, a
single static weighting vector describes detection thresholds under a
wide array of illumination conditions (Chaparro, Stromeyer, Kronauer,
& Eskew, 1994; Kalloniatis & Harwerth, 1991; Stromeyer, Cole, &
Kronauer, 1985; Thornton & Pugh, 1983).

Cone contrast is a simple way of modeling cone adaptation (for
more complex alternatives, see Stockman & Brainard, 2010 and
Angueyra & Rieke, 2013). This example is not meant to advocate for
any particular color space but to show that cone adaptation can be
incorporated into the weights or into the representation of the stimulus,
creating two isomorphic LN models. Both provide equivalent descrip-
tions, but accounting for cone adaptation in the stimulus representation
isolates receptoral from post-receptoral processes. This example un-
derscores that the relationship between stimuli and responses may
appear complex under one representation, but simple under another.

5.2. Beyond the LN model

Some neurons are poorly described by the LN model (Bushnell,
Harding, Kosai, Bair, & Pasupathy, 2011; Hanazawa, Komatsu, &
Murakami, 2000; Komatsu, Ideura, Kaji, & Yamane, 1992; Solomon &
Lennie, 2005; Thorell et al., 1984). For such neurons, weight estimates
are not meaningful. However, the LN model may provide a useful
skeleton on which to build richer classes of models that describe the
responses of these neurons more accurately (Golden, Vilankar, Wu, &
Field, 2016; Horwitz & Hass, 2012; Rust, Mante, Simoncelli, &
Movshon, 2006).

Improvements to the LN model will likely spur new advances in
color neurophysiology. Finding a class of model that describes color
tuning more accurately while being simple enough to work with is not
trivial, but complementary approaches may provide leverage. First,
patterns of residuals can be analyzed to find systematic deviations from
the predictions of the LN model, and the model can be extended to
eliminate these patterns. Second, known neuronal nonlinearities such
as contrast gain control and contrast energy calculations can be in-
corporated into the model. Third, early stages of the visual system can
be modeled with greater precision, thereby more accurately con-
straining how downstream neurons process color signals.

We described stimuli in terms of their effects on the cones, but the
techniques we described generalize beyond these descriptions. Deep in
the visual system, for example, neuronal responses are poorly described
as weighted sums of cone signals. One intriguing possibility is that such
neurons may perform LN-like operations but on inputs that are abstract
quantities (Pagan, Simoncelli, & Rust, 2016). Finding stimulus re-
presentations that are combined quasi-linearly by neurons but are only
distantly related to cone excitations may be a fruitful approach for
understanding color tuning in higher-level visual areas.
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Appendix I: Electrophysiological methods

We recorded from 35 V1 neurons in an awake fixating rhesus monkey. All experiments were done in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.

The white noise stimulus comprised a 10× 10 grid of 0.1° squares whose color changed randomly on every screen refresh (75 Hz). The color of
each square during a given trial was drawn from one of two distributions. The phosphor noise stimulus modulated each of the three display primaries
independently (Figs. 1A and 3A), creating a Gaussian distribution of stimuli that was RS in phosphor space. The cone noise stimulus modulated each
cone-type independently between a high and low value (Figs. 1B and 3B). Each stimulus was equidistant from the origin in proportional cone-contrast
space, in which cone contrast is scaled according to the relative proportion of each cone-type in the retina, such that:∗ ≈ ∗ ≈ ∗Lcc Lcp Mcc Mcp Scc Scp (1A)

where Lcc,Mcc, Scc is the maximum L-, M- and S-cone contrast (0.09, 0.09, 0.4), and Lcp,Mcp, and Scp are the approximate proportions of L-, M-, and
S-cones in the macaque retina (0.45, 0.45, 0.1). Both stimulus distributions had equal mean luminance and chromaticity, which was identical to the
background.

For each neuron tested, two RWAs were computed: one using the responses from phosphor noise trials and one using the responses from cone
noise trials. Responses in these experiments were represented as the number of spikes occurring on each stimulus frame, measured after an estimated
response latency.

To estimate a single preferred color direction from each RWA, we used a singular value decomposition to find a 3-element vector that describes
the consensus color tuning across stimulus pixels and time-delays (Horwitz & Albright, 2005). Thus, the preferred color direction of each neuron was
represented by a pair of 3-element vectors: one describing the weights in phosphor intensity space and the other describing the weights in pro-
portional cone-contrast space. These weight estimates were then transformed to cone-contrast space by matrix multiplication, as per Table 1.

Appendix II: Simulation methods

Modeled responses were generated according to an LN model (Eq. (2)) in which the nonlinear function f was a Naka-Rushton function:

= ∗ + +λ U contrast
c contrast

bl
N

N N
50 (2A)

where U is the peak response (the upper asymptote), bl is the baseline response (the lower asymptote), N is an exponent, contrast is the dot product
between the stimuli [L M] and a unit-length weighting vector A B[ ], and c50 is the contrast at which the response reaches half maximum. Noise was
added to these modeled responses by passing the output of the Naka-Rushton function through a Poisson random number generator:=R Pois λ( ) (3A)

Each of 33 simulated neurons was tuned to a unique direction in the LM plane and was probed with three stimulus distributions, each comprising
64 unique stimuli. Each unique stimulus was presented 5 times. The upper asymptote (U), baseline (bl), and exponent (N) were fixed across datasets
(U=50, bl=0, N=3), and the c50 was defined for each neuron to be in the middle of the range of tested stimulus contrasts. For each simulated
neuron and stimulus distribution, 100 datasets were generated and analyzed to estimate the neuron’s preferred color direction.

To estimate preferred color directions using maximum likelihood, each dataset was fitted with a Naka-Rushton function in which U, c50, bl, N, and
the weighting vector A

B[ ] were free to vary. The fitted values for each dataset were those that maximized the Poisson likelihood of the parameters
given the responses R:

̂ ∏= … … = ⎛⎝⎜ ∗ ⎞⎠⎟=
−

θ argmax R R λ λ argmax λ e
R

( ( | ))
!n n

i

n
i
R λ

i
1 1

1

i i
L

(4A)

in which n is the total number of stimuli, Ri is the response to the ith stimulus, λi is the predicted response to the ith stimulus, and ̂θ is a vector of the
best-fitting parameter values (comprising U, bl, N, c50, and [A B]). For practical reasons, we minimized the equivalent log-likelihood function:

̂ ∑= − … … = ⎛⎝⎜− ∗ − ⎞⎠⎟=θ argmin R R λ λ argmin R λ λ( ( | )) (log( ) )n n
i

n
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