A. Physics of Classical Rotations

- We consider the motion of two masses \(m_1 \) and \(m_2 \) connected by a rigid, massless “bond” of length \(r \). This entity is called a rigid rotor. It is a model for the rotational dynamics of diatomic molecules, and it is a simple illustration of how rotational motions are quantized.

- Before we consider how to quantize rotations, we introduce some basic concepts on rotational motions from classical physics.

- Consider a mass \(m \) moving in a circular orbit of radius \(r \). Assume the mass moves with constant velocity \(v \). See figure below.

\[\omega = \frac{d\phi}{dt} \]

(7.1)

where \(\phi \) is the angle traced out as \(r \) changes direction.

- The relationship between \(v \) and \(\omega \) can be obtained as follows. Assume as a result of the motion of the mass on a circular path with linear velocity \(v \), in a short time \(\Delta t \) the angle changes by \(\Delta \phi \). As shown in the figure the particle covers a linear distance \(\Delta s \) on the orbit. We have:
The kinetic energy of the particle is now

\[K = \frac{p^2}{2m} = \frac{\mu v^2}{2} = \frac{\mu r^2 \omega^2}{2} = \frac{I \omega^2}{2} \]

(7.3)

• The term \(I = \mu r^2 \) is called the moment of inertia. We will discuss it in detail later.

• We can also express the energy \(K \) in terms of the angular momentum. The angular momentum is defined in terms of the cross product between the position vector \(\mathbf{r} \) and the linear momentum vector \(\mathbf{p} \):

\[\mathbf{L} = \mathbf{r} \times \mathbf{p} \]

\[= pr \sin \theta = pr = \mu vr \]

(7.4)

where the angle \(\theta \) between \(\mathbf{p} \) and \(\mathbf{r} \) is ninety degrees for circular motion.

• As a cross product, the angular momentum vector \(\mathbf{L} \) is perpendicular to the plane defined by the \(\mathbf{r} \) and \(\mathbf{p} \) vectors.

- We can use equation 7.4 to obtain an expression for the kinetic energy in terms of the angular momentum \(\mathbf{L} \):

\[K = \frac{p^2}{2\mu} = \frac{L^2}{2\mu r^2} = \frac{L^2}{2I} \]

(7.5)

- The moment of inertia is derived as follows. For two masses \(m_1 \) and \(m_2 \):

\[I = m_1 r_1^2 + m_2 r_2^2 \]

(7.6)

where \(r_1 \) and \(r_2 \) are the distances of \(m_1 \) and \(m_2 \) from the center of mass, respectively where,

\[r_{1,2} = \frac{m_{2,1}}{m_1 + m_2} r \]

(7.7)
• Putting 7.7 into 7.6 we obtain $I = \mu r^2$ where $\mu = \frac{m_1 m_2}{m_1 + m_2}$

B. Quantum Planar Rigid Rotor

• Suppose a diatomic molecule rotates in such a way that the vibration of the bond is unaffected by the rotation. Molecular rotation is not naturally treated in Cartesian coordinates so we change to spherical coordinates

\[x = r \cos \varphi \sin \theta; \quad y = r \sin \varphi \sin \theta; \quad z = r \cos \theta \]

(7.8)

See the figure below for the graphical relationship between the two coordinate systems:

• For simplicity, assume the rigid rotor is confined to a plane. This is not a terribly realistic model for molecular rotations, but it does illustrate an application of Schroedinger’s equation that can be worked out fairly easily.

• For a planar rigid rotor we set the angle θ at a constant value of 90 degrees. We imagine that the origin is the center of mass of the rigid rotor and length of the rotor is r and at the point P is located a reduced mass μ. Rotation occurs in the x-y plane around the z axis. As rotation occurs the angle φ changes. The notation L_z refers to the fact that because the rotation is around the z axis the angular momentum vector is parallel to the z axis. Schroedinger’s equation is:

\[\frac{p^2}{2\mu} \psi(\varphi) = \frac{L_z^2}{2I} \psi(\varphi) = E\psi(\varphi) \]

(7.9)
We define \(\hat{L}_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi} = -i \hbar \frac{\partial}{\partial \phi} \) so that \(\hat{L}_z^2 = -\hbar^2 \frac{d^2}{d\phi^2} \) and Schrödinger’s equation becomes:

\[
-\frac{\hbar^2}{2I} \frac{d^2 \psi(\phi)}{d\phi^2} = E\psi(\phi)
\]

(7.10)

The solution is:

\[
\psi(\phi) = A_+ e^{ik\phi} + A_- e^{-ik\phi} = \psi_+(\phi) + \psi_-(\phi)
\]

(7.11)

where \(k^2 = \frac{2IE}{\hbar^2} \)

We require that because the rotor is indistinguishable when it is oriented at \(\phi \) versus \(\phi + 2\pi \):

\[
\psi(\phi) = \psi(\phi + 2\pi)
\]

or \(A_+ e^{ik\phi} + A_- e^{-ik\phi} = A_+ e^{i(k+2\pi)\phi} + A_- e^{-i(k+2\pi)\phi} \)

(7.12)

For this to occur we require that \(e^{i2\pi k} = 1 \), which will only occur if \(k = 0, \pm 1, \pm 2, \pm 3 \ldots \) Because \(k \) is positive and negative we need only a single function to describe the wave function, which can now be normalized:

\[
1 = \int_0^{2\pi} \psi^*(\phi)\psi(\phi) d\phi = A_+^2 \int_0^{2\pi} e^{-ik\phi} e^{ik\phi} d\phi = A_+^2 \int_0^{2\pi} d\phi = 2\pi A^2
\]

(7.13)

\[
A = \frac{1}{\sqrt{2\pi}}
\]

We substitute \(\psi(\phi) = \frac{1}{\sqrt{2\pi}} e^{ik\phi} \) into Schrödinger’s equation 7.10 and obtain the energy quantization condition:

\[
E_k = \frac{\hbar^2 k^2}{2I}
\]

(7.14)

where \(k = 0, \pm 1, \pm 2, \pm 3 \ldots \)

Because \(E_k = \frac{L^2}{2I} \), equation 7.14 implies that the angular momentum around the z axis is quantized according to

\[
|L_z| = k\hbar
\]

(7.15)

B. Rigid Rotor: Two Dimensions

A more realistic model has a rigid linear molecule with moment of inertia \(I \) rotating through two angular dimensions, designated by \(\theta \) and \(\phi \). Using the transformation (7.4) and assuming that \(r \) is constant, Schrödinger’s equation becomes

\[
\frac{1}{2I} \left(\frac{p_{\theta}^2}{\sin^2 \theta} + \frac{p_{\phi}^2}{\sin^2 \phi} \right) \Psi(\theta, \phi) = \frac{L^2}{2I} \Psi(\theta, \phi) = E \Psi(\theta, \phi)
\]

(7.16)
where it can be shown that \[p^{2}_{\phi} = -\frac{\hbar^2}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \] and \[p^{2}_{\psi} = L^{2}_{z} = -\hbar^2 \frac{\partial^2}{\partial \phi^2} \]

- Therefore \(L^{2} \) is the total angular momentum:
\[
L^{2} = -\frac{\hbar^2}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) - \frac{\hbar^2}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2}
\]

(7.17)

- Note because the rotor is rigid \(r \) is a constant and so all derivatives with respect to \(r \) vanish. The problem becomes two dimensional and the wave function that is obtained by solving (7.16) has the form…
\[
\Psi(\theta, \phi) = \Theta(\theta) \Phi(\phi)
\]

(7.18)

- One dimensional problems like the particle in the one dimensional box have a single quantum number \(n \). The particle in a three dimensional box has three quantum numbers \(n_{x}, n_{y}, n_{z} \). Accordingly the rigid rotor has two quantum numbers \(l \) and \(m \). The dependence of the wave functions on \(l \) and \(m \) is
\[
\Psi_{l,m}(\theta, \phi) = \Theta_{l,m}(\theta) \Phi_{m}(\phi)
\]

(7.19)

- Schrodinger’s equation can be solved to get the energy and the wave functions.

- The energy is a function of \(l \) only: \(E_{l} = \frac{L^{2}_{z}}{2I} = \frac{\hbar^2}{2I} (l + 1) \)

- The total angular momentum is therefore quantized according to \(L^{2} = \hbar^2 (l + 1) \)

- The quantum number \(l \) has values \(l=0,1,2,3,4,\ldots \)

- Because \(L^{2}_{z} \) also appears in the Schrodinger equation \(L_{z} \) is quantized exactly as in the planar rigid rotor: \(L^{2}_{z} = \hbar^2 m^2 \)

- For a given value of \(l \), \(m \) runs from \(-l\) to \(+l\), a total of \(2l+1 \) values. Because the energy is dependent only on \(l \), there will be \(2l+1 \) wavefunctions corresponding to different values of \(m \), that will have this energy. Each rotational level will be \(2l+1 \) degenerate.

- All wave functions \(\Phi_{m}(\phi) = \frac{\epsilon^{l,m}_{\phi}}{\sqrt{2\pi}} = \frac{1}{\sqrt{2\pi}} (\cos m\phi + i \sin m\phi) \). The following table gives the wavefunctions for \(l=0,1,2 \).

<table>
<thead>
<tr>
<th>(l)</th>
<th>(m)</th>
<th>(\Theta_{l,m}(\theta))</th>
<th>(\sqrt{2\pi} \times \Phi_{m}(\phi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(\sqrt{\frac{\pi}{2}} \cos \theta)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>±1</td>
<td>(\sqrt{\frac{\pi}{2}} \sin \theta)</td>
<td>(e^{\pm ip})</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(\sqrt{\frac{\pi}{2}} (3 \cos^2 \theta - 1))</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>±1</td>
<td>(\sqrt{\frac{\pi}{4}} \sin \theta \cos \theta)</td>
<td>(e^{\pm ip})</td>
</tr>
<tr>
<td>2</td>
<td>±2</td>
<td>(\sqrt{\frac{\pi}{16}} \sin^2 \theta)</td>
<td>(e^{\pm 2ip})</td>
</tr>
</tbody>
</table>
Note that we finally have a complex wave function. Now for \(I = 1 \) and \(m = 1 \) we obtain
\[
\Psi_{1,1} (\theta, \varphi) = \Theta_{1,1} (\theta) \Phi_1 (\varphi) = \sqrt{\frac{3}{4\pi}} \sin \theta \times e^{i\varphi}
\]
\[
\therefore \Psi_{1,1} (\theta, \varphi) = \Theta_{1,1} (\theta) \Phi^*_1 (\varphi) = \sqrt{\frac{3}{4\pi}} \sin \theta \times e^{-i\varphi}
\]
\[
\therefore \Psi_{1,1} (\theta, \varphi) \times \Psi_{1,1} (\theta, \varphi) = \sqrt{\frac{3}{4\pi}} \sin \theta \times e^{i\varphi} \times \sqrt{\frac{3}{4\pi}} \sin \theta \times e^{-i\varphi} = \frac{3}{8\pi} \sin^2 \theta
\]

Complex wave functions can be expressed as linear combinations that are real:
\[
\Psi_+ = A (\Psi_{1,1} (\theta, \varphi) + \Psi_{1,-1} (\theta, \varphi)) = A \sqrt{\frac{3}{4\pi}} \sin \theta \times e^{i\varphi} + A \sqrt{\frac{3}{4\pi}} \sin \theta \times e^{-i\varphi}
\]
\[
= A \sqrt{\frac{3}{4\pi}} \sin \theta (e^{i\varphi} + e^{-i\varphi}) = A \sqrt{\frac{3}{2\pi}} \sin \theta \cos \varphi
\]

Then normalize:
\[
1 = 4 \pi \int_0^{2\pi} d\varphi \cos^2 \varphi \int_0^{\pi} d\theta \sin \theta = \frac{3}{2\pi} A^2 (\pi) (\frac{1}{4}) = 2A^2
\]
\[
\therefore A = \frac{1}{\sqrt{2}} \quad \text{and} \quad \Psi_+ = \frac{1}{\sqrt{2}} (\Psi_{1,1} (\theta, \varphi) + \Psi_{1,-1} (\theta, \varphi)) = \frac{1}{4} \sqrt{\frac{3}{2\pi}} \sin \theta \cos \varphi
\]

Probability Integrals:
\[
\int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \sin \theta \Psi_{1,1} (\theta, \varphi) \times \Psi^*_{1,1} (\theta, \varphi) = \frac{1}{8\pi} \int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \sin^3 \theta = \frac{1}{8} \int_0^{\pi} d\theta \sin^3 \theta = \frac{1}{4} \left(2 + \frac{1}{3} (-2) \right) = 1
\]

Probability that rotor lies between \(\varphi = 0 \) and \(\pi/2 \) and \(\theta = 0 \) and \(\pi/2 \) and
\[
\frac{\pi}{2} = \frac{1}{8\pi} \int_0^{\pi/2} d\varphi \int_0^{\pi/2} d\theta \sin^3 \theta = \frac{1}{16} \int_0^{\pi/2} d\theta \sin^3 \theta = \frac{1}{16} \left(\frac{1}{2} \right) = \frac{1}{32}
\]

This result could be obtained by just reasoning that the \(\varphi \) integral covers \(1/4 \) of the total range while the \(\theta \) integral covers \(1/2 \) of the total range. Because the wave function is normalized the result must be \(1/4 \times 1/2 = 1/8 \).