The Endogeneity of the Exchange Rate as a Determinant of FDI:
A Model of Money, Entry, and Multinational Firms

Katheryn Niles Russ

Discussion by Fabio Ghironi

NBER Universities Research Conference
December 10-11, 2004
Introduction

• This is a very interesting paper.

• It contributes to a growing literature that combines recent developments in research on international trade and investment with modern international macroeconomics (Bergin and Glick, various works; Corsetti, Martin, and Pesenti, 2003; Ghironi and Melitz, 2004, among others).
• FDI has become a key channel for resource flows across countries

• How do exchange rate (ER) fluctuations affect FDI?

 - In particular, what is the effect of ER volatility?

• Existing empirical studies report mixed evidence.

 - Goldberg and Kolstad (1995): ER volatility increases FDI
 (consistent with FDI being a substitute for exports).

 - Campa (1993): ER volatility deters FDI (the more so the larger
 sunk entry costs into foreign market).
• Most empirical studies are based on partial equilibrium theories of FDI that take the ER as exogenous.

• This paper develops a microfounded, general equilibrium model of FDI and the ER.

• The model combines a version of Helpman, Melitz, and Yeaple (2004)/Melitz (2003) with Devereux and Engel’s (2001) model of internationalized production with sticky prices.

• Katheryn adds firm heterogeneity and entry subject to sunk entry costs to the Devereux-Engel setup.
• The model makes it possible to analyze the effect of ER volatility on FDI when both the ER and FDI depend on the same set of fundamentals.

• Key result: ER volatility matters for FDI, but the effect depends on the source of volatility:

 - Volatility that originates in the host country encourages FDI.

 - Volatility that originates in the native country discourages FDI.

• Hence, the paper provides a structural explanation for ambiguous empirical evidence (and guidance for future empirical work).

• Very nice!
The Endogeneity of the Exchange Rate as a Determinant of FDI

• FDI is endogenous to the ER.

• It is plausible to think that, in general equilibrium, the ER should be endogenous to FDI.

 - That sounds realistic to me.

• It is not a feature of this model: The ER does not depend on FDI (or its determinants) in any way.

• Why?
Monetary Policy and Exchange Rate Determination

- The model assumes exogenous money supply (lognormal M^s growth at home and abroad).

- (Relative) money demand, risk-sharing through the market for contingent bonds, and the exogenous M^s ratio are the centerpieces of ER determination.

\[S_t = \frac{M_t (1 - \beta \theta)}{M^*_t (1 - \beta \theta^*)}. \]

- Once we know the exogenous M^s, we know the ER.
• Recent literature has deemphasized the role of exogenous M^s and money demand in ER determination.

• Empirical evidence: Exogenous monetary shocks play little role relative to systematic response of monetary policy to economic conditions.

• At least since Taylor (1993), it is commonplace to think of monetary policy in terms of endogenous response of the interest rate to the conditions of the economy.

• That has implications for exchange rate determination.
A Simple Log-linear Example

• Assume UIP: \(i_{t+1} - i_{t+1}^* = E_t S_{t+1} - S_t \)

• Assume PPP: \(P_t = S_t + P_t^* \implies \pi_t = \Delta S_t + \pi_t^* \)

• Assume central banks set interest rates to react to inflation and GDP:

\[
\begin{align*}
 i_{t+1} &= \alpha_1 \pi_t + \alpha_2 y_t + \xi_t, \\
 i_{t+1}^* &= \alpha_1 \pi_t^* + \alpha_2 y_t^* + \xi_t^*,
\end{align*}
\]

where \(\xi \) is the exogenous component of monetary policy (if we want to have it).
• Policy implies: \(i_{t+1}^D = \alpha_1 \pi_t^D + \alpha_2 y_t^D + \xi_t^D \).

• But \(\pi_t^D = \Delta S_t \) (PPP) and \(i_{t+1}^D = E_t S_{t+1} - S_t \) (UIP).

• Hence, \(E_t S_{t+1} - S_t = \alpha_1 (S_t - S_{t-1}) + \alpha_2 y_t^D + \xi_t^D \).

• Two implications:

 - No role for money (easy to see if \(\alpha_2 = 0 \) but true in more general cases).

 - If \(\alpha_2 > 0 \), the ER depends on the GDP differential and, in turn, on variables that affect it (for instance, net foreign assets).
• PPP does not hold with FDI.

\[E_t S_{t+1} - S_t = \alpha_1 \pi_t^D + \alpha_2 y_t^D + \xi_t^D. \] (*)

• Inflation and GDP differentials will depend on ER and (plausibly) FDI in ways that depend on details of the model.

• But, in general, equation (*) will imply that ER is affected by FDI.
• When monetary policy responds endogenously to the conditions of the economy, FDI and ER are endogenous with respect to each other and jointly determined in equilibrium.

• ER volatility will affect FDI, but FDI flows (and their determinants) will matter for the ER.

• It would be very important to investigate the results under a more realistic specification of monetary policy.

• Especially true for a theory that aims to provide guidance for empirical work and in which monetary policy is a key determinant of FDI.
A Model of Entry and Multinational Firms

• When I approached work with Marc, I thought of entry as a mechanism for propagation of economic fluctuations over time (among other roles).

• I still think that.

• The number of firms that produce \(N\) can be thought of as the capital stock of the economy in our model.
• Potential entrants must pay a one-time sunk entry cost to enter the economy during period t.

• They do that before observing their firm-specific productivity (and subject to other sources of uncertainty).

• They start producing in period $t + 1$.

• The free-entry condition equates the value of the firm (expected PDV of profits from $t + 1$ to ∞) to the sunk entry cost.

• N moves over time as an endogenous state variable.
• There is no endogenous state variable in Katheryn’s model.

• There is a predetermined range of possible varieties to which consumers have access:

\[
C_t = \left[\int_0^1 c_H(i,t) \frac{\mu-1}{\mu} \, di + \int_1^2 c_F(i,t) \frac{\mu-1}{\mu} \, di \right] \frac{\mu}{\mu-1}
\]

Home owns potential entrants between 0 and 1; foreign owns potential entrants between 1 and 2.
• At the end of period \(t - 1 \), each potential entrant finds out its firm-specific productivity in period \(t \).

• The firm then decides whether or not to pay fixed costs to produce at home and abroad during period \(t \) based on expectations of economic conditions at home and abroad in that period.

 - Fixed cost is sunk relative to ER uncertainty (not relative to productivity).

• \(n_{H,t} \) home firms and \(n_{F,t} \) foreign firms choose to produce in the home country during period \(t \).
• This sequence of events is repeated every period (firm-specific productivity is i.i.d.).

• In each period t, the home consumer has access to varieties in the ranges $[0, n_{H,t}]$ produced by home-owned firms and $(1, 1 + n_{F,t}]$ produced by foreign-owned firms.
• It helps me to think of this structure of production and access to varieties as an “accordion.”

• When all potential entrants produce, the home consumer has access to varieties in the ranges [0, 1] and (1, 2]. This is the maximum amplitude of the accordion.

• In each period t, the accordion is extended to a position that varies depending on how close $n_{H,t}$ is to 0 or 1 and $n_{F,t}$ is to 1 or 2.

• There is no persistence in entry decisions at home or abroad: $n_{H,t}$ and $n_{F,t}$ are not state variables.
• The equilibrium is such that $n_{H,t}$ and $n_{F,t}$ are actually constant.

- The accordion settles at the same amplitude in each period.

• But i.i.d. productivity implies that the identity of the firms that are producing in each period changes relative to the previous period.

- In each period, different buttons are being pushed on the accordion.
• I find it a bit hard to reconcile that with entry and FDI as the creation of new productive facilities or a commitment that involves a potentially long-lasting investment position.

- OECD (1999) definition of FDI: “FDI reflects the objective of obtaining a *lasting interest* by a resident entity in one economy (“direct investor”) in an entity resident in an economy other than that of the investor (“direct investment enterprise”). The lasting interest implies the existence of a *long-term relationship* between the direct investor and the enterprise…” (Emphasis added.)
• It seems to me that Katheryn’s model could be reinterpreted as follows:

- Some time in the past (phase 1), firms invested in the creation of productive facilities at home and abroad, defining the maximum possible amplitude of the accordion.

- They did that subject to uncertainty on their firm-specific productivity and by sinking resources in a one-time fashion.

- Firms can then decide in each period whether or not to actually turn on these plants subject to period-by-period fixed costs (phase 2, Katheryn’s model).
• In this interpretation, I think of phase 1 as the entry and FDI phase, where long-lasting investments are made.

• In a model of phases 1 and 2, one would want to endogenize the maximum amplitude of the accordion, which would become the endogenous state variable that is now missing.

• An alternative is to just slow down the movement of the accordion by using one-time sunk entry costs.
• In my paper with Marc,

\[C_t = \left[\int_{\omega \in \Omega} c_t(\omega) \frac{\mu}{\mu-1} \, d\omega \right]^{\frac{\mu}{\mu-1}}, \]

where the continuum \(\Omega \) defines the maximum amplitude of our accordion.

• In period \(t \), only goods in \(\Omega_t \subset \Omega \) are actually available – those supplied by \(N_t \) home producing firms and those supplied by \(N^*_{X,t} \) foreign exporters (a subset of \(N^*_t \) firms producing in the foreign country).
• Suppose we change our model:

* No trade. Foreign firms can set up production facilities at home (using the same technology they use in their native country) subject to one-time sunk costs of the type we now have only for domestic entry.

* A foreign firm contemplating entry into home during period t compares the expected PDV of profits from sales in the home market from $t + 1$ on to the sunk entry cost.

* In each period, there are $N_{E,t}^H$ home entrants in the home economy and $N_{E,t}^F$ foreign entrants into home.
* Assuming the same exogenous death shock as in my paper with Marc, the total number of firms producing at home during period t is:

$$N_t = (1 - \delta) \left(N_{t-1} + N_{E,t-1}^H + N_{E,t-1}^F \right)$$

* FDI into home during period t would then be measured by $N_{E,t}^F$ (or by $N_{E,t}^F$ times the value of foreign firms into home during period t).

* Entry (at home or abroad) is a persistent decision and the number of producing firms in each country is an endogenous state variable, propagating fluctuations over time.
* In a world of sticky prices (or wages), it would then be possible to investigate how ER fluctuations affect FDI and how the effects are transmitted across countries and over time.

* This would be a channel for long-lasting real effects of nominal exchange rate movements (Baldwin and Krugman, 1989).

* This may be complicated to do.

* But it is certainly worth trying.
Conclusions

• I like accordion music! I learned a lot from this very insightful paper.

• I see it as the starting point of an exciting research agenda and I look forward to reading more of Katheryn’s work in the future.