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Color has become a premier model system for understanding how information is processed by neural circuits, and for investigating the
relationships among genes, neural circuits, and perception. Both the physical stimulus for color and the perceptual output experienced as
color are quite well characterized, but the neural mechanisms that underlie the transformation from stimulus to perception are incom-
pletely understood. The past several years have seen important scientific and technical advances that are changing our understanding of
these mechanisms. Here, and in the accompanying minisymposium, we review the latest findings and hypotheses regarding color
computations in the retina, primary visual cortex, and higher-order visual areas, focusing on non-human primates, a model of human
color vision.

In trichromatic primates, including humans and Old World
monkeys, there are three types of cone photoreceptors that are
responsible for color vision (Fig. 1A,B). The cone classes are
called L, M, and S because of their spectral-sensitivity peaks,
which lie in the long-, middle-, and short-wavelength regions of
the visible spectrum. These labels replace the misleading terms
“red,” “green,” and “blue.” Two physically distinct stimuli appear
as different colors only if they produce different relative activa-
tions in at least two cone types; conversely, any pair of physically
distinct stimuli that activate the cone types in the same relative
amount appear the same, like the two yellows shown in Figure 1C.
While photoreceptor responses are easily computed from the
spectral distribution of the stimulus, there is no straightforward
relationship between photoreceptor response and color (Hofer et
al., 2005a; Shevell and Kingdom, 2008). The multitude of color
phenomena, including color afterimages, color assimilation,
neon-color spreading, color constancy, and colored shadows, is
compelling because in many cases two physically identical stimuli
are made to appear different colors, or two physically different
stimuli are made to appear the same simply by changing the
spatial or temporal context (Fig. 2). A full description of the
neural machinery for color should account for these observa-
tions, as well as more cognitive phenomena involving the rela-

tionship between experience, language, memory, emotion and
color. The neural basis of color has been reviewed previously
from a range of perspectives (Gegenfurtner, 2003; Gegenfurtner
and Kiper, 2003; Lennie and Movshon, 2005; Sincich and Horton,
2005; Solomon and Lennie, 2007; Conway, 2009; Dobkins, 2009;
Jacobs and Nathans, 2009; Stockman and Brainard, 2010). Here
we focus on advances and pressing questions regarding the mech-
anisms of color in retina, striate cortex, and extrastriate cortex of
non-human primates, although we note that other species are
emerging as excellent model systems of color processing (Lotto
and Chittka, 2005; Van Hooser and Nelson, 2006; Osorio and
Vorobyev, 2008; Borst, 2009; Johnson et al., 2010; Srinivasan,
2010).

Retinal mechanisms
A single cone by itself is color blind because its activation depends
on both the wavelength(s) and intensity of the stimulus. A com-
parison of the signals from different classes of photoreceptors is
therefore the most basic computational requirement of a color-
vision system. The existence of cone-opponent retinal ganglion
cells that perform such comparisons is well established in primate
(Dacey and Packer, 2003; Jacobs, 2008). Cone-opponent retinal
ganglion cells respond with increased firing to an increment in
activation of one cone type (on-response) and to a decrement in
activation of a different cone type (off-response) (De Monasterio
et al., 1975; Dacey and Lee, 1994). Cone-opponent retinal gan-
glion cells come in four varieties: L-on/M-off, M-on/L-off, S-on/
(L�M)-off, and (L�M)-on/S-off, although the receptive fields of
ON cells often have markedly different sizes and temporal dy-
namics compared with OFF cells, especially for cells receiving
strong S-cone input (Chichilnisky and Kalmar, 2002; Chatterjee
and Callaway, 2003; Conway and Livingstone, 2006; Tailby et al.,
2008; Field et al., 2010). The four varieties of retinal ganglion cells
were originally thought to underlie the psychological finding of
four unique hues (red, green, blue, and yellow) that are yoked by
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perceptual antagonism (red is exclusive of green; blue is exclusive
of yellow). But this simple relationship of retina physiology to
psychology turns out not to be true (Derrington et al., 1984;
Valberg, 2001; Webster, 2009); still, cone-opponent cells are of-
ten referred to by color terms. The neural basis for the unique
hues remains elusive, although responses in extrastriate cortex
may provide some clues (see last section). Two major open ques-
tions regarding retinal color processing are the nature and
diversity of the neural circuitry that produces cone-opponent
responses and the relationship between retinal physiology and
color perception.

L-M opponent cell types and circuitry
Morphologically defined ON and OFF midget cells project to the
parvocellular layers of the lateral geniculate nucleus (LGN)—the
LGN is the thalamic nucleus that connects retina and visual
cortex. Both midget and parvocellular cells show L versus M cone-
opponent responses that result from spatially opponent center-
surround receptive fields (Fig. 3A). It has been difficult to
determine whether midget cell centers and/or surrounds selec-
tively or randomly sample from L and M cones (Martin et al.,

2001; Diller et al., 2004; Buzás et al., 2006; Jusuf et al., 2006; Field
et al., 2010). At one extreme, the center and surround could
exclusively sample different cone types (e.g., the center samples
only M cones, and the surround samples only L cones) (Wiesel
and Hubel, 1966; Reid and Shapley, 2002). At the other extreme,
L and M cones could be randomly sampled by center and sur-
round, with cone-opponent responses occurring in some cells by
chance (Lennie et al., 1991; Billock, 1996).

Near the fovea, midget cell receptive-field centers selectively
sample from a single cone type for a trivial reason: they are fed by
a single cone (Kolb and Marshak, 2003). But even foveal midget
cells might have centers that are impure because gap junctions
could mix signals between L and M cones (Hornstein et al., 2004).
The degree of cone selectivity of midget cell surrounds near the
fovea is also unclear. While physiological studies have suggested
at least some selective cone sampling (Reid and Shapley, 2002;
Buzás et al., 2006), anatomical studies have found little evidence
for cone-selective circuitry (Wässle et al., 2000; Dacey and
Packer, 2003). Questions remain about selectivity of the sur-
round because stimulating the surround in isolation of the center
is difficult and the relative contribution to the surround from
horizontal cells versus amacrine cells remains unclear (Mangel,

Figure 1. First stages of color. A, Spectral sensitivity functions of the three cone types in
trichromatic primates (adapted with permission from Stockman and Brainard, 2010). B, False-
colored representation of the cone mosaic of a macaque monkey (scale bar, 0.2°); adapted from
Roorda et al. (2001). C, Rainbow showing monochromatic yellow (left) and additive color mix-
ing of lights showing mixed yellow (right).

Figure 2. Spatial color contrast changes color appearance. The patches indicated by the
asterisk are all physically identical. Image courtesy of Beau Lotto (University College London,
London, UK).

Figure 3. Diagrams of various model receptive fields. Top view (left), side view (right). See
sections “L–M opponent cell types and circuitry” and “How are the cone cells transformed by
V1?” for details.
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1991; Cook and McReynolds, 1998; Ichinose and Lukasiewicz,
2005; Davenport et al., 2008).

In the peripheral retina, where both the center and surround
of midget cells sample from multiple cones, the cone purity has
been similarly controversial (Martin et al., 2001; Jusuf et al.,
2006). A recent study using receptive-field mapping at the reso-
lution of single cones found small but consistent deviations from
random toward selective sampling in the receptive-field center,
but not in the surround (Field et al., 2010). The mechanism and
anatomical basis for this selectivity is uncertain. One might won-
der whether spatial clumping of L and M cones by type could
contribute (Roorda et al., 2001; Hofer et al., 2005b) (Fig. 1B), but
recent evidence suggests the contribution of cone clumping is
minor (Field et al., 2010).

Do midget cells form the basic building blocks for the “red-
green” color-vision circuit? Many investigators assume so, al-
though the mismatch between the high density of midget cells
and the relatively low spatial acuity for color has raised some
doubts (Hubel and Livingstone, 1990; Calkins and Sterling,
1999). Parasol cells can show L-M cone-opponent responses
(Derrington et al., 1984; Lee and Sun, 2009), so they could play
some role in color vision, though this is controversial. Addition-
ally, one of the many morphologically defined ”wide-field” reti-
nal ganglion cells with low density may encode L-M opponent
responses that contribute to color vision (Dacey and Packer,
2003); these cells may correspond to the still elusive red-green
type II cells alluded to by Wiesel and Hubel (1966) in their re-
cordings of neurons located in the intercalated, or koniocellular
(“K”), layers that separate the main layers of the LGN (Fig. 3B).

S versus L�M opponent cell types and circuitry
There are several types of retinal ganglion cells that oppose S
signals against L�M. The small bistratified cell was the first mor-
phologically identified “blue-yellow” cell (Dacey and Lee, 1994;
Dacey and Packer, 2003), but there are others: the large bistrati-
fied and giant monostratified cells (Dacey et al., 2003, 2005).
These cell types project to the koniocellular layers of the LGN
(Szmajda et al., 2008; Roy et al., 2009). In addition, OFF (but not
ON) midget cells in the central and peripheral retina also appear
to carry S cone signals to the brain (Klug et al., 2003; Field et al.,
2010; but see Lee et al., 2005; Sun et al., 2006). Unfortunately, the
role of S versus L�M opponent retinal ganglion cells in blue-
yellow color vision is all but clear (Derrington et al., 1984).

The circuitry producing cone-opponent responses in small
bistratified cells differs from that of midget cells (Dacey and Lee,
1994; Crook et al., 2009). Small bistratified cells have dendrites in
two distinct strata of the inner plexiform layer. The inner den-
drites receive input from ON-type bipolar cells that synapse ex-
clusively with S cones. The outer dendrites receive input from
off-type bipolar cells (Calkins et al., 1998; Grünert and Ghosh,
1999; Percival et al., 2009) that carry L and M cone signals. In far
peripheral retina and/or under low photopic conditions, the H2
horizontal cell may also contribute to the (L�M)-off response
(Field et al., 2007; Packer et al., 2010). Large bistratified cells
probably have a circuitry similar to that of small bistratified cells
(Dacey et al., 2003), and the circuitry of giant monostratified cells is
yet to be determined.

Our understanding of the retinal mechanisms of color is far from
complete. The response properties of all �20 retinal ganglion cell
types need to be characterized to identify those with cone-opponent
responses. Also, the roles of excitation and inhibition in the inner
and outer synaptic layers need to be clarified to understand how
retinal circuitry produces cone opponency. Finally, more studies are

neededthatquantitativelyprobetherelationshipbetweenretinal signals
and color perception (Derrington et al., 1984; Kremers et al., 1992).

Retinal gene therapy
Unlike Old World monkeys, most mammals are dichromats.
New World monkeys, such as squirrel monkeys, have color vision
that is an evolutionary intermediate between dichromats and
trichromats (Jacobs, 2008). Instead of having L and M cone opsin
genes, like humans and Old World monkeys, each New World
monkey has only a single X-chromosome opsin locus containing
one of multiple alleles (Neitz et al., 1991). Males have only one
X-chromosome, so all New World male monkeys are dichromats.
Heterozygous females who inherit different M/L alleles on each
X-chromosome express the pigments in different cone popula-
tions due to random X-inactivation, producing trichromacy in
two thirds of females. Normal dichromatic and normal trichro-
matic color vision coexist in these species, and the brain circuitry
for both is specified by the same genetic instructions. The ances-
tors to humans and other Old World primates must have passed
through an evolutionary stage in which the distribution of di-
chromats and trichromats was similar to the New World pri-
mates. Thus a single set of genetic instructions serves both
dichromacy and trichromacy, raising the possibility that no ad-
ditional changes were required besides the addition of a third
cone opsin. This would account for the observation that trans-
genic mice, engineered to express three cone pigments, can show
behavioral trichromacy (Jacobs et al., 2007).

But does the red-green color-vision circuit require early visual
experience to become functional? This question was addressed
using gene therapy to add a third photopigment to the retinas of
adult dichromatic squirrel monkeys (Mancuso et al., 2009). Re-
markably, this simple intervention was sufficient to confer trichro-
matic color vision (Fig. 4). Because new color vision behavior
corresponded in time to the appearance of robust transgene expres-
sion levels, it seems that significant “rewiring” in the adult is not
required. This result suggests that red-green color vision can be
added by taking advantage of preexisting neural circuitry (Mancuso
et al., 2009; Shapley, 2009), that an early developmental process is
not required, and that trichromacy could have evolved in the ab-
sence of any other change in the visual system except the addition of
a third cone type (Mancuso et al., 2010a).

The treated animals made all the usual discriminations made
by animals born with the genetic potential for trichromacy. They
discriminate reds from greens, and these colors from gray; and

Figure 4. Squirrel monkey performing a trichromatic color discrimination following gene
therapy. Image courtesy of the Neitz laboratory.
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they do not confuse blue and yellow with either red or green
(Mancuso et al., 2010b). Thus, while the treated animals’ internal
experiences associated with stimulation of their new cone type
remain unknown, it is clear that reds, greens, blues, and yellows
are recognized as distinct sensations. This discovery opens inter-
esting questions concerning the role of development and experi-
ence in sculpting circuitry that mediates perception, including
properties of the visual system that enable a new capacity to be
added after traditional critical periods have ended.

Striate cortex mechanisms
The cortical area that receives the largest projection from the
LGN is primary visual cortex, also called V1 or striate cortex.
Three outstanding questions continue to drive research into
color processing in V1: Which neurons code color? How are the
cone signals transformed by V1? And, is there a functional archi-
tecture for color in V1?

Which V1 cells code color?
Early investigations found that many V1 neurons are tuned for
the orientation and spatial frequency of black-and-white patterns
(Fig. 3C), with few strongly selective for color (Hubel and Wiesel,
1968; Schiller et al., 1976). The smaller population of strongly
color-selective neurons, studied using broadband (white) light
passed through colored filters, could be classified like LGN cells
in red/green or blue/yellow categories (Dow and Gouras, 1973;
Gouras, 1974; Michael, 1978; Livingstone and Hubel, 1984; Vau-
tin and Dow, 1985; Ts’o and Gilbert, 1988). These observations
motivated the influential idea that color is processed by a special-
ized subsystem that can be traced from retina to V1 (Livingstone
and Hubel, 1984).

But could the observation of distinct neuronal “types” (red/
green and blue/yellow; color-coding and non-color-coding) in
these early studies be an artifact of the small set of stimuli used?
Neurons that responded similarly to the colors tested might have
been distinguished if tested with an alternate set, or a larger bat-
tery of colors. In subsequent experiments, cathode ray tube mon-
itors made it easy to present millions of colors, although only a
small subset of these could be included in an experiment of real-
istic duration. Investigators needed a way to summarize color
tuning succinctly and in a way that did not make assumptions
about the number and types of chromatically distinct subpopu-
lations present.

An important step was made by Derrington et al. (1984), who
found that the response of an LGN neuron to any stimulus could
be predicted from a weighted sum of activity modulations in the
three cone types. This critical finding—that the LGN responses
are “linear”—meant that color tuning could be described con-
cisely with a set of three numbers, which are the weights applied
to input from the three cone classes. On the basis of these cone
weights, each LGN neuron could be assigned unambiguously to
one of three clusters, providing justification for the classification
originally described by De Valois et al. (1966).

The cone weights of V1 neurons, however, appear to form a
continuum (Lennie et al., 1990; De Valois et al., 2000; Johnson et
al., 2004; Solomon et al., 2004; Solomon and Lennie, 2005; Hor-
witz et al., 2007). Chromatic signals from the LGN thus appear to
be mixed in V1 in myriad, perhaps arbitrary ways. But the anal-
ysis of V1 cone weights is problematic in two key respects. First,
cone weights do not indicate the degree to which a neuron is color
selective; it remains possible that only the most color-selective
neurons relay color signals in V1 (Conway, 2001; Johnson et al.,
2001; Wachtler et al., 2003; Horwitz et al., 2007). Second, the

concept of a “cone weight” is only meaningful if the response of a
V1 neuron can be adequately described as a weighted sum of cone
inputs. This assumption has come under scrutiny. Hanazawa et
al. (2000) described V1 neurons whose color tuning was too
sharp to result from a linear combination of cone signals. So-
lomon et al. (2005) found that a divisive signal from the cones
contributed significantly to the responses of some V1 neurons,
and Horwitz et al. (2005) found that the responses of some cone-
opponent V1 neurons were facilitated by luminance signals,
which indicates a violation of linearity.

There is now consensus that many V1 neurons do not com-
bine cone signals linearly, so we should not be surprised that
analyses of cone weights give results that are difficult to interpret.
We are now forced to reevaluate the original questions: which
cells in V1 code color, and might there be a specialized pathway
for color processing in V1? Much of the evidence against this idea
was based on the fit of a model that describes the color tuning of
V1 neurons incompletely (Hanazawa et al., 2000; Solomon and
Lennie, 2005; Horwitz et al., 2007). An important future direc-
tion is to revisit this question in a way that that makes fewer
assumptions about how V1 neurons combine cone inputs.

How are the cone signals transformed by V1?
Color contrast makes red appear redder when surrounded by
green, while color constancy enables an object’s color to remain
largely constant as the illuminant changes (see Fig. 2). A flurry of
attention has been paid to mechanisms in V1 that may be respon-
sible for these, and other, color–form interactions (Zhou et al.,
2000; Gegenfurtner, 2001; Shapley and Hawken, 2002; Friedman
et al., 2003; Hurlbert, 2003, 2007; Kiper, 2003; Wachtler et al., 2003).
This work has both reinvigorated and challenged the idea that color,
or some aspect of it, may be handled by a specialized pathway.

The early discoveries of Hubel and Wiesel (1968) left a para-
dox: if “form” is encoded by a discrete population of color-blind
neurons, and “color” information by a separate population of
form-blind neurons, how does the brain encode color–form in-
teractions required to account for color contrast and color con-
stancy? Single-opponent cells (Fig. 3A) would be incapable of
color– contrast calculations because they are not spatially selec-
tive for color: an “L-ON/M-OFF” single-opponent cell responds
well to spots, bars, or a full field of red, but not to a red spot on a
green background. One possible mechanism for encoding color–
form interactions is through specialized “double-opponent” cells
(Fig. 3D), first described in goldfish retina (Daw, 1967). Pressing
questions have centered on the existence, characterization, and
wiring of such cells in primate V1.

To carry information expressly about color boundaries, it was
hypothesized that double-opponent cells in V1 would have per-
fectly balanced cone inputs and concentrically organized centers
and surrounds (Michael, 1978; Livingstone and Hubel, 1984).
Such a cell would respond to a red spot on a green background,
and not to luminance spots of any size. The concentric organiza-
tion of their receptive fields would also mean that they would be
spatially tuned, but not orientation selective. Double-opponent
neurons fitting this description were reported in a few early studies
(Hubel and Wiesel, 1968; Michael, 1978; Livingstone and Hubel,
1984), but other studies with large samples of V1 cells found little
evidence of them (Thorell et al., 1984; Lennie et al., 1990).

New neurophysiological evidence shows that there is a signif-
icant population of double-opponent cells in V1, although these
cells do not have all the originally hypothesized receptive-field
properties. The inputs to these cells are spatially segregated by
cone type into excitatory and inhibitory receptive-field subunits
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(Conway, 2001; Johnson et al., 2001, 2004, 2008; Conway et al.,
2002; Conway and Livingstone, 2006), verifying that these neu-
rons are both color-opponent and spatially opponent, but the
cells frequently lack a concentric center–surround organization.
Many double-opponent cells also respond to both color and lu-
minance (Thorell et al., 1984; Conway, 2001; Johnson et al., 2001,
2004, 2008; Conway and Livingstone, 2006; Horwitz et al., 2007).

A growing body of evidence shows that many double-
opponent neurons are orientation-selective for both color and
achromatic patterns, regardless of the constitution of cone input
(Thorell et al., 1984; Conway, 2001; Johnson et al., 2001, 2008,
2010; Conway et al., 2002; Heimel et al., 2005; Conway and Liv-
ingstone, 2006; Horwitz et al., 2007). This transformation means
that these cells respond to cues for form, such as boundaries and
edges, and may take signals from color or black and white as
needed. Neurophysiological evidence that V1 neurons can be
both color-selective and orientation-selective is consistent with
recent functional magnetic resonance imaging (fMRI) and psy-
chophysical studies in humans showing orientation-selective re-
sponses to color stimuli (Beaudot and Mullen, 2005, 2006; Engel,
2005; Huang et al., 2007; Sumner et al., 2008). The differences
from the originally proposed double-opponent cell necessitate a
revision of the model (Fig. 3E).

Color likely depends on both single-opponent and double-
opponent neurons, and on the further processing of their signals
(Vladusich, 2007). Single-opponent cells would seem ideal for
signaling the color of a region covering the receptive field, while
double-opponent cells would be capable of signaling color
contrast, color boundaries and edges, and contributing to
color constancy. Future directions will involve developing rig-
orous methods to test these predictions, building physiologi-
cally relevant computational models, and establishing the
extent to which these populations of neurons represent a dis-
tinct specialized pathway.

Is there a functional organization for color in V1?
Columns of cells with similar orientation tuning extend down
through the vertical thickness of V1, and the orientation tuning
of adjacent columns shifts gradually across the horizontal surface
(Hubel and Wiesel, 1977), an architecture that has become more
precisely understood as technology has advanced (Blasdel and
Salama, 1986; Grinvald et al., 1986; Ohki et al., 2006). Pinning
down the functional organization of color in V1 has been more
challenging. The laminar projection of color-opponent signals

from LGN to V1 seems clear: L-M signals target the middle input
layer (4C�), S-(L�M) (“Blue ON”) signals target the upper input
layers (2/3 and 4A), and (L�M)-S (“Blue OFF”) signals are nar-
rowly stratified in 4A (Lachica and Casagrande, 1992; Martin et
al., 1997; Hendry and Reid, 2000; Chatterjee and Callaway, 2003;
Casagrande et al., 2007). But there is no consensus on the hori-
zontal organization of chromatic signals within V1. Livingstone
and Hubel (1984) showed that color cells tend to coincide with
regions, called blobs, that stain for the enzyme cytochrome oxi-
dase (Fig. 5A); this view was extended by Ts’o and Gilbert (1988),
who suggested that some blobs were entirely red/green and others
entirely blue/yellow (Fig. 5B). But subsequent electrophysiologi-
cal studies (Lennie et al., 1990; Leventhal et al., 1995; Friedman et
al., 2003) called this architecture into question, suggesting no
obvious clustering of color and no functional architecture related
to blobs (Fig. 5C).

These contradictory results may not be surprising given the
sampling limitations of extracellular recording and the challenge
of aligning physiological recording sites with postmortem histo-
chemical analysis. Intrinsic signal imaging, with its bird’s-eye
view of the cortical surface, rekindled the notion of color maps
organized according to blobs. Landisman and Ts’o (2002) con-
cluded that color-responsive regions are loosely associated with
blobs, and that these regions are joined by color “bridges” span-
ning adjacent blobs. Using a similar approach, Lu and Roe (2008)
concluded that there is a tighter association between color-
responsive regions and blobs. Finally, a recent optical-imaging
study, which unfortunately did not provide histology, concluded
that color is functionally organized as an array of hue maps, with
each map containing a representation for multiple colors at over-
lapping but slightly different spatial locations (Xiao et al., 2007).
The low resolution of intrinsic optical imaging, however, makes it
impossible to determine how the signals map onto individual
cells within neuronal ensembles.

The question of color architecture has been approached using
two-photon calcium imaging, which enables the activity of thou-
sands of individual cells to be measured simultaneously. Prelim-
inary results suggest that cone-opponent cells form clusters, and
that these clusters are in register with blobs (Chatterjee et al.,
2008). The clusters appear to extend through upper layer 2/3,
forming columns of chromatic selectivity. Moreover, these color
columns appear to be subdivided into regions of different chro-
matic signatures, suggesting a “micromap” model (Fig. 5D) that

Figure 5. Alternative models for the organization of color-tuned neurons in V1. The gray patches depict cytochrome-oxidase blobs. Dots show color-tuned neurons that are clustered in blobs, but
mixed randomly within each blob (A); clustered in blobs, and segregated according to color tuning within pure-color blobs (B); randomly arranged with respect to blobs (C); and clustered within
blobs and according to a micromap in which cells of similar tuning are adjacent within a given blob (D).
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helps to explain discrepancies in previous
observations of color architecture. These
two-photon imaging results reveal a pre-
cise functional architecture for color and
support the notion that V1 color signals
are processed by an anatomically segre-
gated pathway, which may provide the ba-
sis for a segregated output to extrastriate
areas of the ventral stream.

Two-photon imaging allows the re-
sponses of hundreds of neurons to be
measured simultaneously; but, as dis-
cussed in the previous sections, V1 neu-
rons show variety in spatial and temporal
receptive-field organization, and many do
not combine cone signals linearly. In the
face of this heterogeneity, it is not trivial
to determine stimulus parameters that
would be suitable to adequately assess
color tuning using two-photon imaging.
It will be important, in future work, to
establish whether two-photon imaging
can provide an accurate measure of color tuning, perhaps by
directly comparing measurements with those obtained using
single-unit recording.

Extrastriate cortex mechanisms
One heuristic of color processing (Fig. 6) holds that color signals
are transmitted along the ventral visual stream, from V1 through
subcompartments of V2 referred to as the thin stripes (because of
their pattern of staining with cytochrome oxidase), on to islands
of cortex dubbed “globs” located in V4 and posterior inferior
temporal cortex (PIT), and ultimately on to inferior temporal
cortex (IT) (Desimone et al., 1985; Komatsu, 1998; Zeki and
Marini, 1998; Conway et al., 2007; Matsumora et al., 2008;
Harada et al., 2009; Yasuda et al., 2010). This simple hierarchical
model suggests that many color computations take place down-
stream of V1. But compared with our understanding of retina
and V1, we know little about how extrastriate cortex contributes
to color. Recent work using microelectrodes and fMRI-guided
microelectrode recordings has opened up new questions at the
interface of neurobiology and behavior (Conway et al., 2007;
Koida and Komatsu, 2007; Matsumora et al., 2008; Stoughton
and Conway, 2008; Conway and Tsao, 2009).

IT is located in the temporal lobe of the monkey (anterior to
the ears), and can be divided into two parts (Iwai and Mishkin,
1969): area TE, which includes anterior and central IT, and area
TEO, which includes PIT (Van Essen et al., 1990). The posterior
boundary of PIT adjoins area V4, although the boundary is im-
precise—indeed the boundaries of all visual areas in the temporal
lobe are provisional (Brewer et al., 2002; Fize et al., 2003; Tootell
et al., 2004; Stepniewska et al., 2005). Several studies have shown
that lesions or cooling of area TE impairs color discrimination
(Dean, 1979; Horel, 1994; Heywood et al., 1995; Buckley et al.,
1997), whereas lesions of other color-related areas (PIT and V4)
cause little disruption in color discrimination (Heywood et al.,
1998; Huxlin et al., 2000). In humans, rare lesions of ventral
occipital cortex can produce colorblindness, while sparing other
visual function (Bouvier and Engel, 2006), but the relationship of
these regions, whose activity can be used to decode color (Brouwer
and Heeger, 2009), to extrastriate regions in macaque monkey
remains controversial (Hadjikhani et al., 1998; Tootell and Had-
jikhani, 1998; Zeki et al., 1998). Brain imaging, which has a higher

resolution in monkeys than in humans owing to the use of con-
trast agents and the monkey’s smaller head, suggests that color is
handled by area TE along with a distributed network of globs
within PIT/V4, rather than a single entire extrastriate visual area
(Conway and Tsao, 2006; Conway et al., 2007; Harada et al.,
2009); this is consistent with anatomical and optical-imaging
data (Zeki and Shipp, 1989; DeYoe et al., 1994; Felleman et al.,
1997; Ghose and Ts’o, 1997).

Neural recording studies have shown that many neurons in IT
respond selectively to color (Zeki, 1980; Desimone et al., 1984;
Komatsu et al., 1992; Komatsu and Ideura, 1993; Kobatake and
Tanaka, 1994; Koida and Komatsu, 2007; Matsumora et al.,
2008). These neurons are narrowly tuned to color and color sat-
uration, and are concentrated in several subregions of IT, one
located in TE and another in TEO (Conway et al., 2007; Yasuda et
al., 2010). Neurons in TE show relatively weak shape selectivity
(Matsumora et al., 2008), while neurons in the more posterior
region show stronger shape selectivity (Conway et al., 2007;
Yasuda et al., 2010).

The relationship between color perception and neuronal ac-
tivity of anterior IT has recently been examined by Matsumora et
al. (2008), who showed a significant correlation between the trial-
to-trial fluctuations in neuronal responses of color-tuned neu-
rons and the monkeys’ color judgment. They also found that the
variation in neural threshold across the color space corresponded
well with that of the behavioral threshold. Electrical stimulation
of this region induces a large shift in the monkey’s color judg-
ment, suggesting that neural activities are causally related to color
judgment (Koida and Komatsu, 2008). Such a causal link is also
suggested by recent microstimulation experiments in human
subjects (Murphey et al., 2008).

The ability to categorize stimuli by color is a fundamental
cognitive process. The population of neurons recorded in fMRI-
identified globs of posterior IT shows a bias for the most satu-
rated colors in a stimulus set, which also correspond to the
elementary, or “unique” hue categories, suggesting a neural basis
for color categories (Stoughton and Conway, 2008; Conway and
Stoughton, 2009; Conway and Tsao, 2009; but see Mollon, 2009).
Koida and Komatsu (2007) argue that IT neurons are involved in
color cognition by showing that IT neurons change firing rate
when the monkey switches from a categorization to a discrimi-

Figure 6. Simple hierarchical model of color processing in the macaque cerebral cortex. Regions of cortex shown in gray, which
increase in scale along the visual-processing hierarchy from V1 to TE, are implicated in color processing. Adapted from Conway
(2009).
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nation task; moreover, they found that a majority of neurons gave
stronger responses when the animals performed a color-
categorization task versus when they performed a color-
discrimination task. Their results imply that IT neurons play an
important role in color categorization.

The color-selective neurons in extrastriate regions along the
ventral pathway must play an important role in color processing.
With the refinement of physiological recording techniques, cou-
pled with more sophisticated psychophysical stimulus para-
digms, the specific computations performed by these neurons,
the relationship of their activity to perception, and the neural
circuitry that connects these cells to color cells in V1 and retina,
should become clear.

Conclusion
Research using color vision as a model system has seen terrific
advances, offering the hope of a complete understanding of
the transformation of color signals from retina to behavior. The
minisymposium that accompanies this review will showcase results
that aim to understand this transformation and the circuits that
bring it about. During the minisymposium, we will describe results
from large retinal array recordings, in which the activity of hundreds
of retinal ganglion cells is assessed simultaneously, affording the abil-
ity to measure receptive fields of color-opponent cells at the resolu-
tion of individual cones. We will go on to describe experiments
exploring gene therapy for red-green colorblindness, and the impli-
cations of this research for theories of color vision. We will then
describe results obtained using two-photon imaging, showing the
fine-scale spatial organization of cone-opponent cells in V1. In ad-
dition, using single-unit electrophysiological recordings and two-
photon imaging, we will address how V1 neurons achieve color
tuning. We will also discuss the spatial transformation of color sig-
nals in V1 and the degree to which color is processed independently
of other stimulus attributes like orientation. Finally, we will turn our
attention to extrastriate regions that likely mediate the conscious
experience of color, and address potential limits of animal models of
human color vision. Using this knowledge, we aim to enrich our
understanding of the relationship between genetics, neural circuits,
perception, and behavior.
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