6.1) a) The easiest way to solve this is to remember that for one mole of an ideal gas molecules:

\[E = \frac{N_A m c^2}{2} = \frac{3RT}{2} \Rightarrow c^2 = \frac{3RT}{N_A m} \Rightarrow c_{\text{rms}} = \sqrt{c^2} = \sqrt{\frac{3RT}{N_A m}} = \sqrt{\frac{3RT}{MW}} \]

\[c_{\text{rms}} = \frac{\sqrt{c^2}}{M_W} = \frac{(3)(8.31 J/\text{mole} \cdot K)(273K)}{0.002 \text{ kg/mole}} = 0.00184 \text{ m/s} \]

b) \[E = \frac{3RT}{2} = \frac{(3)(8.31 J/\text{mole} \cdot K)(273K)}{2} = 3.40 \text{ kJ/mole} \]

c) \[V = \frac{RT}{P} = \frac{(1\text{ mole})(0.0821 L \cdot \text{atm}/\text{mole} \cdot K)(273K)}{1\text{ atm}} = 22.4 L/\text{mole} \]

\[\left(\frac{0.001 L}{22.4 L/\text{mole}}\right)(6.02 \times 10^{23} \text{ molecules/mole}) = 2.69 \times 10^{19} \text{ molecules} \]

d) \[\ell = \frac{1}{\sqrt{2\pi (N/V) \sigma^2}} = \frac{1}{(1.41)(3.14)(6.02 \times 10^{23} / 22.4 L)(0.001 L/cm^3)(2.5 \times 10^{-8} \text{ cm})^2} = 1.34 \times 10^{-5} \text{ cm} \]

e) \[z = 4\sqrt{\frac{RT}{MW}} \sigma^2 \left(\frac{RT}{MW}\right)^{1/2} = (4)(3.14)(2.689 \times 10^{19} \text{ molecules/cm}^3) \times \]

\[(2.5 \times 10^{-8} \text{ cm})^3 \left(\frac{8.31 \times 10^7 \text{ ergs/mole} \cdot K)(273K)}{0.002 \text{ kg/mole}}\right)^{1/2} = 1.264 \times 10^{10} \text{ s}^{-1} \]

f) \[Z = \left(\frac{N}{V}\right) \left(\frac{z}{2}\right) = (2.689 \times 10^{19} \text{ cm}^3) \left(\frac{1.264 \times 10^{10} \text{ s}^{-1}}{2}\right) = 1.699 \times 10^{29} \text{ cm}^3 \text{ s}^{-1} \]

6.2) a) \(n_2 = 0 \) occurs when \(T = 0 K \).
b) \(n_1 = n_2 \) occurs when \(T = \infty \)

c) \(\frac{n_2}{n_1} = 1.000015 = \exp \left(-\frac{h \nu}{kT} \right) \Rightarrow \ln(1.00015) = 1.5 \times 10^{-5} = -\frac{h \nu}{kT} = -\frac{(6.626 \times 10^{-34} \text{ J} \cdot s)(-10^8 \text{ s}^{-1})}{(1.38 \times 10^{-23} \text{ J} / \text{ K})T} \)

Solving... \(T = 320 \text{ K} \)

6.3)

a) \(D = \frac{kT}{f} \Rightarrow f = \frac{kT}{D} = \frac{(1.38 \times 10^{-23} \text{ J} / \text{ K})(293 \text{ K})}{4.0 \times 10^{-11} \text{ m}^2 / \text{s}} \approx 10^{-10} \text{ kg} / \text{s} \)

b) \(V = \frac{V_2}{N_A} = \frac{4}{3} \pi R_0^3 \Rightarrow R_0 = \left(\frac{V_2}{N_A} \frac{3}{4 \pi} \right)^{1/3} = \left(\frac{(3)(0.739 \text{ cm}^3 / \text{ g}) 156,000 \text{ g} / \text{ mole}}{6.02 \times 10^{23} / \text{ mole}} \frac{(4 \pi)}{156,000 \text{ g} / \text{ mole}} \right)^{1/3} = 6.74 \times 10^{-8} \text{ g} / \text{s} \)

Then

\(f_0 = 6 \pi \eta R_0 = (6)(3.14)(0.01 \text{ g} / \text{ cm} \cdot \text{s}) \left(\frac{(3)(0.739 \text{ cm}^3 / \text{ g}) 156,000 \text{ g} / \text{ mole}}{6.02 \times 10^{23} / \text{ mole}} \frac{(4 \pi)}{156,000 \text{ g} / \text{ mole}} \right)^{1/3} = 6.74 \times 10^{-8} \text{ g} / \text{s} \)

c) If IgC is spherical then

\(f = 6 \pi \eta R \) and \(f_0 = 6 \pi \eta R_0 \Rightarrow \frac{f}{f_0} = \frac{10^{-7} \text{ g} / \text{s}}{6.74 \times 10^{-8} \text{ g} / \text{s}} = 1.6 = \frac{R}{R_0} \)

But for a hydrated, spherical molecule \(R = \left(\frac{3m(\bar{v}_2 + \delta_1 \bar{v}_1)}{4 \pi} \right)^{1/3} \)

Hence \(\frac{R}{R_0} = \left(\frac{\bar{v}_2 + \delta_1 \bar{v}_1}{\bar{v}_2} \right)^{1/3} = 1.6 = \left(\frac{(0.739 \text{ cm}^3 / \text{ g} + \delta_1 1.00 \text{ cm}^3 / \text{ g})}{0.739 \text{ cm}^3 / \text{ g}} \right)^{1/3} \)

Solving... \(\delta_1 = 2.22 \text{ g water/g IgC} \)

c) The volume per molecule of unhydrated IgC is

\(V_{\text{molecule}} = M \frac{\bar{V}_2}{N_A} = \frac{(156,000 \text{ g} / \text{ mole})(0.739 \text{ cm}^3 / \text{ g})}{6.02 \times 10^{23} \text{ molecules} / \text{ mole}} = 1.91 \times 10^{-19} \text{ cm}^3 / \text{ molecule} \)

d) The volume of a prolate ellipsoid is \(\frac{4}{3} \pi ab^2 = 1.91 \times 10^{-19} \text{ cm}^3 \). But to proceed further, we have to eliminate one of the unknowns a or b. This can be done in two ways. First, consult Figure 6.8 and notice that for a prolate ellipsoid with frictional ratio \(\frac{f}{f_0} = 1.5 \Rightarrow \frac{a}{b} \approx 10. \) Then \(a = 10b. \) Alternatively, one could use the equation for the frictional coefficient ratio, given in Additional Problem 2 below, as a function of \(a/b \)...make a calibration chart, and similarly derive the fact that \(a = 10b. \) Any way you do it...eliminate a from the volume equation...

\(\frac{4}{3} \pi ab^2 = \frac{4}{3} \pi (10b)b^2 = 1.91 \times 10^{-19} \text{ cm}^3 \Rightarrow b = 1.7 \times 10^{-7} \text{ cm} \Rightarrow a = 10b = 170 \times 10^{-7} \text{ cm} \)
1) The differential equation for one dimensional diffusion has the form
\[\frac{dC_2}{dt} = \frac{k_g T}{f} \frac{d^2 C_2}{dx^2} = D_2 \frac{d^2 C_2}{dx^2} \]
where \(C_2(x,t) \) is the solute concentration, \(D_2 \) is the diffusion coefficient of the solute and \(f \) is the coefficient of friction of a solute particle.

a) Prove that \(C_2(x,t) = \frac{C_0}{\sqrt{4\pi D_2 t}} e^{-x^2/4D_2t} \) is a solution for this equation. Hint:

This means that you must show that if the expression for \(C_2 \) is differentiated once with respect to \(t \), the result equals the second derivative of \(C_2 \) with respect to \(x \) times \(D_2 \).

Solution:
\[C(x,t) = \frac{C_0}{\sqrt{4\pi D_2 t}} e^{-x^2/4D_2t} \]
is a solution to the equation if its partial derivative wrt time \(t \) equals its second partial derivative wrt \(x \) times the diffusion coefficient \(D \). So we have to calculate \(\frac{\partial C}{\partial t} \) and \(\frac{\partial^2 C}{\partial x^2} \).

\[\frac{\partial C}{\partial t} = \frac{\partial}{\partial t} \left(\frac{C_0}{\sqrt{4\pi D_2 t}} e^{-x^2/4D_2t} \right) = \frac{C_0}{\sqrt{4\pi D_2 t}} \frac{\partial}{\partial t} \left(t^{-1/2} e^{-x^2/4D_2t} \right) = \frac{1}{2t} \frac{C_0}{\sqrt{4\pi D_2 t}} \left(\frac{x^2}{2D_2} - 1 \right) e^{-x^2/4D_2t} \]

\[\frac{\partial C}{\partial x} = \frac{\partial}{\partial x} \left(\frac{C_0}{\sqrt{4\pi D_2 t}} e^{-x^2/4D_2t} \right) = -\frac{C_0 e^{-x^2/4D_2t}}{\sqrt{4\pi D_2 t}} \frac{\partial}{\partial x} \left(\frac{x^2}{4D_2} \right) = -\frac{C_0 e^{-x^2/4D_2t}}{2D_2 \sqrt{4\pi D_2 t}} x \]

\[\frac{\partial^2 C}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{C_0 e^{-x^2/4D_2t}}{2D_2 \sqrt{4\pi D_2 t}} \right) = -\frac{C_0 e^{-x^2/4D_2t}}{2D_2 \sqrt{4\pi D_2 t}} \left(\exp\left(-\frac{x^2}{4D_2t} \right) - \frac{x^2}{2D_2} \exp\left(-\frac{x^2}{4D_2t} \right) \right) \]

\[= \frac{1}{2D_2 \sqrt{4\pi D_2 t}} \frac{C_0}{\sqrt{4\pi D_2 t}} \left(\frac{x^2}{2D_2} - 1 \right) e^{-x^2/4D_2t} = \frac{1}{D} \frac{\partial C}{\partial t} \]

b) Make graphs of the functions \(xC_2(x,t) \), and \(x^2 C_2(x,t) \) versus \(x \). Assume for simplicity at \(C_0=1 \text{cm} \) and \(D_2 t=1 \text{cm}^2 \). Based on these graphs, will the mean displacement \(\bar{x} \) and the root mean square (rms) displacement \(x_{rms} = \sqrt{\bar{x}^2} \) be equal? Explain. From your graphs…estimate the mean displacement and the root-mean-square displacement.
Answer: I used Microsoft Excel to generate the graphs required. Note the function \(xC(x) \) is an odd function of \(x \) and hence the area under the curve \(xC(x) \) is zero between \(-A\) and \(+A\). Analytically this means

\[
\bar{x} = \int_{-\infty}^{+\infty} xC(x)dx = 0 \quad \text{and so the average displacement is zero. On the other hand} \quad x^2C(x) \text{ is an even function of } x \text{ and its integral is clearly not zero and}
\]

\[
\bar{x^2} = \int_{-\infty}^{+\infty} x^2C(x)dx = 2Dt = 2 \Rightarrow x_{rms} = \sqrt{\bar{x^2}} = \sqrt{2} . \text{ You could derive this result by estimating the area under the graph using Simpson’s rule.}
\]

c) Graph \(C_2(x,t) \) for \(D_2t = 1 \text{cm}^2, 4 \text{cm}^2, \text{ and } 16 \text{cm}^2 \). Calculate the rms displacements from each graph.
Again I did this with Microsoft Excel. The rms displacements for $Dt=1$, 4, and 16 are $\sqrt{2}, 2\sqrt{2}, 4\sqrt{2} \cdots$ (from $x_{rms} = \sqrt{2Dt}$).

2) Consider a flea that is constrained to jump in either the $-x$ or the $+x$ direction. Initially the flea is at $x=0$. Suppose the flea executes N jumps, each of length l.

Assume the number of jumps in the $+x$ direction is $N_+ = \frac{N+m}{2}$ and the number of jumps in the $-x$ direction is $N_- = \frac{N-m}{2}$.

a) The number of ways that a flea can be displaced m jumps in the $+x$ direction after N total jumps is $W = \frac{N!}{N_+!N_-!}$. If N is large show that

$$\ln W \approx \text{const} \tan t - \frac{(N+m)}{2} \ln \left(1 + \frac{m}{N}\right) - \frac{(N-m)}{2} \ln \left(1 - \frac{m}{N}\right)$$

(Hint: use Stirling’s Approximation)
\[W = \frac{N!}{N_+!N_-!} \Rightarrow \ln W = \ln (N!) - \ln (N_+) - \ln (N_-) \]

Let \[N_+ = \frac{N + m}{2} \ldots \text{and} \ldots \ln (N_+) = N_+ \ln N_+ - N_+ \]

\[\ln W = \ln (N!) - \frac{N + m}{2} \ln \left(\frac{N + m}{2}\right) + \frac{N + m}{2} - \frac{N - m}{2} \ln \left(\frac{N - m}{2}\right) + \frac{N - m}{2} \]

\[= \ln (N!) + N - \frac{N + m}{2} \ln \left(\frac{N + m}{2}\right) - \frac{N - m}{2} \ln \left(\frac{N - m}{2}\right) \]

\[= \text{cons} \tan t \cdot \frac{N + m}{2} \ln \left(\frac{N + m}{2}\right) - \frac{N - m}{2} \ln \left(\frac{N - m}{2}\right) \]

b) A function \(f(x) \) can be approximated near \(x=0 \) using the expansion

\[f(x) = f(0) + xf'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + \ldots \]

This is called McLaurin’s Expansion. Derive the first four terms in the McLaurin Expansions for \(\ln(1+x) \) and \(\ln(1-x) \).

\[f(x) = \ln (1 \pm x) \Rightarrow f(0) = \ln (1 \pm 0) = 0 \]

\[f'(x) = \pm (1 \pm x)^{-1} \Rightarrow f'(0) = \pm 1 \]

\[f''(x) = -(1 \pm x)^{-2} \Rightarrow f''(0) = -1 \]

\[f'''(x) = \pm 2(1 \pm x)^{-3} \Rightarrow f'''(0) = \pm 2 \]

\[\therefore f(x) = f(0) + xf'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + \ldots \]

\[= \pm x - \frac{x^2}{2} \pm \frac{x^3}{3} + \ldots \]

c) Apply the McLaurin expansion to the logarithm terms in the expression for \(\ln W \) in part a and show that \(W(m) = \text{cons} \tan t * e^{-m^2/2N} \).
\[
\ln W = \text{cons} \tan t - \frac{N + m}{2} \ln \left(\frac{N + m}{2} \right) - \frac{N - m}{2} \ln \left(\frac{N - m}{2} \right)
\]

\[
= \text{cons} \tan t - \frac{N + m}{2} \ln \left(\frac{N}{2} \left(1 + \frac{m}{N} \right) \right) - \frac{N - m}{2} \ln \left(\frac{N}{2} \left(1 - \frac{m}{N} \right) \right)
\]

\[
= \text{cons} \tan t - \frac{N + m}{2} \left\{ \ln \left(\frac{N}{2} \right) + \ln \left(1 + \frac{m}{N} \right) \right\} - \frac{N - m}{2} \left\{ \ln \left(\frac{N}{2} \right) + \ln \left(1 - \frac{m}{N} \right) \right\}
\]

\[
= \text{cons} \tan t - N \ln \left(\frac{N}{2} \right) - \frac{N + m}{2} \ln \left(1 + \frac{m}{N} \right) - \frac{N - m}{2} \ln \left(1 - \frac{m}{N} \right)
\]

\[
= \text{cons} \tan t - \frac{N + m}{2} \left\{ \frac{m}{N} - \frac{1}{2} \left(\frac{m}{N} \right)^2 \right\} - \frac{N - m}{2} \left\{ \frac{1}{2} \left(\frac{m}{N} \right)^2 \right\}
\]

\[
= \text{cons} \tan t - \frac{N + m}{2} \left\{ \frac{m}{N} - \frac{1}{2} \left(\frac{m}{N} \right)^2 \right\} - \frac{N - m}{2} \left\{ \frac{1}{2} \left(\frac{m}{N} \right)^2 \right\}
\]

\[
= \text{cons} \tan t - \frac{m^2}{N} + \frac{m^2}{2N} = \text{cons} \tan t - \frac{m^2}{2N}
\]

d) If \(m \) is the number of excess jumps that the flea executes in the +x direction, and if each jump has a length \(l \), the total distance that the flea travels from the origin \(x=0 \) after \(N \) jumps is \(x=lm \). Show that the probability that the flea will be at \(x=lm \) after \(N \) jumps is

\[
P(x) = \frac{1}{\sqrt{2\pi Nl^2}} e^{-x^2/2Nl^2} = \frac{1}{\sqrt{2\pi Nl^2 t}} e^{-x^2/2Nl^2 t}
\]

where the rate at which the flea jumps is \(N' = \frac{dN}{dt} \).

Note...\(x = l \cdot m \Rightarrow \ln W = \text{cons} \tan t - \frac{x^2}{2Nl^2} \)

\[\therefore W(x) \approx \text{cons} \tan t \times \exp \left\{ - \frac{x^2}{2Nl^2} \right\} \]

\[
P(x) = \frac{W(x)}{\int_{-\infty}^{\infty} W(x)dx} = \frac{\exp \left\{ - \frac{x^2}{2Nl^2} \right\}}{\int_{-\infty}^{\infty} e^{x^2/2Nl^2} dx} = \frac{\exp \left\{ - \frac{x^2}{2Nl^2} \right\}}{2 \int_{0}^{\infty} e^{x^2/2Nl^2} dx}
\]

\[
= \frac{1}{\sqrt{2\pi Nl^2}} \exp \left\{ - \frac{x^2}{2Nl^2} \right\} = \frac{1}{\sqrt{2\pi Nl^2 t}} \exp \left\{ - \frac{x^2}{2Nl^2 t} \right\}
\]

e) Prove that the function \(P(x) \) in part d satisfies the one dimensional diffusion equation (see additional problem 1) if \(2D_2 = N'l^2 \)
\[
P(x) = \frac{1}{\sqrt{2\pi N}} \exp \left(-\frac{x^2}{2N\ell^2} \right) = \frac{1}{\sqrt{4\pi D t}} \exp \left(-\frac{x^2}{4Dt} \right) \]

…which is proportional to \(C(x,t)\), the solution of the one-dimensional diffusion equation (see problem 1).

3) The enzyme urease (jack bean) has a molecular weight 482,700 gm/mole, a diffusion coefficient \(D = 3.46 \times 10^{-11} \text{m}^2/\text{s}\) (in water at 293K), and a specific volume \(V_2 = 0.73 \text{mL/gm}\).

a) Calculate the frictional coefficient \(f\) of urease in water at \(T = 293K\). Also, calculate the hydrodynamic radius of urease at \(T = 293K\).

\[
f = \frac{k_B T}{D} = \frac{1.38 \times 10^{-23} \text{J/K}}{3.46 \times 10^{-11} \text{m}^2/\text{s}} = 1.17 \times 10^{-10} \text{kg/s}
\]

\[
f' = 6\pi \eta R \Rightarrow R = \frac{f'}{6\pi \eta} = \frac{1.17 \times 10^{-10} \text{kg/s}}{(6\pi)(0.001005 \text{kg/m/s})} = 6.21 \times 10^{-9} \text{m}
\]

b) Assuming urease is an unhydrated sphere, calculate its radius and its frictional coefficient.

\[
\frac{4}{3} \pi R_0^3 = \frac{MW \cdot V_2}{N_A}
\]

\[
R_0^3 = \frac{3}{4\pi} \left(\frac{MW \cdot V_2}{N_A} \right) = \left(\frac{3}{4\pi} \right) \left(\frac{(482.7 \text{kg/mole})(0.73 \text{mL/gm}) \left(\frac{1 \text{m}^3}{10^6 \text{mL}} \right) \left(\frac{1000 \text{gm}}{1 \text{kg}} \right) }{6.02 \times 10^{23}} \right)
\]

\[
= 140 \times 10^{-27} \text{m}^3 \Rightarrow R_0 = 5.19 \times 10^{-9} \text{m}
\]

\[
\therefore f_0 = 6\pi \eta R_0 = (6\pi)(0.001005 \text{kg/m/s})(5.19 \times 10^{-9} \text{m}) = 0.98 \times 10^{-10} \text{kg/s}
\]

c) Calculate the number of waters of hydration associated with a single urease molecule at \(T = 293K\).

\[
\frac{f}{f_0} = \frac{1.17 \times 10^{-10} \text{kg/s}}{0.98 \times 10^{-10} \text{kg/s}} = 1.19
\]

\[
\text{Then} \left(\frac{f}{f_0} \right)^3 = \left(\frac{R}{R_0} \right)^3 = \frac{V_2}{V_1} + \delta \frac{V_1}{V_2} = 1.69
\]

\[
\delta = 0.69 \frac{V_2}{V_1} = 0.69 \left(\frac{0.73 \text{mL/gm protein}}{1 \text{mL/gm water}} \right) = 0.504 \text{gm water per gm protein}
\]

\[
\therefore \delta \left(\frac{1 \text{mole}}{18 \text{gm water}} \right) \left(\frac{482,700 \text{gm protein}}{1 \text{mole}} \right) = 13,515 \text{moles water per mole protein}
\]
4) Viscosity of a gas revisited. Consider N He atoms in a container of volume V at a pressure of $P=1$ atm and a temperature of $T=298\text{K}$.

a) For a pure, one component gas the viscosity is $\eta = \frac{N\bar{c}ml}{2V}$ where l is the mean free path, m is the mass of a single gas particle, and \bar{c} is the average gas particle speed. Calculate the viscosity of helium gas at $T=298\text{K}$. Assume helium behaves ideally under these conditions.

$$\frac{PV}{nRT} = \frac{N}{N_A} \Rightarrow \frac{N}{V} = \frac{P \cdot N_A}{R \cdot T} = \frac{(1\text{atm})(6.02 \times 10^{23}\text{mole}^{-1})}{(0.0821\text{L} \cdot \text{atm} \cdot \text{mole}^{-1} \cdot \text{K}^{-1})(298\text{K})}$$

$$\frac{N}{V} = (2.46 \times 10^{22}\text{molecules} / \text{L})\left(\frac{10^3\text{L}}{\text{m}^3}\right) = 2.46 \times 10^{25}\text{molecules} / \text{m}^3$$

$$l = \frac{1}{\sqrt{2\pi d^2\left(\frac{N}{V}\right)}} = \frac{1}{\sqrt{2\pi\left(2.14 \times 10^{-10}\text{m}\right)^2\left(2.46 \times 10^{25}\text{m}^{-3}\right)}}$$

$$l = \frac{1}{\sqrt{2\pi\left(4.58 \times 10^{-20}\text{m}^2\right)\left(2.46 \times 10^{25}\text{m}^{-3}\right)}} = \frac{1}{50.03 \times 10^5\text{m}} = 2 \times 10^{-7}\text{m}$$

$$\bar{c} = \sqrt{\frac{8k_B T}{\pi m}} = \sqrt{\frac{8RT}{\pi MW}} = \sqrt{\frac{8\left(8.31\text{JK}^{-1}\text{mole}^{-1}\right)(298\text{K})}{(3.14)(0.004\text{kg} / \text{mole})}} = \sqrt{1.58 \times 10^6\text{m} / \text{s}} = 1270\text{m} / \text{s}$$

$$\eta = \frac{N\bar{c}ml}{2V} = (0.5)\left(\frac{2.46 \times 10^{25}\text{m}^{-3}}{6.02 \times 10^{23}\text{mole}^{-1}}\right)(2 \times 10^{-7}\text{m})\left(1.27 \times 10^3\text{m} / \text{s}\right)(0.004\text{kg} / \text{mole})$$

$$\eta = 2.08 \times 10^{-5}\text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-1}$$

b) If a temperature gradient exists in a material, heat will be conducted through the material from the region of higher temperature to a region of lower temperature...a process called heat conduction. The thermal conductivity is the rate at which heat is transferred through a material per unit temperature gradient. For a gas the thermal conductivity λ is

$$\lambda = \frac{5}{2} \left(\frac{\langle C_v \rangle}{m}\right)\eta$$

where the average heat capacity $\langle C_v \rangle = \frac{\partial \langle E \rangle}{\partial T}$ and η is the viscosity of the gas. Calculate the thermal conductivity of helium at $P=1$ atm and $T=298\text{K}$. What are the units of thermal conductivity?
\[
\lambda = \frac{5}{2} \left(\frac{C_v}{m} \right) \eta = \frac{5}{2} \left(\frac{C_v}{N,m} \right) \eta = \frac{5}{2} \left(\frac{C_v}{MW} \right) \eta
\]

\[
C_v = \frac{\partial E}{\partial T} = \frac{\partial}{\partial T} \left(\frac{3RT}{2} \right) = \frac{3R}{2} = 12.47 J \cdot K^{-1} \cdot \text{mole}^{-1}
\]

\[
\therefore \lambda = (2.5) \left(\frac{12.47 J \cdot K^{-1} \cdot \text{mole}^{-1}}{0.004 \text{kg} \cdot \text{mole}^{-1}} \right) (2.08 \times 10^{-5} \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-1})
\]

\[
= 0.162 J \cdot K^{-1} \cdot \text{m}^{-1} \cdot \text{s}^{-1}
\]

Note: The units of thermal conductivity may seem obscure, but they make sense when you realize that thermal conductivity is the constant of proportionality that relates the heat flux \(h \) (Joules per m\(^2\) per second) to the thermal gradient \(dT/dx \) (degrees K per meter). The relationship is analogous to Fick’s First Law of Diffusion which relates the solute mass flux \(J_2 \) (kg per m\(^2\) per second) to the concentration gradient \(dC(x)/dx \) (kg/ m\(^3\) per m). In Fick’s First Law the constant of proportionality is the diffusion coefficient \(D_2 \). Therefore we can deduce the analogous heat flux equation...

\[
J_2 = -D_2 \frac{dC_2(x)}{dx} \Leftrightarrow h = -\lambda \frac{dT(x)}{dx}.
\]

From Fick’s First Law it is clear that \(D_2 \) must have units of m\(^2\)/s. From the heat flux equation it is clear that \(\lambda \) must have units of J \cdot K\(^{-1}\) \cdot m\(^{-1}\) \cdot s\(^{-1}\). Because of their units, fluxes like \(h \) and \(J_2 \) are sometimes called current densities...because they measure the amount of something that passes through a unit area per unit time. We will find that the viscosity coefficient \(\eta \) is similarly a constant of proportionality in a flux equation...