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Abstract

A sizeable literature has focused on the problem of estimating a low-dimensional

feature space for a neuron’s stimulus sensitivity. However, comparatively little

work has addressed the problem of estimating the nonlinear function from feature

space to spike rate. Here, we use a Gaussian process (GP) prior over the infinite-

dimensional space of nonlinear functions to obtain Bayesian estimates of the “non-

linearity” in the linear-nonlinear-Poisson (LNP) encoding model. This approach

offers increased flexibility, robustness, and computational tractability compared

to traditional methods (e.g., parametric forms, histograms, cubic splines). We

then develop a framework for optimal experimental design under the GP-Poisson

model using uncertainty sampling. This involves adaptively selecting stimuli ac-

cording to an information-theoretic criterion, with the goal of characterizing the

nonlinearity with as little experimental data as possible. Our framework relies on

a method for rapidly updating hyperparameters under a Gaussian approximation

to the posterior. We apply these methods to neural data from a color-tuned sim-

ple cell in macaque V1, characterizing its nonlinear response function in the 3D

space of cone contrasts. We find that it combines cone inputs in a highly nonlinear

manner. With simulated experiments, we show that optimal design substantially

reduces the amount of data required to estimate these nonlinear combination rules.

1 Introduction

One of the central problems in systems neuroscience is to understand how neural spike responses

convey information about environmental stimuli, which is often called the neural coding problem.

One approach to this problem is to build an explicit encoding model of the stimulus-conditional

response distribution p(r|x), where r is a (scalar) spike count elicited in response to a (vector) stim-

ulus x. The popular linear-nonlinear-Poisson (LNP) model characterizes this encoding relationship

in terms of a cascade of stages: (1) linear dimensionality reduction using a bank of filters or receptive

fields; (2) a nonlinear function from filter outputs to spike rate; and (3) an inhomogeneous Poisson

spiking process [1].

While a sizable literature [2–10] has addressed the problem of estimating the linear front end to this

model, the nonlinear stage has received comparatively less attention. Most prior work has focused

on: simple parametric forms [6, 9, 11]; non-parametric methods that do not scale easily to high
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Figure 1: Encoding model schematic. The nonlinear function f converts an input vector x to a

scalar, which g then transforms to a non-negative spike rate � = g(f(x)). The spike response r is a

Poisson random variable with mean �.

dimensions (e.g., histograms, splines) [7, 12]; or nonlinearities defined by a sum or product of 1D

nonlinear functions [10, 13].

In this paper, we use a Gaussian process (GP) to provide a flexible, computationally tractable model

of the multi-dimensional neural response nonlinearity f(x), where x is a vector in feature space.

Intuitively, a GP defines a probability distribution over the infinite-dimensional space of functions

by specifying a Gaussian distribution over its finite-dimensional marginals (i.e., the probability over

the function values at any finite collection of points), with hyperparameters that control the func-

tion’s variability and smoothness [14]. Although exact inference under a model with GP prior and

Poisson observations is analytically intractable, a variety of approximate and sampling-based infer-

ence methods have been developed [15, 16]). Our work builds on a substantial literature in neuro-

science that has used GP-based models to decode spike trains [17–19], estimate spatial receptive

fields [20,21], infer continuous spike rates from spike trains [22–24], infer common inputs [25], and

extract low-dimensional latent variables from multi-neuron spiking activity [26, 27].

We focus on data from trial-based experiments where stimulus-response pairs (x, r) are sparse in the

space of possible stimuli. We use a fixed inverse link function g to transform f(x) to a non-negative

spike rate, which ensures the posterior over f is log-concave [6, 20]. This log-concavity justifies a

Gaussian approximation to the posterior, which we use to perform rapid empirical Bayes estimation

of hyperparameters [5, 28]. Our main contribution is an algorithm for optimal experimental design,

which allows f to be characterized quickly and accurately from limited data [29, 30]. The method

relies on uncertainty sampling [31], which involves selecting the stimulus x for which g(f(x)) is

maximally uncertain given the data collected in the experiment so far. We apply our methods to

the nonlinear color-tuning properties of macaque V1 neurons. We show that the GP-Poisson model

provides a flexible, tractable model for these responses, and that optimal design can substantially

reduce the number of stimuli required to characterize them.

2 GP-Poisson neural encoding model

2.1 Encoding model (likelihood)

We begin by defining a probabilistic encoding model for the neural response. Let ri be an observed

neural response (the spike count in some time interval T ) at the i’th trial given the input stimulus

xi. Here, we will assume that x is D-dimensional vector in the moderately low-dimensional neural

feature space to which the neuron is sensitive, the output of the “L” stage in the LNP model.

Under the encoding model (Fig. 1), an input vector xi passes through a nonlinear function f , whose

real-valued output is transformed to a positive spike rate through a (fixed) function g. The spike re-

sponse is a Poisson random variable with mean g(f(x)), so the conditional probability of a stimulus-

response pair is Poisson:

p(ri|xi, f) =
1
ri!

�ri
i e��i , �i = g(f(xi)). (1)

For a complete dataset, the log-likelihood is:

L(f) = log p(r|X, f) = r

>
log(g(f))� 1

>g(f) + const, (2)
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where r = (r1, . . . , rN )

>
is a vector of spike responses, 1 is a vector of ones, and f =

(f(x1), . . . f(xN ))

>
is shorthand for the vector defined by evaluating f at the points in X =

{x1, . . .xN}. Note that although f is an infinite-dimensional object in the space of functions, the

likelihood only depends on the value of f at the points in X .

In this paper, we fix the inverse-link function to g(f) = log(1 + exp(f)), which has the nice

property that it grows linearly for large f and decays gracefully to zero for negative f . This allows

us to place a Gaussian prior on f without allocating probability mass to negative spike rates, and

obviates the need for constrained optimization of f (but see [22] for a highly efficient solution). Most

importantly, for any g that is simultaneously convex and log-concave

1

, the log-likelihood L(f) is

concave in f , meaning it is free of non-global local extrema [6,20]. Combining L with a log-concave

prior (as we do in the next section) ensures the log-posterior is also concave.

2.2 Gaussian Process prior

Gaussian processes (GPs) allow us to define a probability distribution over the infinite-dimensional

space of functions by specifying a Gaussian distribution over a function’s finite-dimensional

marginals (i.e., the probability over the function values at any finite collection of points). The hy-

perparameters defining this prior are a mean µf and a kernel function k(xi,xj) that specifies the

covariance between function values f(xi) and f(xj) for any pair of input points xi and xj . Thus,

the GP prior over the function values f is given by

p(f) = N (f |µf1,K) = |2⇡K|�
1
2
exp

�
� 1

2 (f � µf1)
>K�1

(f � µf1)
�

(3)

where K is a covariance matrix whose i, j’th entry is Kij = k(xi,xj). Generally, the kernel

controls the prior smoothness of f by determining how quickly the correlation between nearby

function values falls off as a function of distance. (See [14] for a general treatment). Here, we use a

Gaussian kernel, since neural response nonlinearities are expected to be smooth in general:

k(xi,xj) = ⇢ exp
�
�||xi � xj ||2/(2⌧)

�
, (4)

where hyperparameters ⇢ and ⌧ control the marginal variance and smoothness scale, respectively.

The GP therefore has three total hyperparameters, ✓ = {µf , ⇢, ⌧} which set the prior mean and

covariance matrix over f for any collection of points in X .

2.3 MAP inference for f

The maximum a posteriori (MAP) estimate can be obtained by numerically maximizing the posterior

for f . From Bayes rule, the log-posterior is simply the sum of the log-likelihood (eq. 2) and log-prior

(eq. 3) plus a constant:

log p(f |r, X, ✓) = r

>
log(g(f))� 1

>g(f)� 1
2 (f � µf )

>K�1
(f � µf ) + const. (5)

As noted above, this posterior has a unique maximum fmap so long as g is convex and log-concave.

However, the solution vector fmap defined this way contains only the function values at the points

in the training set X . How do we find the MAP estimate of f at other points not in our training set?

The GP prior provides a simple analytic formula for the maximum of the joint marginal containing

the training data and any new point f⇤
= f(x⇤

), for a new stimulus x

⇤
. We have

p(f⇤, f |x⇤, r, X, ✓) = p(f⇤|f , ✓)p(f |r, X, ✓) = N (f⇤|µ⇤,�⇤2
) p(f |r, X, ✓) (6)

where, from the GP prior, µ⇤
= µf + k

⇤>K�1
(f � µf ) and �⇤2

= k(x⇤,x⇤
) � k

⇤>K⇤
k

⇤
are

the (f -dependent) mean and variance of f⇤
, and row vector k

⇤
= (k(x1,x

⇤
), . . . k(xN ,x⇤

)). This

factorization arises from the fact that f⇤
is conditionally independent of the data given the value

of the function at X . Clearly, this posterior marginal (eq. 6) is maximized when f⇤
= µ⇤

and

f = fmap.

2

Thus, for any collection of novel points X⇤
, the MAP estimate for f(X⇤

) is given by

the mean of the conditional distribution over f

⇤
given fmap:

p(f(X⇤
)|X⇤, fmap, ✓) = N

�
µf +K⇤K�1

(fmap � µf ), K
⇤⇤ �K⇤K�1K⇤>�

(7)

1

Such functions must grow monotonically at least linearly and at most exponentially [6]. Examples include

exponential, half-rectified linear, log(1 + exp(f))p for p � 1.

2

Note that this is not necessarily identical to the marginal MAP estimate of f⇤|x⇤, r, X, ✓, which requires

maximizing (eq. 6) integrated with respect to f .
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where K⇤
il = k(x⇤

i ,xl) and K⇤⇤
ij = k(x⇤

i ,x
⇤
j ).

In practice, the prior covariance matrix K is often ill-conditioned when datapoints in X are closely

spaced and smoothing hyperparameter ⌧ is large, making it impossible to numerically compute

K�1
. When the number of points is not too large (N < 1000), we can address this by performing a

singular value decomposition (SVD) of K and keeping only the singular vectors with singular value

above some threshold. This results in a lower-dimensional numerical optimization problem, since

we only have to search the space spanned by the singular vectors of K. We discuss strategies for

scaling to larger datasets in the Discussion.

2.4 Efficient evidence optimization for ✓

The hyperparameters ✓ = {µf , ⇢, ⌧} that control the GP prior have a major influence on the shape

of the inferred nonlinearity, particularly in high dimensions and when data is scarce. A theoretically

attractive and computationally efficient approach for setting ✓ is to maximize the evidence p(✓|r, X),

also known as the marginal likelihood, a general approach known as empirical Bayes [5,14,28,32].

Here we describe a method for rapid evidence maximization that we will exploit to design an active

learning algorithm in Section 3.

The evidence can be computed by integrating the product of the likelihood and prior with respect to

f , but can also be obtained by solving for the (often neglected) denominator term in Bayes’ rule:

p(r|✓) =
Z

p(r|f)p(f |✓)df = p(r|f)p(f |✓)
p(f |r, ✓) , (8)

where we have dropped conditioning on X for notational convenience. For the GP-Poisson model

here, this integral is not tractable analytically, but we can approximate it as follows. We begin with

a well-known Gaussian approximation to the posterior known as the Laplace approximation, which

comes from a 2nd-order Taylor expansion of the log-posterior around its maximum [28]:

p(f |r, ✓) ⇡ N (f |fmap,⇤), ⇤

�1
= H +K�1, (9)

where H =

@2

@f2L(f) is the Hessian (second derivative matrix) of the negative log-likelihood (eq. 2),

evaluated at fmap, and K�1
is the inverse prior covariance (eq. 3). This approximation is reason-

able given that the posterior is guaranteed to be unimodal and log-concave. Plugging it into the

denominator in (eq. 8) gives us a formula for evaluating approximate evidence,

p(r|✓) ⇡
exp

�
L(f)

�
N (f |µf ,K)

N (f |fmap,⇤)
, (10)

which we evaluate at f = fmap, since the Laplace approximation is the most accurate there [20,33].

The hyperparameters ✓ directly affect the prior mean and covariance (µf ,K), as well as the poste-

rior mean and covariance (fmap,⇤), all of which are essential for evaluating the evidence. Finding

fmap and ⇤ given ✓ requires numerical optimization of log p(f |r, ✓), which is computationally ex-

pensive to perform for each search step in ✓. To overcome this difficulty, we decompose the posterior

moments (fmap,⇤) into terms that depend on ✓ and terms that do not via a Gaussian approximation

to the likelihood. The logic here is that a Gaussian posterior and prior imply a likelihood function

proportional to a Gaussian, which in turn allows prior and posterior moments to be computed an-

alytically for each ✓. This trick is similar to that of the EP algorithm [34]: we divide a Gaussian

component out of the Gaussian posterior and approximate the remainder as Gaussian. The resulting

moments are H = ⇤

�1 � K�1
for the likelihood inverse-covariance (which is the Hessian of the

log-likelihood from eq. 9), and m = H�1
(⇤

�1
fmap � K�1µf ) for the likelihood mean, which

comes from the standard formula for the product of two Gaussians.

Our algorithm for evidence optimization proceeds as follows: (1) given the current hyperparameters

✓i, numerically maximize the posterior and form the Laplace approximation N (fmapi,⇤i); (2)
compute the Gaussian “potential” N (mi, Hi) underlying the likelihood, given the current values of

(fmapi,⇤i, ✓i), as described above; (3) Find ✓i+1 by maximizing the log-evidence, which is:

E(✓) = r

T
log(g(fmap))�1

T g(fmap)�
1

2

log |KHi+I|� 1

2

(fmap�µf )
TK�1

(fmap�µf ), (11)

where fmap and ⇤ are updated using Hi and mi obtained in step (2), i.e. fmap = ⇤(Himi +

K�1µf ) and ⇤ = (Hi + K�1
)

�1
. Note that this significantly expedites evidence optimization

since we do not have to numerically optimize fmap for each ✓.
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Figure 2: Comparison of random and optimal design in a simulated experiment with a 1D nonlinear-

ity. The true nonlinear response function g(f(x)) is in gray, the posterior mean is in black solid, 95%

confidence interval is in black dotted, stimulus is in blue dots. A (top): Random design: responses

were measured with 20 (left) and 100 (right) additional stimuli, with stimuli sampled uniformly over

the interval shown on the x axis. A (bottom): Optimal design: responses were measured with same

numbers of additional stimuli selected by uncertainty sampling (see text). B: Mean square error as

a function of the number of stimulus-response pairs. The optimal design achieved half the error rate

of the random design experiment.

3 Optimal design: uncertainty sampling

So far, we have introduced an efficient algorithm for estimating the nonlinearity f and hyperparam-

eters ✓ for an LNP encoding model under a GP prior. Here we introduce a method for adaptively

selecting stimuli during an experiment (often referred to as active learning or optimal experimen-

tal design) to minimize the amount of data required to estimate f [29]. The basic idea is that we

should select stimuli that maximize the expected information gained about the model parameters.

This information gain of course depends the posterior distribution over the parameters given the

data collected so far. Uncertainty sampling [31] is an algorithm that is appropriate when the model

parameters and stimulus space are in a 1-1 correspondence. It involves selecting the stimulus x

for which the posterior over parameter f(x) has highest entropy, which in the case of a Gaussian

posterior corresponds to the highest posterior variance.

Here we alter the algorithm slightly to select stimuli for which we are most uncertain about the spike

rate g(f(x)), not (as stated above) the stimuli where we are most uncertain about our underlying

function f(x). The rationale for this approach is that we are generally more interested in the neu-

ron’s spike-rate as a function of the stimulus (which involves the inverse link function g) than in

the parameters we have used to define that function. Moreover, any link function that maps R to

the positive reals R+
, as required for Poisson models, we will have unavoidable uncertainty about

negative values of f , which will not be overcome by sampling small (integer) spike-count responses.

Our strategy therefore focuses on uncertainty in the expected spike-rate rather than uncertainty in f .

Our method proceeds as follows. Given the data observed up to a certain time in the experiment,

we define a grid of (evenly-spaced) points {x⇤
j} as candidate next stimuli. For each point, we

compute the posterior uncertainty �j about the spike rate g(f(x⇤
j )) using the delta method, i.e.,

�j = g0(f(x⇤
j ))�j , where �j is the posterior standard deviaton (square root of the posterior variance)

at f(xj) and g0 is the derivative of g with respect to its argument. The stimulus selected next on trial

t+ 1, given all data observed up to time t, is selected randomly from the set:

xt+1 2 {x⇤
j | �j � �i8i}, (12)

that is, the set of all stimuli for which uncertainty � is maximal. To find {�j} at each candidate point,

we must first update ✓ and fmap. After each trial, we update fmap by numerically optimizing the

posterior, then update the hyperparameters using (eq. 11), and then numerically re-compute fmap

and ⇤ given the new ✓. The method is summarized in Algorithm 1, and runtimes are shown in Fig. 5.
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Algorithm 1 Optimal design for nonlinearity estimation under a GP-Poisson model

1. given the current data Dt = {x1, ...,xt, r1, ..., rt}, the posterior mode fmapt, and hyper-

parameters ✓t, compute the posterior mean and standard deviation (f

⇤
map,�

⇤
) at a grid of

candidate stimulus locations {x⇤}.

2. select the element of {x⇤} for which �⇤
= g0(f⇤map)�

⇤
is maximal

3. present the selected xt+1 and record the neural response rt+1

4. find fmapt+1|Dt+1, ✓t; update ✓i+1 by maximizing evidence; find fmapt+1|Dt+1, ✓t+1

4 Simulations

We tested our method in simulation using a 1-dimensional feature space, where it is easy to visualize

the nonlinearity and the uncertainty of our estimates (Fig. 2). The stimulus space was taken to be

the range [0, 100], the true f was a sinusoid, and spike responses were simulated as Poisson with

rate g(f(x)). We compared the estimate of g(f(x)) obtained using optimal design to the estimate

obtained with “random sampling”, stimuli drawn uniformly from the stimulus range.

Fig. 2 shows the estimates of g(f(x)) after 20 and 100 trials using each method, along with the

marginal posterior standard deviation, which provides a ±2 SD Bayesian confidence interval for the

estimate. The optimal design method effectively decreased the high variance in the middle (near 50)

because it drew more samples where uncertainty about the spike rate was higher (due to the fact that

variance increases with mean for Poisson neurons). The estimates using random sampling (A, top)

was not accurate because it drew more points in the tails where the variance was originally lower

than the center. We also examined the errors in each method as a function of the number of data

points. We drew each number of data points 100 times and computed the average error between

the estimate and the true g(f(x)). As shown in (B), uncertainty sampling achieved roughly half the

error rate of the random sampling after 20 datapoints.

5 Experiments
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Figure 3: Raw experimental data: stimuli in 3D cone-

contrast space (above) and recorded spike counts (below)

during the first 60 experimental trials. Several (3-6) stim-

ulus staircases along different directions in color space

were randomly interleaved to avoid the effects of adap-

tation; a color direction is defined as the relative propor-

tions of L, M, and S cone contrasts, with [0 0 0] corre-

sponding to a neutral gray (zero-contrast) stimulus. In

each color direction, contrast was actively titrated with

the aim of evoking a response of 29 spikes/sec. This

sampling procedure permitted a broad survey of the stim-

ulus space, with the objective that many stimuli evoked

a statistically reliable but non-saturating response. In all,

677 stimuli in 65 color directions were presented for this

neuron.

We recorded from a V1 neuron in an awake, fixating rhesus monkey while Gabor patterns with vary-

ing color and contrast were presented at the receptive field. Orientation and spatial frequency of the

Gabor were fixed at preferred values for the neuron and drifted at 3 Hz for 667 ms each. Contrast

was varied using multiple interleaved staircases along different axes in color space, and spikes were

counted during a 557ms window beginning 100ms after stimulus appeared. The staircase design

was used because the experiments were carried out prior to formulating the optimal design methods

described in this paper. However, we will analyze them here for a “simulated optimal design exper-

iment”, where we choose stimuli sequentially from the list of stimuli that were actually presented

during the experiment, in an order determined by our information-theoretic criterion. See Fig. 3

caption for more details of the experimental recording.
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Figure 4: One and two-dimensional conditional “slices” through the 3D nonlinearity of a V1 simple

cell in cone contrast space. A: 1D conditionals showing spike rate as a function of L, M, and S

cone contrast, respectively, with other cone contrasts fixed to zero. Traces show the posterior mean

and ±2SD credible interval given all datapoints (solid and dotted gray), and the posterior mean

given only 150 data points selected randomly (black) or by optimal design (red), carried out by

drawing a subset of the data points actually collected during the experiment. Note that even with

only 1/4 of data, the optimal design estimate is nearly identical to the estimate obtained from all 677

datapoints. B: 2D conditionals on M and L (first row), S and L (second row), M and S (third row)

cones, respectively, with the other cone contrast set to zero. 2D conditionals using optimal design

sampling (middle column) with 150 data points are much closer to the 2D conditionals using all data

(right column) than those from a random sub-sampling of 150 points (left column).

We first used the entire dataset (677 stimulus-response pairs) to find the posterior maximum fmap,

with hyperparameters set by maximizing evidence (sequential optimization of fmap and ✓ (eq. 11)

until convergence). Fig. 4 shows 1D and 2D conditional slices through the estimated 3D nonlinearity

g(f(x)), with contour plots constructed using the MAP estimate of f on a fine grid of points. The

contours for a neuron with linear summation of cone contrasts followed by an output nonlinearity

(i.e., as assumed by the standard model of V1 simple cells) would consist of straight lines. The

curvature observed in contour plots (Fig. 4B) indicates that cone contrasts are summed together in a

highly nonlinear fashion, especially for L and M cones (top).

We then performed a simulated optimal design experiment by selecting from the 677 stimulus-

response pairs collected during the experiment, and re-ordering them greedily according to the

uncertainty sampling algorithm described above. We compared the estimate obtained using only

1/4 of the data (150 points) with an estimate obtained if we had randomly sub-sampled 150 data

points from the dataset (Fig. 4). Using only 150 data points, the conditionals of the estimate using

uncertainty sampling were almost identical to those using all data (677 points).

Although our software implementation of the optimal design method was crude (using Matlab’s

fminunc twice to find fmap and fmincon once to optimize the hyperparameters during each

inter-trial interval), the speed was more than adequate for the experimental data collected (Fig. 5,

A) using a machine with an Intel 3.33GHz XEON processor. The largest bottleneck by far was

computing the eigendecomposition of K for each search step for ✓. We will discuss briefly how to

improve the speed of our algorithm in the Discussion.

Lastly, we added a recursive filter h to the model (Fig. 1), to incorporate the effects of spike history

on the neuron’s response, allowing us to account for the possible effects of adaptation on the spike

counts obtained. We computed the maximum a posteriori (MAP) estimate for h under a temporal
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Figure 5: Comparison of run time and error of optimal design method using simulated experiments

by resampling experimental data. A: The run time for uncertainty sampling (including the posterior

update and the evidence optimization) as a function of the number of data points observed. (The grid

of “candidate” stimuli {x⇤} was the subset of stimuli in the experimental dataset not yet selected,

but the speed was not noticeably affected by scaling to much larger sets of candidate stimuli). The

black dotted line shows the mean intertrial interval of 677ms. B: The mean squared error between

the estimate obtained using each sampling method and that obtained using the full dataset. Note

that the error of uncertainty sampling with 150 points is even lower than that from random sampling

with 300 data points. C: Estimated response-history filter h, which describes how recent spiking

influences the neuron’s spike rate. This neuron shows self-excitatory influence on the time-scale of

25s, with self-suppression on a longer scale of approximately 1m.

smoothing prior (Fig. 5). It shows that the neuron’s response has a mild dependence on its recent

spike-history, with a self-exciting effect of spikes within the last 25s. We evaluated the performance

of the augmented model by holding out a random 10% of the data for cross-validation. Prediction

performance on test data was more accurate by an average of 0.2 spikes per trial in predicted spike

count, a 4 percent reduction in cross-validation error compared to the original model.

6 Discussion

We have developed an algorithm for optimal experimental design, which allows the nonlinearity in

a cascade neural encoding model to be characterized quickly and accurately from limited data. The

method relies on a fast method for updating the hyperparameters using a Gaussian factorization of

the Laplace approximation to the posterior, which removes the need to numerically recompute the

MAP estimate as we optimize the hyperparameters. We described a method for optimal experimen-

tal design, based on uncertainty sampling, to reduce the number of stimuli required to estimate such

response functions. We applied our method to the nonlinear color-tuning properties of macaque

V1 neurons and showed that the GP-Poisson model provides a flexible, tractable model for these

responses, and that optimal design can substantially reduce the number of stimuli required to char-

acterize them. One additional virtue of the GP-Poisson model is that conditionals and marginals

of the high-dimensional nonlinearity are straightforward, making it easy to visualize their lower-

dimensional slices and projections (as we have done in Fig. 4). We added a history term to the LNP

model in order to incorporate the effects of recent spike history on the spike rate (Fig. 5), which

provided a very slight improvement in prediction accuracy. We expect that the ability to incorpo-

rate dependencies on spike history to be important for the success of optimal design experiments,

especially with neurons that exhibit strong spike-rate adaptation [30].

One potential criticism of our approach is that uncertainty sampling in unbounded spaces is known

to “run away from the data”, repeatedly selecting stimuli that are far from previous measurements.

We wish to point out that in neural applications, the stimulus space is always bounded (e.g., by the

gamut of the monitor), and in our case, stimuli at the corners of the space are actually helpful for

initializing estimates the range and smoothness of the function.

In future work, we will work to improve the speed of the algorithm for use in real-time neurophysiol-

ogy experiments, using analytic first and second derivatives for evidence optimization and exploring

approximate methods for sparse GP inference [35]. We will examine kernel functions with a more

tractable matrix inverse [20], and test other information-theoretic data selection criteria for response

function estimation [36].
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