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A The Reduced Benchmark Model and the Efficient Equilibrium

The system of equilibrium conditions in Table 1 can be further reduced by substituting all the

equations that hold within a given period. The reduced system is shown in Table A.1 for the case

ϕ = 0.

Table A.1. Reduced Benchmark Model (ϕ = 0)
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As for the system in Table 1, the reduced system is closed by specifying a rule for nominal

interest rate setting, the setting of the labor subsidy τLt , and processes for the exogenous entry cost

fE,t and productivity Zt.

Based on the first-best policy exercise in the text, the efficient equilibrium of this economy is

obtained when policy mimics the flexible-price equilibrium through producer price stability (πt = 0
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∀t). Denoting variables in this equilibrium with a star, the solution for the efficient equilibrium is

obtained from the system in Table A.2.

Table A.2. Benchmark Model (ϕ = 0): The Efficient Equilibrium
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Log-linearizing under assumptions of log-normality and homoskedasticity, the last three equa-

tions in this table are:

N∗t+1 = (1 + r)N∗t − (r + δ) (θ − 1)C∗t + [(r + δ) (θ − 1) + δ]Zt − δfE,t, (1)

C∗t =
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Equations (1)-(2) fully determine consumption and the number of producers as a function of ex-

ogenous shocks (as in BGM). Equation (3) can then be used to obtain the Wicksellian interest rate

i∗t . Subtracting this equation from the log-linear version of the Euler equation for bond holdings in

the sticky-price equilibrium and using ỸCR,t = ĈR,t ≡ Ct − [1/ (θ − 1)]Nt − {C∗t − [1/ (θ − 1)]N∗t } =

CR,t − C∗R,t and ı̂t ≡ it − i∗t yields EtỸ
C
R,t+1 − ỸCR,t = ı̂t −Etπt+1, which we use in the derivation of

the interest rate rule that supports the efficient, flexible-price allocation.

B Proof of Proposition 1

We study a hypothetical scenario in which a benevolent planner maximizes lifetime utility of

the representative household by choosing quantities directly. The “production function” for ag-

gregate consumption output is Y C
t = ZtN

1
θ−1
t LC

t , implying that consumption is given by Ct =
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or, substituting the constraint into the utility function and treating next period’s state as the choice

variable:
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The first-order condition with respect to inflation is simply:

πt = 0 ∀t, (5)

whereas the first order condition with respect to Nt+1 for a given level of inflation is:
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The term in square brackets in the right-hand side of this equation is:
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Hence, the first-order condition becomes:
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Combining (6) and (5) we obtain the equation that, together with the dynamic constraint (4) fully

determines the planner equilibrium:

U 0 (Ct)N
1

θ−1
t fE,t = β (1− δ)Et

½
U 0 (Ct+1)

∙
1

θ − 1
Ct+1

Nt+1
+N

1
θ−1
t+1 fE,t+1

¸¾
. (7)

General Homothetic Preferences

The proof is identical to that of Proposition 1, with ρ (Nt) replacing N
1

θ−1
t and (Nt+1) replacing

1/ (θ − 1) in (7). Implementation of this first-best optimum in the decentralized economy is ensured

by the interest rate rule in equation (15) of the main text, together with one of the optimal subsidies

studied in Bilbiie, Ghironi, and Melitz (2006)1 to induce markup equalization across states and over

time and balance the benefit from variety with the profit incentives for entry. Finally, in order to

ensure optimality of the steady-state with zero inflation when we log-linearize around such a steady-

state in the translog case, we only need to impose a subsidy in steady state. We impose an entry

subsidy/tax that, as show in Bilbiie, Ghironi, and Melitz (2006), is equivalent to doubling the entry

cost in the steady state of the translog model, i.e., entrants need to pay 2fE,t rather than fE,t.

None of the steady state ratios (and hence none of the log-linearized equations) is modified by this,

since the entry cost is irrelevant for all of them.

1Bilbiie, F. O., F. Ghironi, and M. J. Melitz (2006): “Monopoly Power and Endogenous Variety in Dynamic
Stochastic General Equilibrium: Distortions and Remedies,” manuscript, University of Oxford, Boston College, and
Princeton University.
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C The Log-Linear Model

Table C.1 Log-Linear, Benchmark Model, Summary

Pricing ρt = μt + wt − Zt
Markup πt = β (1− δ)Etπt+1 − θ−1

κ μt

Variety effect ρt =
1

θ−1Nt

Profits dt = YC,t −Nt + (θ − 1)μt
Free entry vt = fE,t + wt − Zt
Number of firms Nt+1 = (1− δ)Nt + δNE,t

Intratemporal optimality Lt = ϕ (wt − Ct)

Euler equation (shares) EtCt+1 = Ct +
1−δ
1+rEtvt+1 − vt +

r+δ
1+rEtdt+1

Euler equation (bonds) EtCt+1 = Ct + it − EtπCt+1
Output of consumption sector YC,t = Ct

Aggregate accounting YC,t +
vNE
YC
vt +

vNE
YC
NE,t =

wL
YC
wt +

wL
YC
Lt +

dN
YC
dt +

dN
YC
Nt

CPI inflation πt − πCt = ρt − ρt−1

Nominal interest rate it = interest rate rule from main text
Since we log-linearize around a steady state with zero inflation, the steady-state ratios needed

above are as in BGM:

vNE

YC
=

δ

r + δ

1

θ
,

dN

YC
=
1

θ
,

wL

YC
=

θ − 1
θ

+
δ

r + δ

1

θ
.

For the case of translog preferences, the only equations that change in the Table above are the

second and third. The markup equation is replaced by (17) in the main text, and the variety effect

is ρt = [2 (θ − 1)]−1Nt.

D Proof of Proposition 2

Focus on the rule it = τEtπt+1 in the inelastic labor case. The proof of determinacy is similar to

that in Carlstrom, Fuerst, and Ghironi (2006).2

Recall that the steady state of the model is such that 1+ d/v = (1+ r)/(1− δ) = 1/ [β (1− δ)].

Define γ ≡ d/v. Note that, for plausible parameter values (β close to 1, δ small), γ is very small

2Carlstrom, C. T., T. S. Fuerst, and F. Ghironi (2006): “Does It Matter (for Equilibrium Determinacy) What
Price Index the Central Bank Targets?” Journal of Economic Theory 128: 214-231.

A-5



(0.036001 when β = 0.99 and δ = 0.025). In particular, assume that β, δ, and θ are such that

1− γ (θ − 1) > 0. This condition is satisfied by all plausible values of β, δ, and θ.

Omitting shocks and focusing on perfect foresight for the purposes of analyzing determinacy,

we can rewrite the system as

A1

⎡⎢⎢⎢⎢⎢⎢⎣
πt+1

Ct+1

μt+1

Nt+1

⎤⎥⎥⎥⎥⎥⎥⎦ = A0

⎡⎢⎢⎢⎢⎢⎢⎣
πt

Ct

μt

Nt

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where:

A1 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 0 0 1

− (τ − 1) 1 0 − 1
θ−1

0 1 1− γ (θ − 1) −1−γ(θ−1)θ−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

A0 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
1 + γ 0 (θ−1)(1+γ)

κ 0

0 − γ(θ−1)
β(1+γ) 0 1

β

0 1 0 − 1
θ−1

0 1 + γ 1 + γ −1+γθ−1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Our interest is in the eigenvalues of the matrix A ≡ A−11 A0.

The characteristic equation has the form:

J (e) = J4e
4 + J3e

3 + J2e
2 + J1e+ J0 = 0,

where:

J4 ≡ −βκ (1 + γ) [1− γ (θ − 1)] ,

J3 ≡ β (1 + γ)2 [κ− (θ − 1) (τ − 1)] + κ [1− γ (θ − 1)] [1 + β (1 + γ) (2 + γ)] ,

J2 ≡ (θ − 1) (τ − 1)
£
γ2 (1 + γ) (θ − 1) + (1 + γ) (1 + 3βγ) + β

¡
1 + γ3

¢¤
− κ

©
3 (1 + β)− βγ3 (θ − 2)− γ2 [(θ − 1) (1 + 2β)− 5β]− γ [2 (θ − 2) (1 + β)− β (θ + 4)]

ª
J1 ≡ (1 + γ) {(1 + γ) [κ− (θ − 1) (τ − 1)] + κ [2 + β (1 + γ (2 + γ))− γ (θ − 1)]}

J0 ≡ −κ (1 + γ)2 .
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For determinacy (and stability), three roots of J must be outside the unit circle and one root

must be within the unit circle. The condition 1 − γ (θ − 1) > 0 ensures J4 < 0. Plausible values

of the price stickiness coefficient κ, the policy parameter τ , and substitutability θ also imply κ >

(θ − 1) (τ − 1), hence J3 > 0.3 The same plausible parameter values (and small γ) imply J2 < 0

and J1 > 0. Finally, J0 < 0. Since J(0) < 0, J 0(0) > 0, J 00(0) < 0, and J 000(0) > 0, all the roots of

J have positive real parts. The product of the four roots is equal to J0/J4 > 1. Furthermore,

J(1) = γ (1 + γ) (θ − 1) (τ − 1) [β (1 + γ) + γ (θ − 1)− 1] .

Since it is always θ > (1 + γ) (1− β) /γ, J(1) has the sign of τ − 1. Therefore, if τ < 1, there are

either 0 or 2 roots in (0, 1), so that we can never have determinacy. Hence, τ > 1 is necessary for

determinacy.

We now turn to sufficiency.

Since J(0) < 0 and J(1) > 0 for τ > 1, we know that J has (at least) two real roots, one in

the unit circle and one outside. Let us refer to these two real roots as e1 < 1 and e2 > 1. Our

task is to examine the remaining two roots of J and demonstrate that they are outside the unit

circle if τ > 1. The strategy is to examine these two roots in the neighborhood of τ = 1 defined

by τ = 1 + ε, with ε > 0 and arbitrarily small. We can show that we have determinacy in this

neighborhood whether the remaining roots are real or complex. In addition, we will show that as

τ increases, these roots cannot pass back into the unit circle.

Focus on the case in which the two remaining roots are real

We first demonstrate that, in this case, J must have three roots outside the unit circle.

Define the function h(x) ≡ J (e) where x ≡ e − 1. The function h is also a quartic with

coefficients h0, h1, h2, h3, and h4. Note that h0 = J(1), h1 = J 0(1), h2 = J 00(1)/2, h3 = J 000(1)/3!,

etc. Inspection of the J function implies that h0 > 0 and h4 < 0. Also,

h3 ≡ 6

⎧⎨⎩ κ
h
β (1 + γ)2 + (1 + βγ (1 + γ)) (1− γ (θ − 1))

i
−β (1 + γ) [(1 + γ) (θ − 1) (τ − 1) + 2κ (1− γ (θ − 1))]

⎫⎬⎭ .

If τ → 1 and β → 1, h3 > 0. The same holds for any plausible value of τ and β. Hence,

Descartes’ Rule of Signs implies that there is indeterminacy if and only if h1 > 0 and h2 > 0. In

the neighborhood of τ = 1, both J 0(1) and J 00(1), however, cannot be greater than or equal to zero

3For all plausible estimates, κ is much larger than θ and τ .
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since

(1− γ)J 0(1|τ = 1)+γJ 00(1|τ = 1) = −κγ2
£
βγ2 (3θ − 2) + γ (2β − 1) (θ − 2) + (1− β) (θ + 2)

¤
< 0,

under the weak, sufficient conditions β > 1/2 and θ > 2. This then implies that h(x) (J (e)) has

three roots greater than zero (unity). Hence, we have determinacy (and stability) for τ just slightly

greater than unity for any plausible parametrization.

As long as these two roots remain real, they must remain outside the unit circle for larger values

of τ . This is true because J(0) < 0 and J(1) > 0 for all τ > 1, so that the only way for there to be

indeterminacy is to have three roots within the unit circle. This can never be the case without the

roots first becoming complex. Therefore, as we increase τ out of the neighborhood 1 + ε, we must

continue to have exactly one root in the unit circle.

The proof for the case of complex roots is similar to that in Carlstrom, Fuerst, and Ghironi

(2006). We omit it to save space, but it is available on request.

E Endogenous Aggregate Stickiness and Producer Entry: The Model

This appendix develops the model in which new entrants do not pay a cost of price adjustment

relative to a previous period’s price.

The Price Index

Recall that a new entrant in period t starts producing (and setting prices) in period t+1. We can

write the price index at time t as:

Pt =
n
[Nt − (1− δ)NE,t−1] (p̃t)

1−θ + (1− δ)NE,t−1
¡
pt−1t

¢1−θo 1
1−θ

, (8)

where pt−1t is the price chosen for period t by firms that entered in period t−1 and p̃t is an average

price for firms that entered in periods t− 2, t− 3, and beyond, defined by:

p̃t ≡
"
1

Nt−1

∞X
s=2

(1− δ)s−1NE,t−s
¡
pt−st

¢1−θ# 1
1−θ

.

Assume limT→∞ (1− δ)T−1Nt−T = 0. Then, using the law of motionNt = (1− δ) (Nt−1 +NE,t−1),

A-8



it is possible to rewrite the price index as:

Pt =

" ∞X
s=1

(1− δ)sNE,t−s
¡
pt−st

¢1−θ# 1
1−θ

. (9)

This is a compact expression for Pt as weighted average of the prices chosen for that period by firms

that entered in all past periods, weighted by their probability of survival. Equation (9) involves an

infinite number of state variables (all the lags of the number of entrants). However, we show below

that it can be reduced to a finite, small number of state variables in log-linear form.

Firms

A firm ω that entered in period υ ≤ t − 1 produces output according to yυ,St (ω) = Ztl
υ
t (ω) and

faces demand

yυ,Dt (ω) =

µ
pυt (ω)

Pt

¶−θ
(Ct + PACt) ,

where:

PACt ≡
∞X
s=2

(1− δ)sNE,t−spac
t−s
t (ω) .

Note that the aggregate cost of price adjustment at time t aggregates only the costs of price

adjustment borne by firms that entered in periods t−2, t−3, and beyond, since firms that entered

in period t− 1 pay no cost of price adjustment in period t. The firm-level cost of price adjustment

takes the same form as in the benchmark model:

pacυt (ω) ≡
κ

2

µ
pυt (ω)

pυt−1(ω)
− 1
¶2

ρυt (ω) y
υ,D
t (ω) , υ ≤ t− 2,

where ρυt (ω) ≡ pυt (ω)/Pt.

The value of a firm that entered in any period υ ≤ t is given by the expected present discounted

value of the stream of profits it will generate from period t+ 1 on:

vυt (ω) = Et

∞X
s=t+1

Λt,sd
υ
s (ω), υ ≤ t.

In particular, the value of a new entrant is:

vtt(ω) = Et

∞X
s=t+1

Λt,sd
t
s(ω),
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and the free entry condition will now require equalization of this value to the sunk entry cost:

vtt(ω) = wtfE,t/Zt = vtt (identity of marginal cost across firms ensures symmetry of the equilibrium

within cohorts of firms).

A new price setter in period t now maximizes

dt−1t (ω) +Et

∞X
s=t+1

Λt,sd
t−1
s (ω) ,

where

dt−1t (ω) = ρt−1t (ω) yt−1,Dt (ω)− wtl
t−1
t (ω) ,

dt−1s (ω) = ρt−1s (ω) yt−1,Ds (ω)− wsl
t−1
s (ω)− κ

2

Ã
pt−1s (ω)

pt−1s−1(ω)
− 1
!2

ρt−1s (ω) yt−1,Ds (ω) , s ≥ t+ 1.

The initial price setting decision yields:

pt−1t (ω) = μt−1t (ω)Pt
wt

Zt
, (10)

with

μt−1t (ω) =
θ

(θ − 1)− κEt

h
Λt,t+1

Nt
Nt+1

Y C
t+1

Y C
t

¡
1 + πt−1t+1 (ω)

¢
πt−1t+1 (ω)

i . (11)

Because the firm knows that it will face a cost of price adjustment in the future, its first price setting

decision is not just the flexible-price markup θ/ (θ − 1) over marginal cost, but it incorporates the

incentive to smooth price changes between the initial choice and the following one.4

Price setting decisions in the following periods — and the implied markup equation — and price

setting decisions by firms that entered prior to t−1 take the same form as in the benchmark model.

The Household’s Budget Constraint and Portfolio Decision

We assume that the household now decides at time t how many shares to hold in each cohort of

firms that entered the economy up to and including period t. In real terms, exploit symmetry

4The version of the model in which new entrants charge a constant markup over marginal cost is obtained by
setting the scaling parameter for the cost of price adjustment (κ) to zero in the markup equation (11) for new price
setters.
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within cohorts, the budget constraint is now:

Bt+1 +
∞X
s=0

(1− δ)s vt−st NE,t−sx
t−s
t+1 + Ct

= (1 + rt)Bt +
∞X
s=0

(1− δ)s+1
¡
dt−s−1t + vt−s−1t

¢
NE,t−s−1x

t−s−1
t +

¡
1 + τLt

¢
wtLt + tLt .

In period t, the household receives dividends from its holdings of shares in firms that entered in

periods t− 1, t− 2, and beyond, and the value of selling its share holdings. It then buys holdings

of shares to be carried into t+ 1 in all producing firms at time t plus the new entrants in period t

(as in the benchmark model). The Euler equation for share holdings is:

vt−st = β (1− δ)Et

∙
Ct

Ct+1

¡
dt−st+1 + vt−st+1

¢¸
, s ≥ 0.

As in the benchmark model, iteration of this equation yields the value of the firm. In particular,

the Euler equation for investment in new firms is:

vtt = β (1− δ)Et

∙
Ct

Ct+1

¡
dtt+1 + vtt+1

¢¸
. (12)

Aggregate Accounting

Imposing the equilibrium conditions Bt+1 = Bt = 0 and xt−st+1 = xt−s−1t = 1, and the government

budget constraint tLt = −τLt wtLt, we have the aggregate accounting relation:

vttNE,t + Ct = wtLt +
∞X
s=0

(1− δ)s+1 dt−s−1t NE,t−s−1. (13)

The sum of investment in new firms and consumption must be equal to total income (labor income

and dividend income paid by all cohorts of firms that produce in period t). As for the price index

equation, the aggregate accounting equation (13) involves an infinite number of state variables,

but it can be reduced to a small number of states in log-linear form. Note that the value of

new entrants, determined by the Euler equation (12), is now the asset price that determines the

allocation of resources to consumption or investment in new firms, obeying the free-entry condition

vtt = wtfE,t/Zt.
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Some Log-Linear Relations

We log-linearize the model around the same steady state with zero inflation in all nominal prices as

the benchmark model to facilitate comparison of the two setups in terms of their implications for

the propagation of shocks. This sub-section shows how log-linearization makes it possible to reduce

the number of state variables in solving the model and reports the log-linear versions of equations

that feature an infinite number of state variables in level form.

Pricing and Price Index Dynamics

In log-linear terms , the price and markup equations (10) and (11) yield:

pt−1t = μt−1t + Pt + wt − Zt, (14)

μt−1t =
κβ (1− δ)

θ − 1 Etπ
t−1
t+1, (15)

where we used symmetry of the equilibrium across firms in the same cohort, and μt−1t and πt−1t+1

now denote percent deviations from steady state (of gross inflation in the case of πt−1t+1).

Observe that price setting for any firm after its first price setting choice is such that:

pυt = μυt + Pt + wt − Zt, (16)

μυt = −
κ

θ − 1
£
πυt − β (1− δ)Etπ

υ
t+1

¤
, υ < t− 1 (17)

where υ is the date of entry. Therefore, considering any two cohorts υ and υ − 1,

pυt − pυ−1t = μυt − μυ−1t .

Combining this with the Phillips curves for the two cohorts and using the definitions of cohort-

specific inflation rates implies that the price differential between cohorts obeys the difference equa-

tion:

κβ (1− δ)Et

¡
pυt+1 − pυ−1t+1

¢
− {θ − 1 + κ [1 + β (1− δ)]}

¡
pυt − pυ−1t

¢
+ κ

¡
pυt−1 − pυ−1t−1

¢
= 0.

The characteristic polynomial for this equation is a convex parabola with one root inside the unit

circle and one outside. Therefore, the equation has unique solution pυt − pυ−1t = 0, or pυt = p
υ−1
t .

To a first-order approximation, firms that are in their second (or higher) period of price setting
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choose the same price, and thus the same producer price inflation rate: Given the initial condition

pυ−1 = p
υ−1
−1 if a shock happens at time 0, this implies πυt = πυ−1t and, in turn, μυt = μυ−1t for any

cohorts υ and υ − 1 that are not in the first period of price setting.

By exploiting this property of log-linearized price setting, it is possible to verify that log-

linearized, welfare-consistent consumer price inflation depends negatively on variety growth and

positively on a weighted average of inflation in the first pricing of new entrants at t− 1 relative to

new entrants at t− 2 and inflation in the pricing of the “representative” cohort υ that entered in

period t− 3 or further in the past:

πCt = −
1

θ − 1 (Nt − Nt−1) + δ
¡
pt−1t − pt−2t−1

¢
+ (1− δ)πυt . (18)

The equations above make it possible to fully determine the dynamics of all prices and price

indexes of interest. The inflation rate πυt is determined by the generic cohort υ’s pricing and

Phillip’s curve. The time t price chosen by firms that entered at t − 1 is determined by the price

and markup equations (14) and (15). Note that these two equations together imply:

pt−1t =
κβ (1− δ)

θ − 1 + κβ (1− δ)
Etp

t−1
t+1 +

θ − 1
θ − 1 + κβ (1− δ)

(Pt + wt − Zt) . (19)

From the perspective of period t, a firm that entered at t − 1 and is setting the price for t + 1 is

no longer in its first period of price setting. Hence, the result obtained above applies and we may

rewrite (19) as:

pt−1t =
κβ (1− δ)

θ − 1 + κβ (1− δ)
Etp

υ
t+1 +

θ − 1
θ − 1 + κβ (1− δ)

(Pt + wt − Zt) , υ ≤ t− 1. (20)

Finally, the time t− 1 price chosen by entrants at t− 2 is a state variable. At the time of a shock

(t = 0), pt−2t−1 is zero, and consumer price inflation is simply:

πC0 = P0 = δp−10 + (1− δ) pυ0 ,

where

p−10 =
κβ (1− δ)

θ − 1 + κβ (1− δ)
Etp

υ
1 +

θ − 1
θ − 1 + κβ (1− δ)

(P0 + w0 − Z0) ,
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and υ is the representative cohort that entered prior to period 0. In period 1,

πC1 = −
1

θ − 1N1 + δ
¡
p01 − p−10

¢
+ (1− δ)πυ1 ,

where p−10 was determined above and p01 is determined by (20). And so on.

Aggregate Accounting, GDP, and the Labor Market

Exploiting symmetry of (log-linearized) behavior across cohorts of firms that are not in their first

period of price setting, the log-linear version of the aggregate accounting identity (13) is:

vNE

C

¡
vtt + NE,t

¢
+ Ct =

wL

C
(wt + Lt) +

1

θ

£
Nt + δdt−1t + (1− δ) dυt

¤
,

with

dt−1t = yt−1t + θμt−1t + wt − Zt, yt−1t = −θρt−1t + Ct,

dυt = y
υ
t + θμυt + wt − Zt, yυt = −θρυt + Ct.

GDP is:

Yt =
wL

Y
(wt + Lt) +

1

θ

C

Y

£
Nt + δdt−1t + (1− δ) dυt

¤
,

Finally, labor market equilibrium requires:

Lt = NE (NE,t + fE,t) + (1−NE)
£
Nt + δyt−1t + (1− δ) yυt

¤
− Zt,

with sectoral labor allocation:

LEt = NE,t + fE,t − Zt,

LCt = Nt + δyt−1t + (1− δ) yυt − Zt.

Analytical Details

Derivation of Equation (9)

Observe that

Nt − (1− δ)NE,t−1 = (1− δ)Nt−1,
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so that

Pt = (1− δ)
1

1−θ
h
Nt−1 (p̃t)

1−θ +NE,t−1
¡
pt−1t

¢1−θi 1
1−θ

. (21)

Using the law of motion for Nt and the assumption limT→∞ (1− δ)T−1Nt−T = 0,

Nt−1 =
∞X
s=2

(1− δ)s−1NE,t−s. (22)

From the definition of p̃t, we have:

p̃t ≡
"
(1− δ)NE,t−2

Nt−1

¡
pt−2t

¢1−θ
+
(1− δ)2NE,t−3

Nt−1

¡
pt−3t

¢1−θ
+
(1− δ)3NE,t−4

Nt−1

¡
pt−4t

¢1−θ
+ ...

# 1
1−θ

= (Nt−1)
− 1
1−θ

" ∞X
s=2

(1− δ)s−1NE,t−s
¡
pt−st

¢1−θ# 1
1−θ

= (1− δ)−
1

1−θ (Nt−1)
− 1
1−θ

" ∞X
s=2

(1− δ)sNE,t−s
¡
pt−st

¢1−θ# 1
1−θ

.

Finally, substituting into (21) yields (9):

Pt = (1− δ)
1

1−θ

" ∞X
s=2

(1− δ)s−1NE,t−s
¡
pt−st

¢1−θ
+NE,t−1

¡
pt−1t

¢1−θ# 1
1−θ

= (1− δ)
1

1−θ

" ∞X
s=1

(1− δ)s−1NE,t−s
¡
pt−st

¢1−θ# 1
1−θ

=

" ∞X
s=1

(1− δ)sNE,t−s
¡
pt−st

¢1−θ# 1
1−θ

.

Derivation of Equation (18)

First, observe that log-linearizing (22) yields:

Nt−1 =
δ

1− δ

∞X
s=2

(1− δ)s−1NE,t−s. (23)
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Log-linearizing (9) yields:

Pt =
δ

1− θ

" ∞X
s=1

(1− δ)s−1NE,t−s + (1− θ)
∞X
s=1

(1− δ)s−1 pt−st

#

=
δ

1− θ

"
NE,t−1 +

∞X
s=2

(1− δ)s−1NE,t−s + (1− θ)
∞X
s=1

(1− δ)s−1 pt−st

#

=
δ

1− θ

"
NE,t−1 +

1− δ

δ
Nt−1 + (1− θ)

∞X
s=1

(1− δ)s−1 pt−st

#

=
1

1− θ
Nt + δ

"
pt−1t +

∞X
s=2

(1− δ)s−1 pt−st

#
, (24)

where the third line used (23) and the fourth line used Nt = (1− δ)Nt−1 + δNE,t−1 (the log-linear

law of motion for Nt). Importantly, (24) features only one state variable (Nt), by exploiting the

log-linear solution of the law of motion for the number of firms (23).

Consider now the first difference of (24):

πCt ≡ Pt − Pt−1

=
1

1− θ
(Nt − Nt−1) + δ

"
pt−1t − pt−2t−1 +

∞X
s=2

(1− δ)s−1
¡
pt−st − pt−s−1t−1

¢#
. (25)

From the result we obtained above that pυt − pυ−1t = 0 for all firms that entered prior to period

t− 1, it follows that pt−st − pt−s−1t−1 in (25) can be written independently of s as pυt − pυt−1, where υ

now simply denotes a representative cohort of firms that entered before t− 2. Hence,

πCt = −
1

θ − 1 (Nt − Nt−1) + δ

"
pt−1t − pt−2t−1 +

¡
pυt − pυt−1

¢ ∞X
s=2

(1− δ)s−1
#

= − 1

θ − 1 (Nt − Nt−1) + δ

µ
pt−1t − pt−2t−1 +

1− δ

δ
πυt

¶
= − 1

θ − 1 (Nt − Nt−1) + δ
¡
pt−1t − pt−2t−1

¢
+ (1− δ)πυt .

F The New Keynesian Phillips Curve with Non-C.E.S. Preferences

Log-linearizing the markup equation around a zero-inflation steady state under the usual assump-

tions of lognormality and homoskedasticity yields:

πt = β (1− δ)Etπt+1 −
θ (N)− 1

κ
μt −

θ0 (N)N

θ (N)κ
Nt. (26)
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For the special case of translog preferences with θ (N) = 1 + σN, σ > 0, we obtain:

πt = β (1− δ)Etπt+1 −
σN

κ
μt −

σN

1 + σN

1

κ
Nt.

Finally, we impose the calibration scheme θ (N) = 1 + σN = θ, where the latter is the elasticity of

substitution in the C.E.S. case.5 Then, the Phillips curve becomes:

πt = β (1− δ)Etπt+1 −
θ − 1
κ

μt −
θ − 1
θκ

Nt. (27)

Regarded as a markup equation, (27) implies that markup variation comes from two sources:

changes in the inflation rate and product variety. Regarded as an equation for inflation dynamics,

(27) implies an extra degree of persistence compared to the C.E.S. case, coming from the presence

of the state variable Nt via its impact on the elasticity of substitution across products. Since

the benefit of product variety in log-linear terms is now ρt = (N)Nt, the markup is related to

marginal cost by μt = (N)Nt − (wt − Zt) , which for translog preferences (under the calibration

scheme above) yields:

μt =
1

2 (θ − 1)Nt − (wt − Zt) .

Substituting this into (27) yields:

πt = β (1− δ)Etπt+1 +
θ − 1
κ

(wt − Zt)−
µ
1

2κ
+

θ − 1
θκ

¶
Nt.

5This is achieved, in the translog case, by finding the implicit unique value σ∗ = (θ − 1) /NCES , where NCES is
the steady-state value of N under C.E.S. preferences.
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