Localization and function of cytosolic phospholipase A2α at the Golgi

Christina C. Lesliea,⁎, Todd A. Gangelhoffa, Michael H. Gelbb,c

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
Department of Chemistry, University of Washington, Seattle, WA 98195, USA

Mini-review

1. Introduction

Since the discovery of a high molecular weight, arachidonic acid preferring cytosolic phospholipase A2 (cPLA2), now classified as Group IVA cPLA2 (cPLA2α), there has been a great deal of progress in elucidating its biochemical properties, regulation and function [1–8]. The interest in cPLA2α stems from its role as the first regulatory enzyme in the pathway for the production of oxygenated metabolites of arachidonic acid [9].

Among the 20 enzymes classified as PLA2 in mammals, cPLA2α is the only member that exhibits preference for the sn-2 arachidonyl group [6,10–13]. cPLA2α is expressed in many cell types and is highly regulated in order to control the cellular levels of free arachidonic acid. The function of cPLA2α in mediating the regulated release of arachidonic acid for the production of eicosanoids is well established [14–18]. These potent lipid mediators have diverse functions in regulating normal processes and contributing to disease pathogenesis [9]. In cells involved in promoting acute inflammation in response to tissue injury such as neutrophils, macrophages and mast cells, cPLA2α activation results in the production of numerous lipid mediators including leukotrienes, prostanoids and platelet-activating factor [14–18]. These mediators have diverse functions in promoting inflammation and contributing to its resolution. The coordinated action of secreted lipid mediators is regulated in a cell type specific manner by the differential expression of specific G-protein coupled receptors that initiate diverse signal transduction pathways and biological responses [19–21].

In addition to its role in initiating eicosanoid production, there is data indicating that cPLA2α plays a role in regulating the structure and trafficking through the Golgi apparatus. Evidence is emerging that phospholipases and acyltransferases regulate trafficking and membrane tubulation by modification of the local lipid composition that affects membrane curvature [22–27]. This review will highlight new information about the localization and functional role of cPLA2α at the Golgi.

2. Calcium-dependent translocation of cPLA2α to the Golgi

cPLA2α is regulated by post-translational mechanisms such as increases in levels of intracellular calcium [Ca2+]i, phosphorylation...
and interaction of basic residues with anionic membrane components (Fig. 1) [4,5]. Agonists that increase \([Ca^{2+}]_i\) stimulate cPLA2\(z\)-dependent release of arachidonic acid by promoting translocation of cPLA2\(z\) from the cytosol to membrane [28–32]. This is a critical regulatory step necessary for cPLA2\(z\) to access phospholipid substrate. The cPLA2\(z\) C2 domain has a high affinity for calcium, which binds to anionic residues in the calcium binding loops (CBLs) [33–36]. Calcium binding reduces the negative electrostatic potential of the surface exposed CBLs allowing the surrounding hydrophobic residues in CBL1 and CBL3 to penetrate membrane (Fig. 1) [37–40]. In contrast, calcium binding to other C2 domains, such as the protein kinase C alpha (PKC\(\alpha\)) C2 domain, induces an “electrostatic switch” from electronegative to electropositive promoting the interaction of basic residues with anionic phospholipids [41–45]. Differences in the properties of C2 domains determines the lipid binding specificity in vitro and the membrane targeting specificity in cells [46–50]. The cPLA2\(z\) C2 domain preferentially binds to phosphatidylcholine (PC) and mediates the calcium-dependent translocation of cPLA2\(z\) to the Golgi, endoplasmic reticulum and nuclear envelope (Fig. 1) [31,34,38,51,52]. The PKC\(\alpha\) C2 domain exhibits calcium-dependent binding to anionic phospholipids and translocates to the inner leaflet of the plasma membrane, which is enriched in the negatively charged phospholipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate (P\(4,5\)P\(_2\)) [44,46–50].

In early studies it was observed that cPLA2\(z\) translocates to the perinuclear region including the nuclear envelope in a variety of cells in response to increases in \([Ca^{2+}]_i\) [29,30,53]. This was particularly interesting in light of work showing localization of 5-lipoxygenase, 5-lipoxygenase activating protein and leukotriene C\(_4\) synthase to the nuclear envelope suggesting that this may be a site for production of leukotrienes [54–56]. Subsequent work using organelle markers and Golgi disrupting agents clearly demonstrated that cPLA2\(z\) also translocates to the Golgi apparatus, which in most cells is located adjacent to the nucleus [31]. Translocation of cPLA2\(z\) is regulated by both the amplitude and duration of \([Ca^{2+}]_i\). The concentration of calcium required for binding to

![Diagram](Image)

Fig. 1. Proposed mechanism of cPLA2\(z\) localization and function on the Golgi. The N-terminal C2 domain of cPLA2\(z\) is attached to a large catalytic domain that contains the catalytic site Ser/Asp dyad, and the sites phosphorylated by MAPks (Ser505) and MAPK-interacting kinases (Ser727). The hydroxyl group of Ser727 interacts with p11/Annexin A2 complexes maintaining cPLA2\(z\) in an inactive state. Phosphorylation of Ser727 (Annexin A2 complex allowing the calcium-dependent interaction of cPLA2\(z\) with the Golgi membrane. Calcium binding to the cPLA2\(z\) C2 domain reduces the negative electrostatic potential of the surface exposed CBLs allowing the surrounding hydrophobic residues (green) in CBL1 and CBL3 to penetrate the membrane. The basic residues (R57/K58/R59) (yellow) in the C2 domain of cPLA2\(z\) form the proposed site for interaction with C-1-P. Calcium–dependent binding of cPLA2\(z\) to the Golgi positions the catalytic domain on the membrane, which is stabilized by interaction of Trp464 (red) in the catalytic domain with the membrane. There is evidence that association of cPLA2\(z\) with the Golgi is influenced by changes in cholesterol content. Phosphorylation at Ser505 increases the hydrolytic activity of cPLA2\(z\) on the membrane perhaps by promoting a conformational change due to its proximity to the flexible linker that connects the catalytic and C2 domains. A patch of basic residues (K488/K541/K543/K544) (teal) in the catalytic domain also regulates the ability of cPLA2\(z\) to release arachidonic acid from the Golgi. These residues are necessary for activation of cPLA2\(z\) in vitro by polyphosphoinositides, however, the endogenous anionic components in the Golgi that interact with this basic site have not been identified. Therefore the ability of cPLA2\(z\) to release arachidonic acid (AA) and form lysophospholipids in the Golgi involves increases in calcium, phosphorylation and interaction of basic residues with anionic components in the membrane. Lysophospholipids generated at the rims of the Golgi cisternae by cPLA2\(z\) are thought to induce positive membrane curvature for formation of tubules that connect the Golgi stacks and promote intra-Golgi transport. Surface representation of the x-ray crystal structure of cPLA2\(z\) (PDB: 1CJY) was made using PYMOL.
Golgi is lower than for association with the endoplasmic reticulum (ER)/nuclear envelope [31,32]. This is consistent with data showing that cPLA₂ preferentially translocates to the Golgi in response to physiological increases in [Ca²⁺], that occurs with agonists such as ATP and serum, and to Golgi and the ER/nuclear envelope in response to calcium ionophores, which cause a supra-physiological rise in [Ca²⁺]; [31]. Serum induces a typical capacitative increase in [Ca²⁺] and potently stimulates arachidonic acid release. The initial transient increase in calcium from intracellular stores promotes the rapid translocation of cPLA₂ to Golgi [57]. However the subsequent influx of extracellular calcium due to store depletion is essential for stable binding of cPLA₂ to Golgi and for arachidonic acid release [57]. This is evident from results showing that chelating extracellular calcium, which blocks calcium influx but not the initial calcium transient from intracellular stores, prevents serum-stimulated arachidonic acid release. Therefore a rapid transient increase from intracellular stores in this model in itself is insufficient for cPLA₂ to release arachidonic acid [57]. However a low amplitude sustained calcium increase due to influx of extracellular calcium that occurs in the absence of a rapid calcium transient from intracellular stores, results in a slow rate of cPLA₂ translocation to Golgi and low level arachidonic acid release [57]. Collectively these studies have established the importance of extracellular calcium influx and the duration of calcium elevation for stable binding of cPLA₂ to Golgi and arachidonic acid release [32,57–59].

3. Role of the phospholipid-binding specificity in targeting cPLA₂ to Golgi

Most C2 domains are calcium-dependent phospholipid-binding domains that function to promote interaction of proteins to membrane. In several cell models, cPLA₂ C2 domain has been shown to localize to the same intracellular membranes as full-length cPLA₂ in response to calcium increases indicating that it is responsible for the membrane targeting specificity [22,31,48]. Hydrophobic residues in the CBLs in the cPLA₂ C2 domain are required for calcium-dependent binding to PC rich vesicles in vitro and localization to intracellular membranes in cells (Fig. 1) [38,39,51,60,61]. The sites of cPLA₂ localization, Golgi, ER and nuclear envelope, are the sites for synthesis of PC [62,63]. It has been suggested that a high local concentration of PC on internal membranes functions to lower the [Ca²⁺]i necessary for cPLA₂ C2 domain to bind to these membrane [47,48].

The enrichment of PC in intracellular membranes may be sufficient to provide the targeting specificity of cPLA₂ to internal membranes. However, the role for an additional lipid or protein in regulating cPLA₂ targeting to internal membranes cannot be ruled out. There are studies suggesting that ceramide-1-phosphate (C-1-P), produced from ceramide kinase (CERK), is an endogenous regulator of cPLA₂ that acts by enhancing calcium-dependent membrane binding and activity [64–66]. In vitro studies demonstrated that C-1-P acts through the cPLA₂ C2 domain to increase the calcium-dependent binding of cPLA₂ to PC-containing mixed micelles and acts as an allosteric activator by decreasing the dissociation constant [67]. C-1-P is a much better activator of cPLA₂ in vitro when a mixed micelle assay consisting of PC in Triton X-100 detergent micelles is used versus PC liposomes. For example the presence of 5 mol% C-1-P in Triton X-100/PC mixed micelles leads to a ~15-fold activation of cPLA₂ [67], whereas with PC liposomes the activation is ~2-fold (M. Gelb and C. Leslie, unpublished) [65]. This is reminiscent of the activation reported by Pi(4,5)P₂, where the activation is much more pronounced with mixed micelles than with liposomes [57,68]. This tends to suggest that when the PC is at low surface packing density (mixed micelles), cPLA₂ is more dependent on anionic lipid additives for binding to membranes and activation. This creates controversy for the role of these anionic lipids in regulating the action of cPLA₂ in cells. Although a PC liposome is only a model of a cell membrane, it is arguably a better model than a PC-detergent mixed particle containing mostly Triton X-100.

The interaction of cPLA₂ with C-1-P in vitro is mediated in part by basic residues (R57/K58/R59) in the C2 domain, and mutations in these residues impair agonist-induced translocation of cPLA₂ (Fig. 1) [69,70]. The major route of C-1-P production is the phosphorylation of ceramide by CERK. Knockdown of CERK by siRNA results in a partial reduction in C-1-P levels and reduces agonist-induced arachidonic acid release and translocation of cPLA₂ in A549 cells [64,66]. Collectively these studies have led to the hypothesis that C-1-P produced from CERK is a proximal activator of cPLA₂, necessary for its C2 domain-dependent membrane binding and ability to release arachidonic acid. This is an attractive hypothesis since CERK localizes to the Golgi for production of C-1-P [66,71]. However, results of recent studies do not corroborate these conclusions. Generation of CERK⁻/⁻ mice confirmed that CERK plays a major role in production of N-palmitoyl-C-1-P in mast cells, macrophages and cerebellum although in some cells (neutrophils) CERK is not the major pathway for C-1-P production [70,72]. However, cPLA₂-dependent release of arachidonic acid and eicosanoid production is identical in wild type and CERK⁻/⁻ macrophages and kidney fibroblasts despite a greater reduction in C-1-P compared to cells treated with siRNA [70,72]. In addition, no differences are observed in wild type and CERK⁻/⁻ mice in a cPLA₂-dependent model of rheumatoid arthritis [72]. Additional results using a specific CERK inhibitor suggest that the lack of effect on cPLA₂ regulation in CERK⁻/⁻ cells and mice is not due to compensatory mechanisms. The specific CERK inhibitor NVP-231 significantly reduces cellular levels of C-1-P but has no effect on arachidonic acid release or PGE₂ production in several cell types stimulated with a variety of agonists [73]. These results do not support a role for the CERK-dependent production of C-1-P as a generalized mechanism for regulating cPLA₂ and eicosanoid production. The results raise the question of why siRNA knockdown of CERK inhibits arachidonic acid release but this is not observed in CERK⁻/⁻ cells or with a specific CERK inhibitor. It also raises questions about the basis for the translocation defect observed with cPLA₂ mutated at the putative C-1-P binding site in the C2 domain [70]. It is possible that there are other components on the Golgi that bind to this site. Alternatively mutating this site may result in subtle conformational alteration of the CBLs and affect Ca²⁺-dependent translocation in cells. Clearly more studies are required to resolve the discrepancies regarding the role of CERK and C-1-P in regulating cPLA₂.

4. Regulation of cPLA₂ activity at the Golgi

Calcium-dependent translocation of cPLA₂ positions the catalytic domain on the membrane for interaction with phospholipid substrate (Fig. 1). A comparison of the calcium-induced translocation of full-length cPLA₂ and the C2 domain to Golgi revealed that the C2 domain acts as a calcium sensor and translocates in direct proportion to [Ca²⁺]i [74]. Translocation of full-length cPLA₂ is slightly slower but it remains associated with the Golgi in a calcium-independent fashion unlike the C2 domain, which rapidly dissociates as [Ca²⁺]i decreases. There is little experimental data that well defines the basis of catalytic domain binding to the interface of the Golgi membrane in cells. The only clear result is that a tryptophan residue on the membrane-exposed face of the catalytic domain contributes to the prolonged calcium-independent residence of cPLA₂ at the Golgi [74].

Translocation to membrane is necessary but not sufficient for cPLA₂ to release arachidonic acid. The hydrolytic activity of cPLA₂ is independently regulated by phosphorylation and by interaction
of an anionic membrane component with basic residues in the catalytic domain (Fig. 1). Phosphorylation on Ser-505 has been studied most extensively since it is the site for MAPks, a common signaling pathway that regulates the release of arachidonic acid [4,75]. cPLA2_κ that is completely dephosphorylated is active when assayed in vitro and phosphorylation on Ser-505 modestly enhances activity by about 2-fold [57,75–77]. Ser-505 phosphorylation is not sufficient for cPLA2_κ to release arachidonic acid but acts synergistically with increases in calcium [75,78–80]. Phosphorylation of cPLA2 on Ser-505 has been reported to increase the membrane binding affinity at low calcium [81]. However, wild type cPLA2_κ and cPLA2_δ Ser-505A mutant exhibit similar rates of translocation to Golgi in response to physiological agonists, but the mutant releases less arachidonic acid [57,82]. These results suggest that phosphorylation at Ser-505 enhances release of arachidonic acid but not calcium-dependent translocation, which is consistent with in vitro data showing that Ser-505 phosphorylation increases catalytic activity but not calcium-dependent interfacial binding [57].

The phosphorylation sites of cPLA2_κ, Ser-505 and Ser-727, are located in a flexible region that is not near either the membrane binding face or the active site (Fig. 1). This raises questions as to how phosphorylation regulates cPLA2_κ function. It has been suggested that phosphorylation of Ser-505, which is located near the interdomain flexible linker region, may promote optimal orientation of the C2 and catalytic domains for efficient catalysis [83]. Phosphorylation at Ser-505 by MAPks is generally accompanied by phosphorylation at Ser-727, which occurs by kinases downstream of MAPK such as MAPK-interacting kinase [80,84,85]. Ser-727 phosphorylation plays a novel role in regulating the interaction of cPLA2_κ with p11 (S100A10)/annexin A2 complexes [Fig. 1] [86]. This bulky complex binds to the hydroxy group of Ser-727, which maintains cPLA2_κ in an inactive state by interfering with membrane binding in vitro and blocking translocation of cPLA2_κ to perinuclear membranes in cells (Fig. 1) [86–88]. The interaction of p11/annexin A2 complex with cPLA2_κ is prevented by phosphorylation of Ser-727 thus allowing calcium-dependent interaction of cPLA2_κ with membrane and release arachidonic acid [86].

The activity of cPLA2_κ is enhanced by several types of polyphosphoinositides through interaction with a patch of basic residues (K488/K541/K543/K544) in the catalytic domain [68,89–92]. It was shown that PI(4,5)P_2 facilitates binding of cPLA2_κ to PC/Triton X-100 mixed micelles and promotes activation of cPLA2_κ in a calcium-independent manner [68,91]. However, other studies have shown that PI(4,5)P_2 in PC liposomes enhances cPLA2_κ activity in the presence but not in the absence of calcium [57,89]. This is reminiscent of studies with C-1-P described above showing that cPLA2_κ activation by the anionic additive is much more pronounced with mixed micelles versus liposomes. In vitro data showing that PI(4,5)P_2 primarily acts to enhance catalytic activity and not interfacial binding is consistent with cellular data showing that wild type cPLA2_κ and the K488N/K543N/K544N mutant exhibit similar rates of translocation to Golgi in response to serum but the mutant releases less arachidonic acid (Fig. 1) [57]. In addition, it has been shown that translocation of cPLA2_κ to internal membranes induced by loading cells with PI(4,5)P_2 occurs in the presence but not in the absence of intracellular calcium [92]. Although polyphosphoinositides activate cPLA2_κ in vitro and when loaded into cells, further studies are needed to definitively identify the endogenous anionic component on the Golgi that activates cPLA2_κ through the basic residues in the catalytic domain.

5. Function of cPLA2_κ at the Golgi

Several studies have provided evidence that cPLA2_κ regulates the structure and function of the Golgi. The expression of cPLA2_κ in LLC-PK1 kidney epithelial cells, which are deficient in cPLA2_κ, causes disruption of the Golgi cisternae and blocks the constitutive transport of aquaporin-2 to the plasma membrane [93]. The effect on Golgi structure is suggested to be due to the ability of cPLA2_κ to generate free fatty acids and lysophospholipids that modify the properties of the Golgi membrane.

cPLA2_κ also plays a role in regulating the structure and function of the Golgi that occurs by modifying cellular cholesterol content (Fig. 1). Increasing cellular cholesterol induces vesiculation of the Golgi apparatus that occurs by a cPLA2_κ- and dynamin-dependent mechanism [94]. Loading cells with cholesterol induces the translocation of cPLA2_κ to the Golgi and an increase in arachidonic acid release. Vesiculation of the Golgi by cholesterol is blocked by a cPLA2_κ inhibitor suggesting that enzymatic production of free fatty acids and lysophospholipids are involved. Conversely it has been shown that lowering Golgi cholesterol inhibits the association of cPLA2_κ with the Golgi resulting in a decrease in the release of arachidonic acid and accumulation of caveolin-1 in the Golgi [95]. The ability of a cPLA2_κ inhibitor to block transport of caveolin-1 from the Golgi supports a role for cPLA2_κ activity in regulating trafficking. These studies highlight the important role of membrane lipid composition in regulating the association of cPLA2_κ with the Golgi and a role for cPLA2_κ in regulating Golgi structure and transport.

There is considerable evidence that modification of Golgi lipid composition by phospholipases and acyltransferases influences membrane curvature and regulates tubulation and vesicle formation (Fig. 1) [22,23,96,97]. cPLA2_κ has recently been shown to be required for formation of tubules that connect the Golgi stacks and for regulation of intra-Golgi transport [22]. When transport through the Golgi is activated, cPLA2_κ is recruited to the rims of the Golgi cisternae and to rim-associated tubules. Similar translocation to Golgi of the cPLA2_κ C2 domain during transport suggests a role for local calcium increases perhaps from the high intraluminal levels in the Golgi. cPLA2_δ is also associated with the Golgi during steady state trafficking. The function of cPLA2_δ is specific for regulating tubule formation and intra-Golgi trafficking but not formation of Golgi vesicles or other trafficking pathways [22]. cPLA2_τ is proposed to act by generating lysophospholipids at the rims of the Golgi cisternae to promote positive membrane curvature for formation of tubules (Fig. 1).

Several studies have identified a role for cPLA2_κ and its association with Golgi in regulating the function of endothelial cells. Endothelial cells line the luminal surfaces of blood vessels and serve a barrier function due to tight junctions and endothelial adherens [98]. Endothelial cells proliferate during wound healing for formation of new blood vessels and during tumor formation. The proliferation of sub-confluent human umbilical vein endothelial cells, and cell cycle entry, is blocked by the cPLA2_κ inhibitor pyrrolidine-1 and siRNA knockdown of cPLA2_κ [99]. It is known that sub-confluent endothelial cells release greater amounts of arachidonic acid than confluent cells [100]. The decrease in proliferation and arachidonic acid release in confluent endothelial cells correlates with a redistribution of cPLA2_κ from the cytosol and nucleus to the Golgi [99]. Localization to Golgi does not require an increase in [Ca^{2+}]_i and correlates with inhibition of cPLA2_κ due to interaction with annexin A1 [101]. It is suggested that annexin-1 at the Golgi sequesters cPLA2_κ and prevents direct interaction with Golgi membrane and association with substrate.

However, recent findings have demonstrated that localization of cPLA2_κ at the Golgi in confluent endothelial cells plays a functional role in regulating cell—cell junction formation [102]. The translocation of cPLA2_κ to the Golgi correlates with the initial maturation of adherens junctions, and disruption of junctions using a VE-cadherin blocking antibody causes cPLA2_κ to dissociate from the Golgi.
Results suggest that VE-cadherin clustering may provide signals for promoting translocation of cPLA2α to the Golgi. Once on the Golgi, cPLA2α regulates the transport of junction proteins through and/or from the Golgi to cell–cell contacts, which is blocked by siRNA knockdown of cPLA2α. Treating confluent endothelial cell with cPLA2α inhibitors causes accumulation of proteins that form adherens junction (VE-cadherin) and tight junctions (occludin, claudin-5) in the Golgi suggesting that cPLA2α enzymatic activity is required for transport of junction proteins [102]. Therefore although cPLA2α localization to Golgi in confluent endothelial cells may dampen the agonist-induced release of arachidonic acid, cPLA2α maintains a level of activity that is required for regulating Golgi trafficking. The regulation of junction formation in endothelial cells by cPLA2α is not due to the production of prostaglandins [102]. These studies implicate a role for formation of the immediate products of cPLA2α action, free fatty acids and lysophospholipids, or a non-prostanoid lipid mediator, in regulating Golgi function although the actual mechanism remains to be defined.

6. The need for specific PLA2 inhibitors

Studies presented above provide strong evidence that cPLA2α plays a role in regulating fundamental cellular processes such as Golgi trafficking. This raises the question of why the cPLA2α knockout mouse does not exhibit more profound phenotypic alterations. It is certainly possible that there is adaptation in response to the genetic ablation of cPLA2α in mice and compensatory pathways come into play. It is unlikely that cells would rely on a single pathway for regulating important physiological cell functions. This is illustrated in studies that clearly show a role for cPLA2α in regulating tubulation and intra-Golgi transport, yet these compensatory pathways normally in fibroblasts from the cPLA2α knockout mouse [22]. An siRNA screen to determine the role of other PLA2s of the Group IV, VI, VII and VIII families, found that silencing of only the GVI/IIA PLA2 inhibited Golgi transport in cPLA2α-deficient fibroblasts [22]. The cPLA2α knockout mouse has been very useful in elucidating the role of cPLA2α in disease, but compensatory pathways may obscure our understanding of the full functional role of cPLA2α. This argues for the importance of developing specific inhibitors for mammalian PLA2s to more accurately evaluate the role of these important enzymes in regulating normal cellular processes and in disease pathogenesis.

Probably the most reliable cPLA2α inhibitors for use in cellular studies are the pyrrolidines developed at Shionogi and the indoles developed at Wyeth [103,104]. These compounds inhibit cPLA2α in the sub-micromolar range using a number of different in vitro lipolysis assays and they block cPLA2α-dependent arachidonate release in mammalian cells in the 0.01–1 μM range [103–107]. The pyrrolidine and indole inhibitors have recently been shown to be efficacious in mouse models showing a role for cPLA2α in collagen-induced arthritis and in experimental autoimmune encephalomyelitis, respectively [108,109]. They do not inhibit the human cPLA2β and cPLA2γ isoforms but data on the mouse isoforms are not yet available [105,110]. However, recent data show that the pyrrolidines and indoles work as well on mouse cPLA2α as on cPLA2α in vitro [111]. In fact, these compounds block arachidonate release in mouse lung fibroblasts prepared from cPLA2α deficient mice, suggesting that cPLA2α can contribute at least some of the arachidonate in these cells. There is no data on the effect of these inhibitors on purified human cPLA2α or on mouse and human cPLA2β and cPLA2δ. The groups of Lehr and Kokotos have reported on a series of ketone-containing compounds that are also potent inhibitors of cPLA2α [112,113]. Studies in the author’s laboratories are underway to fully explore the specificity of cPLA2α inhibitors on the complete set of human and mouse Group IV PLA2 isoforms.

In summary, we have available sub-micromolar cPLA2α inhibitors that work in cell models, but the full reliability of these compounds must await further analysis in terms of cross-specificity with other cPLA2 isoforms. Such inhibitors, when combined with siRNA and gene deletion, will lead to a comprehensive understanding of the function of individual members of the Group IV cPLA2 family.

Acknowledgement

The authors acknowledge funding from the National Institutes of Health.

References

C.C. Leslie et al. / Biochimie 92 (2010) 620–626

M.C. Mounier, F. Chomashmi, M.R. Lindsay, S. James, A.G. Singer, R.G. Parton, M.H. Gelb, Arachidonic acid release from mammalian cells transfected with human Groups IIA and X secreted phospholipase A2 occurs predominantly during the secretory process and with the involvement of cytosolic phospholipase A2-z. J. Biol. Chem. 279 (2004) 25024–25030.

M. G. C. Leslie et al. / Biochimie 92 (2010) 620–626

C.C. Leslie et al. / Biochimie 92 (2010) 620–626

C.C. Leslie et al. / Biochimie 92 (2010) 620–626