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Color vision begins with the transduction of light into neural signals 
by the three classes of cone photoreceptors and ends with the process-
ing of these signals in the cerebral cortex. Historically, quantitative 
studies of color processing in the visual system have estimated the 
strength of cone inputs to downstream neurons by assuming that cone 
inputs are combined linearly. This approximation has been valuable 
for understanding color processing in subcortical structures but has 
been less useful in the cortex.

When stimulated with coarse spatial patterns and characterized 
with linear models, neurons in the retina and lateral geniculate 
nucleus (LGN) segregate naturally into discrete clusters on the basis 
of their cone inputs1–5. These clusters explain a body of psychophysi-
cal observations, and their identification was a critical step in our 
current understanding of the color computations performed by these 
structures6–9. When applied to neurons in V1, these methods did not 
reveal discrete clusters but instead revealed heterogeneous combina-
tions of cone inputs that are not related to color perception in any 
obvious way10–13. However, nonlinearities in the color tuning of V1 
neurons are well documented10,12,14–17, suggesting that V1 neurons 
combine cone signals in systematic, nonlinear ways with an organi-
zation that appears to be disordered only because of the inadequacy 
of linear methods.

To understand the organization of cone signal processing in visual  
cortex, we used a new technique for analyzing nonlinear signal combi-
nation and examined V1 neurons in awake, fixating monkeys. Roughly 
half of the recorded neurons combined cone signals nonlinearly. 
Analysis of these nonlinear combinations revealed an unexpected 
relationship to color directions that were previously identified as being 
perceptually and physiologically important2,3,7,18–20. These results are 
consistent with a simple hierarchical model in which signals from linear  
neurons tuned to a small set of color directions combine via simple 
nonlinear operations to create a diversity of color tuning in V1.

RESULTS
We recorded from 118 V1 neurons in two monkeys (61 from monkey K  
and 57 from monkey S). For each neuron, we used an automated, 
closed-loop system to find an isoresponse surface: a collection of 
points in cone-contrast space that evoked the same firing rate. The 
stimuli that we used were drifting Gabor patterns, and firing rates 
were measured from an estimated response latency until the end of 
each stimulus presentation (see Online Methods).

To appreciate the rationale for this approach, consider isoresponse 
contours (in two dimensions) for three hypothetical V1 neurons: 
neurons 1, 2 and 3 (Fig. 1). Neuron 1 combines cone signals linearly; 
its isoresponse contours are lines and would be planes in a three- 
dimensional color space (Fig. 1a). Neuron 2 combines cone signals 
that have been put through a compressive nonlinearity, and its iso-
response contours are concave (Fig. 1b). Neuron 3 combines cone 
signals that have been put through an expansive nonlinearity, and its 
isoresponse contours are convex (Fig. 1c).

Distinguishing these hypothetical tuning functions using tradi-
tional methods can be challenging. A conventional experimental 
approach is to measure responses to a small set of predetermined 
stimuli. This is analogous to holding an opaque mask with a few holes 
(each representing a stimulus) over the lower panels in Figure 1. The 
position of each hole represents the degree to which a stimulus acti-
vates the long and middle wavelength–sensitive cones (L and M cones, 
respectively). Activation of the short wavelength–sensitive cones  
(S cones) is not represented. The value of the firing rate viewed 
through the hole represents the evoked response. Depending on the 
locations and number of holes, the three tuning functions can appear 
to be identical. An alternative approach is to measure the shapes of 
isoresponse surfaces.

We found V1 neurons consistent with all the three models of cone 
signal combination (Fig. 2). For example, the isoresponse surface of 

1Department of Physiology and Biophysics, University of Washington, Washington National Primate Research Center, Seattle, Washington, USA. 2Program in 
Neurobiology and Behavior, University of Washington, Seattle, Washington, USA. Correspondence should be addressed to G.D.H. (ghorwitz@u.washington.edu).

Received 26 January; accepted 9 April; published online 13 May 2012; doi:10.1038/nn.3105

Nonlinear analysis of macaque V1 color tuning reveals 
cardinal directions for cortical color processing
Gregory D Horwitz1 & Charles A Hass2

Understanding color vision requires knowing how signals from the three classes of cone photoreceptor are combined in the cortex. 
We recorded from individual neurons in the primary visual cortex (V1) of awake monkeys while an automated, closed-loop system 
identified stimuli that differed in cone contrast but evoked the same response. We found that isoresponse surfaces for half the 
neurons were planar, which is consistent with linear processing. The remaining isoresponse surfaces were nonplanar. Some were 
cup-shaped, indicating sensitivity to only a narrow region of color space. Others were ellipsoidal, indicating sensitivity to all color 
directions. The major and minor axes of these nonplanar surfaces were often aligned to a set of three color directions that were 
previously identified in perceptual experiments. These results suggest that many V1 neurons combine cone signals nonlinearly 
and provide a new framework in which to decipher color processing in V1.
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neuron 1 is well described by a pair of planes (Fig. 2a,b). A quadratic 
fit to these data (Fig. 2c,d) was not a significant improvement over the 
planar fit (F test, P > 0.01). The color tuning of this neuron is therefore 
reasonably well described by a linear combination of cone signals.

The orientation of isoresponse planes can be specified by the 
unique direction orthogonal to them3. This is the color direction of 
maximal neural sensitivity; less contrast is needed to reach the target 
firing rate in this direction than any other. Directions of minimal 
sensitivity are parallel to the planes; no amount of contrast in these 
directions is sufficient to reach the target firing rate. The orientation 
of the planes from neuron 1 (Fig. 2a,b) shows sensitivity to in-phase 
modulations of the L and M cones, so this neuron can be classified as 
an L+M non-opponent cell.

Neuron 2 responded particularly well to stimuli that modulated the L 
and S cones together and the M cones in the opposite phase (that is, the 
L−M+S color direction). Isoresponse surfaces from this neuron (Fig. 2e,f) 
are poorly described as planes. Data points in color directions near 
L−M+S lie closer to the origin than the fitted plane, whereas data points 
in other color directions lie beyond the fitted plane. This pattern indicates 
that neuron 2 does not combine cone signals linearly (F test, P < 0.01).  

Instead, it is highly sensitive to modulations near L−M+S and relatively 
insensitive to modulations in other color directions.

Neuron 3 responded in every color direction that we tested. The 
data points lie close to the surface of an ellipsoid (Fig. 2g,h) and, as a 
result, the best fitting plane provides little relevant information about 
color tuning. A preferred color direction is difficult to define for this 
neuron because its direction of maximal sensitivity (the shortest axis 
of the ellipsoid) depends on the color space in which the data are rep-
resented 21. A linear transformation of cone-contrast space can convert 
an isoresponse ellipsoid into a sphere, which has no long or short 
axes. This concern does not extend to neuron 1, which has a preferred  
color direction whose definition is less dependent on the choice of 
color space; a plane remains a plane after linear transformations.

Analysis of cone weights
The color tuning of V1 neurons has traditionally been quantified with 
cone weights. Implicit in this characterization is the idea that cone 
signals are combined linearly. As shown above, some V1 neurons 
combine cone signals nonlinearly, and summarizing the color tuning 
of these neurons with cone weights may be misleading.

Nevertheless, to obtain a first-order description of color tuning 
that can be compared with previous findings, we calculated cone 
weights for every neuron in our data set (Fig. 3; see Online Methods). 
This analysis is best-suited to neurons with planar isoresponse sur-
faces, a criterion that was poorly met by many of the neurons that 
we sampled. The planar model was rejected for 64 of 118 neurons 
(F test, P ≤ 0.01; Fig. 3). Leave-one-out cross-validation (see Online 
Methods) confirmed that quadratic fits provided better predictions 
than planes for 94 of 118 neurons and this difference was statistically 
significant for 39 neurons (Wilcoxon signed-rank test on predic-
tion errors, P ≤ 0.01). We conclude that many V1 neurons combine 
cone signals nonlinearly. Thus, a description of color tuning in terms  
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Figure 1  Predicted color tuning under three models of cone signal 
combination. Upper panels show models as box-and-arrow diagrams. 
Lower panels show neural responses and isoresponse contours as a 
function of inputs from two cone types. (a) Isoresponse contours are  
lines for neurons that combine cone signals linearly. Output nonline
arities affect the spacing between the lines, but do not bend them.  
(b) Compressive nonlinearities before linear cone signal combination 
produce concave isoresponse contours. (c) Expansive nonlinearities before 
linear cone signal combination produce convex isoresponse contours.
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Figure 2  Data from three example neurons (two projections for each). Dots  
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the monitor gamut. (a–d) For neuron 1, planar (a,b) and quadratic fits (c,d)  
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scaled to show the spread in the data points. Here and throughout, units 
are in cone-contrast vector lengths,
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of cone weights has limited utility in V1. As a particularly salient 
example, consider cone weights for the 33 neurons whose isore-
sponse surfaces were ellipsoidal. These cone weights are broadly 
distributed because planar fits to points on an ellipsoid have essen-
tially random orientations.

Predicting conventional color tuning measurements
During an initial characterization procedure (see Online Methods), 
each neuron was probed with nine colored gratings (Fig. 4 and Table 1). 
Each grating is represented as a disk whose position indicates its L-,  
M- and S-cone contrasts and whose size indicates the response that 
it evoked. Small disks tended to be close to the origin and large disks 
tended to be far from the origin because neural responses generally 
increase with stimulus contrast. Planar and quadratic isoresponse sur-
faces obtained using the closed-loop procedure were superimposed 
on the data obtained with gratings. As their name implies, isoresponse 
surfaces were expected to pass through equally sized disks.

We predicted neuronal responses to these gratings from each  
neuron’s best fitting planar and quadratic isoresponse surfaces using 
the formula 

fr c
d

d
=

ˆ

where fr is the firing rate, c is the target firing rate used in the isore-
sponse measurement, d is the distance from the origin to the grating 
in cone-contrast space and d̂ is the distance from the origin to the 
isoresponse surface in the same color direction. This analysis assumes 

(1)(1)

that stimuli on the isoresponse surface evoke the target firing rate and 
that stimuli off the surface evoke a response that is proportional to the 
distance from the origin in units of distance to the isoresponse sur-
face. In other words, it assumes that the neuron has a linear contrast- 
response function whose slope varies with color direction.

Gratings that elicited weak responses from neuron 1 (Fig. 4a) lie 
between the origin and the isoresponse surface, whereas gratings that 
elicited robust responses are distal to the surface. Thus, distance from 
the origin, with respect to distance from the isoresponse plane, is a 
good predictor of the responses to the grating stimuli.

We examined the relationship between the responses of neuron 1 
to the colored gratings and those predicted from a planar description 
of its isoresponse surface (Fig. 4d). The close agreement between the 
data and predictions (Pearson’s r = 0.88) indicates that color tuning 
estimated from the planar isoresponse surface is consistent with color 
tuning measured conventionally. Predictions based on the quadratic 
isoresponse surface were not superior (r = 0.87; Fig. 4g). Thus, for 
neuron 1, a planar description of the isoresponse surface is sufficient 
to predict responses to stimuli that lie off of the surface.

Neuron 2 had unusually tight color tuning. It responded at 20 spikes 
per s to the L−M+S grating and below 11 spikes per s to the other 
eight gratings. The isoresponse surface for this neuron formed a cup 
that held the L−M+S grating and excluded the others (Fig. 4b). The 
correlation between actual and predicted responses was 0.71 when 
predictions were based on the planar isoresponse surface and 0.94 
when predictions were based on the quadratic surface (Fig. 4e,h). To 
compare the quality of linear and quadratic predictions statistically, we 
randomly swapped linear and quadratic labels on the response predic-
tions and recalculated correlation coefficients (29 = 512 permuted data 
sets). The correlation coefficient was significantly larger when it was 
based on the quadratic surface than when it was based on the planar 
surface (P < 0.05).
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Neuron 3 had a convex isoresponse surface and responded strongly 
to most of the colored gratings (Fig. 4c). Response predictions based on 
a planar isoresponse surface were poorly correlated with the responses 
evoked by the gratings (r = 0.07; Fig. 4f). In contrast, the quadratic 
surface yielded significantly better predictions (r = 0.71, P < 0.05 by 
permutation test on the difference in correlation coefficients; Fig. 4i).

Across the population, correlation coefficients between actual and 
predicted responses were skewed toward positive values for predictions 
based on either type of isoresponse surface (that is, planar or quadratic; 
Fig. 5). Nevertheless, the quadratic model was superior. The median 
correlation for predictions based on quadratic surfaces (r = 0.79) was 
significantly greater than the median correlation based on planar sur-
faces (r = 0.61, Wilcoxon test, P < 0.0001). The superior predictive power 
of the quadratic model was confirmed by two additional analyses. The 
first used Spearman’s rank correlation coefficient, which is invariant 
to monotonic nonlinearties, for example, contrast-response functions 
(median rspearman for quadratic fit = 0.73, median rspearman for planar 
fit = 0.65; Wilcoxon test, P < 0.001). The second analysis used mean-
squared error (MSE), which is sensitive to systematic biases in offset 
and scale of the predictions (median MSE for planar fit = 156, median 
MSE quadratic fit = 120; Wilcoxon test, P < 0.05).

Quadratic isoresponse surfaces can be divided into three mutually 
exclusive categories. Ellipsoids are three-dimensional generalizations of 
ellipses (Fig. 6a). Hyperboloids of one sheet look like hourglasses: they 
are narrow in the middle and flared at the top and bottom (Fig. 6b). 
Hyperboloids of two sheets look like bowls facing away from the origin 
(Fig. 6c). We determined the category of each fitted surface from the 
signs of the eigenvalues of the matrix of fitted coefficients22 (see Online 
Methods). Regardless of category, quadratic surfaces predicted responses 
to the colored gratings more accurately than planar surfaces did (Wilcoxon 
tests; ellipsoids, P < 0.01; all hyperboloids together, P < 0.0005; hyperbo-
loids of one sheet, P = 0.06; hyperboloids of two sheets, P < 0.0001). This 
result indicates that the superiority of the quadratic predictions (Fig. 5) 
was not dominated by any single shape acting alone.

Aspect ratio and orientation of quadratic surfaces
An isoresponse plane has a single direction orthogonal to it, so 
the color tuning of a linear neuron can be described with a single  

preferred color direction or, equivalently, a single point in a two-
dimensional diagram (Fig. 3). A quadratic isoresponse surface does 
not have a single direction orthogonal to it but can be characterized 
similarly by virtue of its three principal axes. A quadratic surface’s 
principal axes describe its orientation and its distention along these 
axes describes its aspect ratio.

We examined the orientation of the long, medium and short axes 
of isoresponse ellipsoids in cone-contrast space (Fig. 6a). The orien-
tation of each axis can be described with two numbers, for example, 
by a pair of angles, or by the L- and M-cone components of a vector 
pointing along the axis. We chose this latter representation for con-
sistency with Figure 3. We plotted each axis as a point lying inside 
a bounding triangle and color-coded each axis to indicate its length 
(short, medium or long). Each ellipsoid comprises three orthogonal 
axes. Pairs of axes that differed in length by less than a factor of 5 were 
not plotted because their directions were numerically unstable (see 
Online Methods). Thus each neuron is represented by a maximum 
of three points (Fig. 6).

Each ellipsoid had a long axis that was nearly parallel to the S-cone 
axis. This indicates that neurons with ellipsoidal isoresponse surfaces 
are less sensitive to S-cone modulations than to contrast-matched 
modulations of the L-cones, M-cones or of any linear combination 
thereof. The medium and short axes correspond to color directions 
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of moderate and high sensitivity, respectively. These axes are math-
ematically constrained to be orthogonal to the long axis, and therefore 
have little or no S-cone component. Consequently, the orange and 
purple symbols in Figure 6a, which indicate the orientations of these 
axes, lie near the edges of the bounding triangle, which is the locus of 
points of zero S-cone component. The fact that these symbols tend 
to cluster near the midpoints of these edges, and not the corners, is 
not a trivial consequence of our procedure (Supplementary Fig. 1). 
Instead, this indicates that medium and short axes tend to be oriented 
in the L+M and L−M color directions, rather than the L and M cone 
isolating directions.

A hyperboloid of one sheet, unlike an ellipsoid, has one axis that 
never intersects the surface. This axis was usually oriented near the  
S cone isolating direction or the L−M direction; it was rarely oriented 
in the L+M direction (Fig. 6b). The second axis corresponds to the 
widest part of the hyperboloid. This axis was not oriented consistently 
across our data set, but, similar to the first axis, had a tendency to be 
near the S or L−M directions. The third is the narrowest axis, which 
tended to be oriented in the L−M or L+M directions and never in the 
S-cone direction. These data are consistent with the relative insensi-
tivity of V1 neurons to S-cone modulation and further demonstrate 
a bias for S, L−M and L+M color directions.

A hyperboloid of two sheets has a single axis that intersects the 
surface. This axis was in the L+M direction for most neurons but was 
closer to the L−M direction for others (Fig. 6c). The remaining two 
axes did not intersect the surface but instead indicate directions of 
steep and shallow surface curvature. These axes tended to be in the 
L−M and S directions, respectively.

Across the neurons that we tested, isoresponse surfaces tended 
to be aligned to the L+M, L−M and S-cone axes. Not every neuron 
conformed to this pattern, but the consistency of the trend indicates 
that these axes provide a convenient basis for describing quadratic 
isoresponse surfaces in cone-contrast space.

Isoresponse surface shape and modulation ratio
Complex cells can be thought of as squaring and adding the outputs of 
simple cells to achieve near-invariance to spatial phase and luminance 
contrast polarity23–25. Similarly, neurons with ellipsoidal isoresponse 
surfaces can be thought of as squaring and adding chromatic signals 
to achieve near-invariance to color direction (the equation for an 

ellipsoid is ax2 + by2 + cz2 = 1). These observations motivated us to 
ask whether neurons with ellipsoidal isoresponse surfaces might be 
complex cells as defined by invariance to the spatial phase of a drift-
ing grating. A positive result would be consistent with the idea that 
some complex cells combine cone inputs from a variety of sources 
with different spectral sensitivities11 and would be inconsistent with 
models that describe the color tuning of complex cells with a single, 
rectified linear mechanism10. To test this hypothesis, we grouped neu-
rons by isoresponse surface shape and computed their modulation 
ratios (that is, the amplitude of the modulated response to a drifting 
grating divided by the sustained response). Modulation ratios were 
calculated from responses to gratings of a preferred orientation, spa-
tial frequency and size (and various colors) that evoked a response 
≥10 spikes per s. Small modulation ratios indicate insensitivity to 
spatial phase and thus a ‘complex’ classification26.

Modulation ratios were significantly different across isore-
sponse surface shapes (one-way ANOVA, P < 0.05; Fig. 7). Neurons  
with ellipsoidal isoresponse surfaces had smaller modulation ratios 
(geometric mean = 0.46) than neurons with planar isoresponse  
surfaces (geometric mean = 0.71) or hyperbolic isoresponse sur-
faces whether considered as a single pool (geometric mean = 0.67) 
or divided into one-sheet (geometric mean = 0.60) and two-sheet 
(geometric mean = 0.92) varieties. The only post hoc comparison 
that reached statistical significance was between ellipsoids and 
planes (Tukey-Kramer test, P < 0.05). We conclude that many com-
plex cells, but relatively few simple cells, are sensitive to modulation 
in all color directions.

DISCUSSION
To investigate how individual V1 neurons combine cone signals, 
we used an automated system to identify a set of stimuli in three- 
dimensional color space that evoked the same spike rate. For roughly 
half of the neurons that we studied, these stimuli lay on planes, which is 
consistent with a linear combination of cone-contrast signals. For the 
other half, quadratic surfaces were better fits. Quadratic surfaces were 
often oriented along the L+M, L−M and S axes of cone-contrast space, 
suggesting a natural coordinate frame for measuring and describing 
the color tuning of V1 neurons. Here we discuss the implications 
of our results for the measurements required to characterize color  
tuning in V1, and we advance a simple model that describes how 
curved isoresponse surfaces can be constructed through simple  
nonlinear operations on signals from linear neurons.

Complex
cells

Simple
cells

0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

14

16

18

20

Modulation ratio (F1/F0)

C
ou

nt

Ellipsoid
Hyperboloid 1
Hyperboloid 2
Plane

Figure 7  F1/F0 modulation ratios separated by isoresponse surface shape. 
Neurons with significantly non-planar isoresponse surfaces (F test,  
P ≤ 0.01) are grouped into ellipsoidal, one-sheet hyperbolic and two-
sheet hyperbolic categories. The remaining cells are assigned to the plane 
category. We omitted 13 neurons that responded at <10 spikes per s 
during the modulation ratio measurement.

Table 1  Grating cone contrasts (%)
L cone M cone S cone

9 (9) 9 (9) 0 (0)
7 (9) −9 (−9) 0 (0)
1 (0) 3 (0) 64 (64)
12 (13) −1 (0) 0 (0)
1 (0) 13 (13) 0 (0)
6 (6) −5 (−6) −46 (−45)
5 (6) −4 (−6) 46 (45)
7 (6) 8 (6) 45 (45)
6 (6) 6 (6) −45 (−45)

Grating cone contrasts calculated using the Stockman, MacLeod, Johnson 10° cone 
fundamentals41. Stimuli were constructed on the basis of the 2° fundamentals (cone con
trasts in parentheses) but are represented in the 10° cone contrast space for analysis.
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Sufficient statistics for color tuning
How many numbers are required to characterize the color tuning of 
a V1 neuron? A linear neuron has a preferred color direction that 
can be described with two numbers, such as a pair of angles in three-
dimensional color space. This parsimony allows color tuning to be 
represented as a point in a two-dimensional space (Fig. 3). Our results 
suggest that more than two numbers are required to describe the color 
tuning of many V1 neurons without losing information.

Quadratic surfaces, which require six parameters, described the iso-
response surfaces of V1 neurons better than planes did. Nevertheless, 
quadratic surfaces still provide an incomplete description of color 
tuning; they describe only a single two-dimensional level surface of 
a three-dimensional function. To predict firing rates off of this sur-
face, we assumed a linear contrast-response function. This model is 
a special case of a broader class that is separable in color direction 
and contrast.

To test this broader class of models, we measured isoresponse 
surfaces for 31 neurons at two different target firing rates. If color 
direction and contrast make separable contributions to V1 responses, 
we would expect isoresponse surfaces at different firing rates to be 
scaled versions of each other. This was not the case; isoresponse sur-
faces changed shape, rather than just scale, with target firing rate14 
(Supplementary Fig. 2).

Color tuning may be separable with respect to a different set of axes. 
We found that the principal axes of quadratic isoresponse surfaces 
tended to align with the L+M, L−M and S-cone axes. In the coordi-
nate system of the principal axes, only three parameters are needed 
to describe a quadratic surface, as the interaction coefficients in  
equation (4) are 0 (see Online Methods). Exploiting this fact may 
facilitate efficient measurements of color tuning functions with a 
small set of strategically placed stimuli. An important future direction 
is to find a class of model that describes the tuning of V1 neurons in a 
full three-dimensional color space and to design a stimulus-selection 
procedure to estimate the parameters of the model efficiently.

A complete description of how a V1 neuron processes cone sig-
nals requires a description of how this processing depends on the  
spatiotemporal parameters of the stimulus. Obtaining a complete  
spatiotemporal-chromatic description of a neuron is difficult because 
the space of all possible stimuli is too large to probe finely. If the 
chromatic tuning of a V1 neuron were independent of its spatiotem-
poral tuning, we could measure chromatic and spatiotemporal tuning 
separately and arrive at a complete characterization. This is not the 
case27,28. Consequently, the surfaces that we measured depended on 
the spatiotemporal stimulus parameters that we used. We probed only 
a single three-dimensional slice from the space of all possible stimuli, 
but, in principle, our technique generalizes to higher dimensional 
spaces. Parametric manipulations of spatial, temporal and chromatic 
aspects of a stimulus to obtain a more complete description of cone 
signal processing in V1 remains an important goal.

Hierarchical model
Even if V1 neurons naturally segregate into a finite number of types 
on the basis of color tuning, this clustering would be difficult to 
uncover with linear analyses. We found that isoresponse surfaces in 
cone-contrast space could be described with quadratic shapes (ellip-
soids and hyperboloids) whose principal axes were oriented similarly 
across neurons. This suggests that color processing in V1 may be more 
orderly than previously recognized.

In analogy with a classic model of simple and complex cells29, sig-
nals from linear neurons (with planar isoresponse surfaces) can be 
combined nonlinearly to create higher-order neurons with curved 

isoresponse surfaces. V1 neurons with concave isoresponse surfaces, 
which are likely the type 3 neurons described previously16, may rep-
resent a biologically realistic logical AND gate. Neurons that respond 
exclusively to the conjunction of A and B can be constructed by taking 
the output of linear neurons tuned for A and B (or linear combinations 
thereof) and transforming their outputs by a compressive nonlinear-
ity before signal summation (Fig. 1b). Biophysically, concave isore-
sponse surfaces can also be created by tuning excitation to stimulus 
direction A and shunting inhibition to stimulus direction B30,31. Such 
suppressive influences could manifest as one- or two-sheet hyperbo-
loids, depending on whether the suppression was tightly (one sheet) 
or broadly (two sheet) tuned. The fact that hyperboloids of one or 
two sheets can be transformed into one another by flipping the signs 
on the coefficients (a through f in equation (4)) is consistent with 
the idea that these surfaces might reflect a common functional form, 
differing only in a criterion.

Neurons with convex isoresponse surfaces have broad color tuning 
and were likely categorized as type 4 (ref. 16) or universal32 cells in 
previous studies. These neurons can be thought of as computing a 
logical OR: they respond whenever any of several color channels are 
active. This tuning can be constructed by transforming cone inputs 
(or linear combinations thereof) through an expansive nonlinearity 
before summation (Fig. 1c). If this nonlinearity is quadratic, isore-
sponse contours will be ellipsoidal, consistent with the energy model 
of complex cells 24 and with many of the surfaces that we observed.

The idea that a neuron can achieve invariance by pooling responses 
from heterogeneously tuned subunits was advanced to explain the 
position (spatial phase) invariance of complex cells29,33. A relationship 
between ellipsoidal isoresponse surfaces and spatial phase invariance 
is not trivial; the majority of neurons that had ellipsoidal isoresponse 
surfaces were complex cells. One possibility is that a common mecha-
nism produces invariance to both spatial phase and color direction 
and that some of the apparent complexity of color tuning in V1 may 
be a result of nonlinearities that have been well-studied in the spatial 
domain. A similar speculation was made on the spatial and chromatic 
nonlinearities of magnocellular LGN neurons34.

Some of the nonlinearities that we observed in V1 were presum-
ably inherited from the LGN. Parvocellular and S cone–dominated 
LGN neurons exhibit relatively mild nonlinearities that have been 
characterized as gain controls and might cause isoresponse surfaces 
to bend away from the origin at high contrast35–37. Magnocellular 
neurons respond at the fundamental frequency of luminance modu-
lations and at twice the frequency of out-of-phase L- and M-cone 
modulations34,38,39. Isoresponse surfaces from magnocellular neurons 
are therefore expected to be cylinders parallel to the S-cone axis. One 
possibility is that magnocellular input contributed to the combined 
L+M and L−M sensitivity that we observed in many V1 neurons.

V1 neurons with concave or convex isoresponse surfaces presum-
ably have different roles in color vision, as the former population is 
tightly tuned for color direction and the latter largely discards this 
information. Neurons with concave isoresponse surfaces carry color 
information that can be easily decoded by downstream circuitry: a 
relatively small subset will be activated by any given light. Sparse activ-
ity amid the silence of other tightly tuned neurons may provide a reli-
able code for color and allows for efficient discrimination of lights with 
natural (heavy tailed) distributions40. In contrast, neurons with convex 
isoresponse surfaces respond to modulations in all color directions.  
A sufficiently complex downstream decoder might be able to deter-
mine hue from a population of these neurons, but we speculate that 
they may be more important for computations requiring sensitivity 
to contrast irrespective of color direction (for example, detecting 
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the presence of a stimulus or estimating orientation or direction 
of motion). Notably, however, both groups of neurons are respon-
sive to isoluminant modulations and, by that definition, would be 
considered ‘color cells’. To determine which neurons are involved in  
which visual computations, a fruitful approach would be to probe 
relationships between neural responses and behavior on color  
psychophysical tasks.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Two monkeys (M. mulatta) participated in the experiments. All procedures con-
formed to the guidelines provided by the US National Institutes of Health and 
the University of Washington Animal Care and Use Committee. Each monkey 
was surgically implanted with a titanium headpost, a monocular scleral search 
coil and a recording chamber over area V1 (Crist Instruments).

During experiments, monkeys sat in a primate chair 1 m from a cathode ray 
tube monitor (Sony Trinitron) in an otherwise dark room. Neural signals were 
recorded with extracellular tungsten microelectrodes of 1−2 MΩ (Frederick 
Haer) and digitized at 40 kHz. Spikes were isolated online on the basis of wave-
form timing and amplitude criteria and saved to disk for offline analysis.

Three personal computers were used for data collection. First, a Dell Dimension 
4800 monitored eye movements and controlled event timing using the REX soft-
ware package (US National Institutes of Health). Second, an Apple Mac Pro dis-
played visual stimuli via custom software based on the PsychophysicsToolbox42 
for Matlab (MathWorks). Third, a Dell Precision T3400 acquired data and per-
mitted online spike sorting (Plexon). A Matlab process on this computer had 
real-time access to spike and event times and sent the results of online analyses 
to the REX computer via a UDP socket.

Stimuli and monitor calibration. Stimuli were Gabor patches (sigma = 0.4°) 
drifting at 3 Hz in a direction and with a spatial frequency tailored to each neu-
ron (see below). Contrast increased linearly over the first half-cycle, remained 
constant for one cycle and decreased linearly over the second half-cycle (full 
duration = 667 ms). The space/time average chromaticity and luminance of each 
Gabor stimulus was identical to the background (x = 0.3, y = 0.3, Y = 90 cd m−2). 
Emission spectra and voltage-intensity relationships of each monitor phosphor 
were measured with a PR-650 SpectraColorimeter (PhotoResearch). The depth 
of each color channel was increased from 8 to 14 bits using a Bits++ video signal 
processor (Cambridge Research) at the expense of spatial resolution; each pixel 
was twice as wide as it was tall.

Behavior. Monkeys were rewarded for maintaining fixation on a 0.2 × 0.2° 
black square in the center of the monitor. Trials were aborted if the eye posi-
tion left a 1 × 1° electronic window centered on the fixation point. During the 
initial characterization procedure, the interstimulus interval was 1 s. During 
the isoresponse surface measurement, the first stimulus appeared 1.5 s after 
the monkey acquired fixation. Subsequent stimuli appeared with an inter-
stimulus interval of 640 ms until the monkey broke fixation (average of four 
stimuli per trial).

Initial neuronal characterization. Each neuron was probed with circularly 
apertured sinusoidal gratings that drifted at 3 Hz for 1 s. The orientation, spatial 
frequency and diameter of the gratings were adjusted manually by the experi-
menter and then by the computer, which optimized them automatically in the 
order given above. If the preferred spatial frequency differed from the initial guess 
by ≥1 octave, orientation tuning was remeasured at the new spatial frequency, 
and the preferred spatial frequency was remeasured at the new preferred orien-
tation. By default, the initial characterization procedure was performed using 
achromatic gratings at 40% contrast. 35 of the 118 neurons responded poorly to 
achromatic gratings and were therefore characterized with chromatic gratings 
(L−M, S, L−M–S or L−M+S). After a set of preferred spatial parameters were 
found, nine colored gratings in L-, M- and S-cone contrast space were presented 
in a pseudorandomly interleaved order (Table 1).

Isoresponse surface measurement. Following the initial characterization proce-
dure, we used a closed-loop system to find a set of chromatically distinct stimuli 
that elicited similar responses43. This approach is a logical extension of the action 
spectra measurements that were a cornerstone of early studies of color processing 
in V1 (refs. 44–47). To measure an action spectrum, an experimenter increased 
the intensity of a narrow-band light until a criterion response was obtained.  
Our measurements differ from the classic ones because we probed a three- 
dimensional color space under automated computer control.

At the beginning of each isoresponse surface measurement, the experi-
menter manually set a spike-counting window and target firing rate.  
The spike-counting window began at the response latency (estimated from 
a continually updated peri-stimulus time histogram) and ended when the  

stimulus disappeared. The target firing rate was chosen on the basis of base-
line and stimulus-evoked firing rate histograms. Target firing rates exceeded 
the baseline firing rate but fell below the maximum evoked response 
(Supplementary Fig. 3).

Isoresponse surface measurements proceeded in a series of iterations, each of 
which consisted of two phases. In the first phase, contrast in several randomly 
interleaved color directions was titrated to evoke the target firing rate from the 
cell. In the second phase, a new set of color directions was selected and the next 
iteration began.

Phase 1: contrast titration. The goal of this procedure was to find a contrast 
in a specified color direction that evoked the target firing rate as nearly as pos-
sible. After each stimulus presentation, the evoked response was measured. If it 
exceeded the target firing rate, the contrast of the stimulus was reduced on the 
next presentation. Otherwise, contrast was increased.

This process continued until a reversal occurred. A reversal is a response 
that exceeded the target firing rate after having fallen below it on the previ-
ous presentation or a response that fell below after having exceeded it on 
the previous presentation. After each reversal, the magnitude of the contrast 
adjustment was reduced by a factor of 0.66 in some experiments or 0.5 in 
others. After seven reversals, the procedure was halted. The contrast at the 
last reversal was defined as the staircase termination. Presentations of stimuli 
in 3–10 color directions were randomly interleaved to mitigate changes in 
adaptation.

Phase 2: color direction selection. The color direction selection algorithm is 
most easily explained geometrically in the color space shown in Supplementary 
Figure 4. Termination points of each of the three initial staircases (usually con-
ducted in the L+M, L−M and S directions) for a hypothetical V1 neuron are 
shown in Supplementary Figure 5a. Color directions probed in the second itera-
tion of staircases were selected by connecting the initial six staircase terminations 
to create four symmetric pairs of triangles (Supplementary Fig. 5b). The second 
round of staircases was conducted along the four lines connecting the midpoint of 
each triangle to the origin (Supplementary Fig. 5c). The contrast of each staircase 
began at the midpoint of its parent triangle.

Sometimes the contrast requested by the staircase algorithm was outside of the 
monitor gamut. The termination of such staircases was set arbitrarily to the edge 
or, more often, a point 50–70% of the distance from the origin to the edge of the 
monitor gamut. These terminations were not used in the surface fits except to 
penalize surfaces that did not leave the gamut (as described below).

The outcome of second-round staircases was used to select color direc-
tions probed in the third round. Each of the eight original triangles shown 
in Supplementary Figure 5b was divided into three subtriangles by connect-
ing the terminations of the second-round staircases with each pair of vertices. 
This is shown for one triangle in Supplementary Figure 5d. New staircases 
were then conducted through the midpoint of each of the subtriangles. This 
recursive procedure was used in every subsequent round of the experiment; 
staircases were conducted through the midpoint of triangles, which were then 
divided into three subtriangles, the midpoints of which were then probed with 
new staircases.

Some subtriangles were not probed. If a staircase terminated within a specified 
distance of its parent triangle (usually ±30% of the distance from the origin to the 
triangle), the parent triangle was not subdivided and no additional staircases were 
passed through it. This strategy prevents sampling regions of color space over 
which the isoresponse surface is flat. Similarly, triangles were not probed if all 
three vertices were outside the monitor gamut. This strategy prevents sampling 
regions of color space over which the neuron is unresponsive. This procedure is 
based on the assumptions that isoresponse surfaces are smooth and that contrast 
response functions are monotonic. In the absence of noise, it yields a nonparamet-
ric estimate of the isoresponse surface that is composed of a mesh of interlocking 
triangles that are small in areas in which the isoresponse surface is curved and 
large in areas in which it is flat.

Model fitting and statistics. Staircase terminations were fit with a pair of sym-
metric planes that can be described by the equation 

ax by cz+ + = 1 (2)(2)
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where a, b and c are fitted parameters that determine the position and orientation 
of the planes. To improve numerical stability in the fitting algorithm without 
biasing the end result, fitting was performed in a ‘whitened’ cone-contrast space 
such that x, y and z were linear combinations of L-, M- and S-cone contrasts48.  
Fitted parameters were then unwhitened (transformed back to cone-contrast 
space) for surface rendering and cone weight calculation.

Measurement error was radial because our dependent variables, the staircase 
terminations, were measured along fixed color directions. We fit models by mini-
mizing squared radial error 

SSE d di i
i

= −( )∑ log( ) log( )
2ˆ

where di is the distance from the origin to the ith data point and d̂i is the distance 
from the origin to the fitted surface in the same direction. The log transforma-
tion assumes multiplicative errors, consistent with the scaling of contrast steps 
during the contrast titration procedure. It also renders the fits invariant to linear 
transformations of the color space: linear transformations scale each di and d̂i 
by the same factor, which cancels in the subtraction. Staircases that exceeded the 
monitor gamut did not contribute to the error unless they penetrated the fitted 
surface. In other words, staircases that should have hit the surface before exiting 
the monitor gamut increased the error, but staircases terminating at the edge 
of the gamut before hitting the surface did not. Fitting was performed using a 
generic function minimization algorithm (fminsearch in Matlab) seeded with 
initial guesses from a grid search.

Staircase terminations were also fit with the quadratic equation 

ax by cz dxy exz fyz2 2 2 2 2 2 1+ + + + + =

which can describe an ellipsoid, a one-sheet hyperboloid or a two-sheet hyper-
boloid depending on the choices of the six parameters: a, b, c, d, e and f. The 
category of shape is invariant to linear transformations of the color space. Surfaces 
described by this equation are symmetric about the origin, as required by the 
Gabor stimulus that we used, which modulates symmetrically about the back-
ground white point. Additional linear terms (for example, gx + hy + iz) would 
have allowed the surfaces to be asymmetric with respect to the origin and were 
therefore not included.

(3)(3)

(4)(4)

The eigenvectors of the matrix 

a d e
d b f
e f c

















are the principal axes of the quadratic surface and the eigenvalues are the lengths 
of these axes22. Pairs of axes that have the same length have non-unique directions. 
Pairs of axes that are similar in length have numerically unstable directions. In 
our data, 75 of 236 axis pairs were sufficiently different in length (≥ a factor of 5)  
to permit a meaningful analysis of axis orientation.

Because of its three extra parameters, the quadratic model always fit the data 
better than the planar model. To compare the quality of the model fits, we used 
an F test based on the test statistic 

F
SSE SSE

SSE n
=

−( )
−

plane quad

quad

/

/( )

3

6

where n is the number of staircases that terminated inside the monitor gamut. 
We also compared the ability of planar and quadratic models to predict the posi-
tion of individual data points intentionally omitted from the fitting process. We 
conducted this analysis n times per neuron, leaving out a different data point 
each time, and fitting the planar and quadratic models to the remaining n – 1 data 
points. Prediction accuracy was quantified as median squared error.

(5)(5)
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